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1. In the paper [1], [2], a two points connection problem between two sets

of fundamental solutions for a system of ordinary differential equations

(1.1) t— = (A + tB)X
dt

was studied under the assumptions that the eigenvalues of the diagonal

matrix B satisfy the pentagonal condition, and that the matrix A has no

congruent eigenvalues, or only one pair of congruent eigenvalues.

In this paper, we extend these results in the direction that the matrix A

may have any sets of congruent eigenvalues. Although we will investigate

the case where all the eigenvalues of the matrix A are congruent for the

sake of simplicity, the method applies easily to the general case to yield

the similar results.

A system of n linear ordinary differential equations of the form (1.1)

has a regular singular point at t = 0, and an irregular singular point of rank
one at t = oo.

It is well known that one set of solutions of the system of differential

equations (1.1) has convergent power series expansions at the regular
singular point, £ = 0, expressed by

(1.2) Xj(t) = t>ji}Gj(m)t»
IB = 0

where PJ (j = 1, 2, • • • , n) are eigenvalues of the matrix A, when A has no
congruent eigenvalues. In general, some of these expressions are replaced
by polynomials in logarithmic function of t, with coefficients of the
form (1. 2).
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On the other hand, at the irregular singular point t=oo, there exists

a set of formal solutions

(1. 3) Xk(t) ^ exp (\kt)t°™ £3 Hk(s)rs

s=o

which expresses a set of fundamental solutions asymptotically in an arbitrary

sectorial neighbourhood of the infinity, with properly chosen width.

Now we will show the assumptions explicitly.

(1) The matrix B is a diagonal matrix:

B = diag(Xlf X2, ••• , X „) .

The eigenvalues \k(k= 1, 2, ••• ,ri) satisfy the pentagonal condition, i.e,

(1.4) |\y-\A >\\k >0 (;>A).

(2) The eigenvalues PJ (j = 1, 2, ••• , ri) of the matrix A satisfy

Pj-Pi = -ntj 0' = 2, 3, — ,«)

where my (j =2, 3, ••• , ?z) are positive integers and mj+1>mj.

(3) akk~Pj^ non-negative integers (y, A= 1, 2, ••• , n) where akk are the

diagonal elements of the matrix A,

According to the assumption (2), the set of fundamental solutions of

the system (1. 1) at the origin can be written down as follows:

where

= 2, 3, ... , n) .

x+t) = fi ± G/«)r o = 2, 3, ...,»).
?M = 0

The purpose of this paper is to calculate the connection coefficients

between two sets of solutions (1. 5) and (1. 3). And also we will show the

simple method to derive the asymptotic forms of the convergent solutions

near the entire neighbourhood of infinity.

The author would like to express his sincere gratitude for the stimulating
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discussions and for the warm encouragements of Professor M. Hukuhara

and of Dr. K. Okubo.

29 In this chapter we prove some lemmata for single inhomogeneous

equations which are used and make important roles in the following chapter.

At first, we show the next lemma that was proved in the preceding

paper [2]. The proof and the explanations in the preceding one were a

little incomplete, so here we again prove it in detail.

Lemma 2. 1. If ^(t) is holomorphic and tlfy(t) is bounded for a real

number I such that Re(a + /)>0J in the domain'.

(2.1)

-{*: Re *>-

where 17 is an arbitrary small positive real number, then a solution y(t), which

bounded in 3)*, of the equation :

(2.2) & = (t + a)y + 7(t)at

has the form
(2. 3) y(t) = O(r') in £* .

Proof. We prove the lemma only for t with non-negative argument,

while the case for t with negative argument will be proved similarly.

The general solution of (2. 2) is easily obtained by quadrature.

Here the integral path Pt is taken as follows. For any t in .2)* with non-

negative argument, we determine t' such that

t' = -Ret

and the path Pt consists of the following three parts :

(i) straight line r= — t' + ijj, (—

( ii ) semi-circle T=? exp (Z(TT — //,)) (0 ̂  p < it)
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tf

(iii) positive real axis n = — p it ̂  p ,
7t

(see below: Figure 1.)

We call this path Pt by "Friedrichs' path".

(f,[¥
/

\

%\ ^n \"//W///' //////AM/////u \'y//////////////w////
to

(Figure 1)

The integration is carried out along an arrow in Figure 1.

Because of the boundedness of y(t) in S)*, the integral constant c musl

be zero and then we only prove the boundedness of

in S)*.

For the purpose of that, we estimate the three quantities of the

integrand excepting rlj(r) and obtain the table below.

argt>x

(i)

im^<o

I--I

U}°+' <f_L feCa+»e<,olIm«l
V r / Vsin??/

dr ^dju.
T = t'

(ii) (iii)

0*K* .^<-

Sl Sa-.'& + 4)

/ 1 \ReC*+-/) (2-x-Ji)\ima\ / Tl \\
Vsin??/ vsin^/^

-rf -rfjM

J"
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(ii) (iii) (iii)

dr

The estimation of the second and fourth columns are easy to derive

and here we show the derivation of the estimate of the third column. As

a is not always real number, if we denote the argument of (t/r) by B, we

get

t_
T

For example, in the case of (i) the next inequality is derived.

i£-^-^L_ = ^M.T 11 sin 77 \sin 777

And if we set arg t = cp, it follows that

(ir

_^\ = I f K J t l s i n y - ^ c o s g (R }

T/ (Ref)2 + M2 ^
j

In the interval |f|sin <p^/j,^: 0, Im (£/•?-) is a monotone increasing

function of //,, it follows that

COScp'

5^ COt 77
t_
T

The estimate was derived and the remaining ones will be proved

similarly.
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From the above table the boundedness of the integral on the part

(ii) is evident and the whole integral will be bounded if it is bounded inde-

pendent of t on the part (i) and (iii) of Pt .

Now we get for arg

mt — \t\COS <p COS<p

and for Orgarg £^

t' tr t0

This proves the lemma.

Remark. 1. If Re(a)>0, the following integral along any paths

which start from the origin and end at infinity is equal to the integral

along the real axis. For example, we take the path that consists of the

straight line St and the "Friedrichs' path" Pt as in Figure 2.

o Jo
••Pf) (Real axis)

(Figure 2)
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In fact we consider the contour which consists of (St H-P,), real axis

and two arcs of circles around the origin with radii 8 and R.

In the above contour e~r-r*~r\s holomorphic and we obtain

(£-0)

q. e. d.

Next we consider a special system of linear differential equations,

which, after some modifications, will be imbedded in the original system

(1. 1). We will study the structures of the solutions and their coefficients

in great detail, because the connection problem of the original system can

be resolved into the interactions of these imbedded equations.

Definition 2. L We denote the following domain by D(X)

D(\) = {t: \t e 3)*} .

Definition 2. 2. We denote the n by n lower cyclic matrix by Z

/o o

V 0 1 0

A vector, or a matrix which is a transpose of another, will be denoted

by # suffix. For example, A* represents the transpose of A.

The column vector ek stands for the unit vector with all the compo-

nent zero except for the &-th. Thus we can write

y _ (o p p ... p \
— \ > i' 2? ' n — i/?k

where 0 stands for the zero vector.

Proposition 2.1. If a is not a non-negative integer, the system of

differential equations

(2. 4)
at
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has a unique holomorphic solution at the origin, and if we write this solution

in the form

(2. 5) Y(t) = 2 ®(m)tm

m=Q

the coefficients ®(m) (m = Q, I,--) satisfy the system of recurrence formulae

Proof. As the homogeneous part of the system has only two singular

points: a regular singular point at the origin and an irregular singular

point at infinity, there exists a unique holomorphic solution at the origin,

since the characteristic exponents at the origin, a, is not a non-negative

integer. In fact, if we expand this solution in the form (2. 5), the coef-

ficients are determined by (2. 6), as is easily seen by the direct substitution.

The matrix coefficients on the left hand side of (2. 6) can never be singular

as long as the m takes non-negative integral value, and therefore we can

determine the vectors &(m) uniquely.

Lemma 2. 2. Given any positive integer s3 and t in D(X), we have

(2. 7) 5^(0 = eKtt(*~'zC(a, X)—y] ©( — l)t~l-}-O(t~s)
1=1

where the constant vector C(a, X) will be explicitly given in the proof below,

and the matrix power of a scalar y tA, is defined as follozvs.

00 flnrr +\n An
A / /I 1 .\ V 1 \A^-'>i I- I -LJ-tA = exp (A log t) = g ^-^

Proof. First, suppose that Re(a)<0.

We can solve the differential equations (2. 4) by quadrature, and by

taking the form (2. 5) of the solution into account, we have

7(0 =

where the path of the integration is the straight line St(\), which is, as

we have indicated, equivalent to "the real axis — P,(X)". Here St(\) and

P,(X) are the straight line and "Friedrichs' path" respectively in the domain

D(X). Hence, we have
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Y(t) = extt

-extt«~z P e-^-r*-*- VT -
Jt

o
Carg \T=O)

Then the first term of the right hand side is easily calculated. In fact, the
cyclic matrix has the property that if p^n, Zp=0. So we obtain

= g;

and

C(a, X) =
o

Carg Ar=0)

P=0 Jo /> !
Carg AT=O) •*

We put

then these constants c^, satisfies the following difference-differential equa-

tions :

Carg AT=O

and especially,

^0 = f°° e-XirT-*-ldr = X*
Jo o

Carg \r=0) CReal axis)

If we differentiate CQ in a, we can calculate cl explicitly and successively

the remaining cp too. cp are expressed by F, F', • • • , Fc^ and log X.
Therefore

/ CQ \

Ci

So we obtain
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Y(t) = extt»
CP/CAO)

Now we put

E(t, s) =

If we integrate by parts, using the calculation of the differentiation of

the matrix power of a scalar, we obtain the following recurrence relations

E(t, s) = —ei + ̂ -(Z-a-l+s)E(t, s-1)
X£ \t

and by successive integrations by parts, and in accordance with (2. 6), it

will be easily derived

In order to estimate the remainder term Ys(t), we consider the

equations which are satisfied by Ys(t).

If we substitute Y(t) = ̂ *f-zC(a, X)~S ®(~Or /~ yXO into (2- 4X

we get these equations as follows:

(2. 8)
at

So if we replace \t by t, we derive the equations of the same type

as (2.2):

(2. 9)
at

(yAHere we put the column vector Ys(t) = • I and write down the
\yj

system of equations (2. 9) in component-wise.

(2. 10)
Clyn / , . \-£ = (*+«».-*-
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Whence, if we take a sufficiently large s such that Re(a + s)>0, we

can apply the above lemma 2. 1 to the first equation of (2. 10) and repeatedly

the remaining equations, and derive the estimates :

yjfy = O(r'), yjfy = O(r'), - , y^t) = O(r'), (t

It results that

This proves the lemma 2. 2 for Re(a)<0.

In order to prove the lemma for arbitrary, we use the notations as
used in [2], to clarify the dependence of Y(t) on the parameter a.

Y(t, a) = 2 ®O, a)tm .
m=o

The vectorial coefficients ®(my a + 1) satisfy the difference equations

which are the same equations for ®(m—l, a). Thus there is a constant
matrix C independent of m, but dependent on a, such that

(2. 11) ®(ifi, a + 1) = C®(w-l, a)

for all integral values of m. Now we can get the followwing recurrence
relation between Y(£, a) and F(£, a + 1):

r = f] C®(ifi-l, a)tm

(-l, a)

, a)

(-l, a) = aF(f,

The constant matrix C is determined at m = 0, from

(Z-a- 1X3(0, a + 1) = ^

(Z-a)®(0Ja) = «1

Namely, from e1 = \®(—l, a)

(Z-a-l)®(0, a + 1) = X©(-1, a).
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From these relations, we can deduce the asymptotic expansions for

a + l.

Y(t, a + l) = Ct{e"t*~zC(a, X)-2 ©(-', a^r' + O^'1)} +©(0, a
1=1

-1-1, a)t~'
1=1

+©(0, a

Here we used the relations (2. 11). And the lemma will be proved by

repeating this process.

Next we give the corollary of lemma 2. 2., as we need it in the latter

parts of this paper.

Corollary of lemma 2. 2. For any t in Z>(X), we have for any posi-

tive integer cr

f]

Proof.

£j ®(m+s)tm = t~s f] ®(m+s)tm

m=Q m=Q

= rs{f] ®(m)r-

q. e. d.

3. Now we will investigate the relations among the components and the

behavior near the infinity of the vectorrial coefficients @(ra).

We put the column vectors ®(m) as follows

and substitute them into the difference equations (2. 6) :
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,m-a Q

1 '•• = X

0 'l m-a'\ga(m)/ \gn(m-l)»

<-<* 0\/^(0)\ I1

1 ••"'••• !
0 'l -AW \

Then we obtain the relations of the components g^tri), • • • , gn(m).

(m-a)gj(m) =

(3.2) ft(0) = -1, A(0) = -1, - ,^0) = -1.
a a a

Here we define new vectors ®(m) as follows.

(3. 3) ®(m) — ®(w)

Substituing ®(/w) into the difference equations (2. 6) again, we have

Therefore
/•?» / \ /T» / 1 \ " /T)

We write out the above relations in componentwise, attaching the

components of ®(m) with the "wave" symbol.

V m — a

From these relations, we get easily

' = 2, 3,-..,11).

(3.5)
- a) -

where (J)(z) denotes the Gauss's upsi-functionJJ.

In particular,
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,/-.N- VT(-g)

Next we replace the positive real integer m in the above difference

equations (2. 6) and (3. 1) by the complex variable w.

(3. 6) (w+Z-a)®(w) = \®(w-l)

(3. 7) (*>-a)gfo>)

It is easy to see that

Here we investigate the other solutions gj(w) (j = 2, 3, ••• , ri) of the

difference equations (3. 7).

Proposition 3, 1. If we define cpj(w}= . ; ^-- {^(w)} (; = 1,

2y-",n) and cpQ(w) = 0)

Proof. Fory=l , this is trivial from the property of the gamma-

function.

Suppose the proposition for j= 1, 2, ••• , j£>. Then we have

(w-a)^(«;)-\^(w-l) - -cpp-kv}.

Differentiating both sides of the above relations, we obtain

p
dw dw dw

Here the right hand side

and so we obtain

(w-a)p-<pp+1(w)--\p<pp+l(iv) = -

Hence

(w-a)^+1(«;)-X^+1(«;) =

The proposition 3. 1 was proved by induction.



A two points connection problem involving logarithmic polynomials 283

Proposition 3. 2. The following matrix is a fundamental matrix solution

of the system (3. 6)

<p2(w) <p£

Proof. By the proposition 3. 1, it is easy to see that each column

vector of the above matrix is a solution of the system (3. 6).

To show that each column vector is linearly independent of the others,

we calculate the determinant, which is equal to {g^(w}}n and cannot be zero.

Proposition 3. 3. Multiplying the fundamental matrix solution of the

proposition 3.2 by the constant column vector from the left hand side, we can

get the solution of the system (3. 6) with the initial conditions (3. 2). The

constant column vector is determined from the initial conditions.

(3. 8) @(w) =

0

(<pn(w) <pn_£w) 9>i(«0) \dn_J .

Proposition 3. 4. If hQ is a large positive number, then for

<f>j(w) (j = 1, 2, • • •, n) have the following asymptotic forms.

(3. 9) vfr) ^ - (1 wy_ c + 0 I arg w |
T(w — a + 1) I \w

where c is a constant.

Proof. It is well known that for | arg 1 1 < TT,

^-~. ^ (-f )
T(t + a) \ t /

So we have

(3. 10) ^(a,) = gl(W) = f~
F(w

for | arg w | < n .
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If we differentiate both sides of (3. 10), we get

- - -
dw \ w I I \ w

for |arg w\ <TT — S. Here S is a small positive number.

w/ I logzo J I \w

^L! f +0mi
_a+i 8 I \w}\

Repeating this process, we get

cp.(w) - X"(— )V-

./-' (c +of-1-
I \K)

for |arg^| <TT — Sx.

Lemma 3.1. For Rez^A0, where hQ is a large positive number,

gj(w) (j = 1, 2, ••• , n) have the following asymptotic forms.

(3. 11) g,(w) « ^(-a) (1 w)y-i[c +0/ Ml (|arg»|
Tw — a + 1 I \ w / J \ 2T(w —

Proof. By (3. 8), ^y(w) (/ = 1, 2, ••• , n) are represented as follows

According to the asymptotic forms of <pj(w), we have

" {(log ̂ X-H- .- +(log W)+ 1}
«j

y
Here we define ^/(w) = —/—\, for which we remark the following

corollary.
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Corollary of lemma 3. 1. For a complex variable w and the positive

integers cr and s, we obtain the following relations.

and gj(w) have the following asymptotic forms.

(3. 12) £» » (log H0>-i{c +C»(^)} ( I arg w I 5j^)

Now we prove some lemmas which we need in the latter parts of this

paper.

Lemma. 3. 2. If we define h0 by

(3.13) h0 =maxjl ,A + ReaJ

and qli<r(wy WQ: s) as follows.

(3. 14) ,,>, ».:,) = ̂ ^ [&feL^_ &(" + '- lfl
gjjo + a) I ft(H)0 + j) ^(wfl + 5 - 1 ) J

Here ro0 is such a integer as

(3.15) WG =_„

where [^] denotes the so-called Gauss' symbol and means the largest

integer which does not exceed z.

Then the series

(3. 16) 01,0-K O= S ^i.o-K ^o: s)
S=(T

are absolutely convergent and uniformly bounded in the right half-plane

(3.17) Rew^h0-o-.

Proof. At first we estimate the absolute values of each term (3. 14)

(w —
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Here we have the following estimates for sufficiently large value of p by

using (3. 13) and (3. 15)

(3. 18) \w,-c

and so we obtain

/ 3\ /5\
Is— or — -j-)~'(-r-}

I n (an an • cA I <^ \ T" / \ T" /

— D)

(J£: constant)

In the last part of the above calculation, we used the relations

Hence

Since the series of the right hand side is convergent, we can conclude

the validity of the lemma 3. 2.

Lemma 3, 3. For j = 2, 3, ••• , n, we define Rj)(T(w) as follows:

(3. 19) R^(u) =

Then Rjtff(w} are absolutely convergent and uniformly bounded in

the right half-plane (3. 17).

Proof. Using the estimates of (3. 12) and (3. 18), we try to estimate
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the absolute value of the (s — <r + l)-th term of (3. 19) which has the fol-
lowing form:

\

(w+s — a)-"(w + (7 — a}

Then we have in the right half-plane (3.17) forj = 2,

1
| w — a +s \

.-a-i 1

1

(w + s — a)'~(wjr
I

a — a}

= | x I s-g-1

and for 7 = 3, 4, • • - ,« ,

^T I "x Is-0"-1

' '

Here § is a positive number such as 0<S< 1.

Hence

=2

The series of the right hand side are convergent. q. e. d.
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Remark 2. In the latter parts of this paper, we will use the results
obtained until now, in the form where X and a are replaced by XA and
(akk — pj respectively, with upper index k.

Here we will show the new notations which are used in the latter parts.
We denote D(\k) by, S)h i.e.,

(3.20) 3)k= {t:

and the total intersection by .2), i.e.,

(3.21) S) =

The constant column vectors Ck are used instead of C(a/gjg — p19

We use the same character h0 to define0

(3. 22) h0 = max {l, A + Re (a^-ft); * = 1, 2, - , rc} ̂

4. We now come back to the differential equations (1. 1).
In the eigenvalues of the matrix A, p1 has the maximum of the real

part by the assumptions (2). So the solution which corresponds to the
characteristic exponent pl has no logarithmic functions and the other
solutions have the logarithmic polynomials.

We write those solutions as follows.

(4.1) X

(4. 2) */0 = _L

where Xl(t) = Xl(f), and j?y(£) (j=2, 3, •-• , ra) have the convergent power
serise with the characteristic exponents py respectively.

Indeed, we substitute Xj(t) into the differential equations (1. 1).

The left hand side is

dX. J I
~

"
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and the right hand side is

j ^
The coefficients of (log ty~l in the both sides are equal, so we get the

following differential equations

(1=2,3,..., n)<4-3>
at

Hence Xj(t) (j=l, 2, ••• , n) are the solutions which satisfy the above

differential equations (4. 3) and have the convergent power series with the

characteristic exponents Pj around the origin. Here we suppose that

Xj(t) (j = 2, 3, ••• , n) have the following forms:

(4. 4) Xj(t) = P* E e/mX" 0' = 2, 3, - - - , n)
J m=o

Proposition. 4. 1. The coefficient vectors G^(m) and Gj(m) (j = 2,

3,-" , n) satisfy the following difference equations respectively.

(4. 5) (p1 + iff-^)G1(iff)=fiG1(w-l)

with the initial condition

(4. 6) (ft-^X^O) = 0

and

(4.7) (

(4. 8) (

with initial conditions

(4.9) (Py-,4)G/0) = 0 (y = 2 ,3 , . . . , i f )

Proof. We easily obtain by substituting (4. 1) and (4. 4) into (4. 3).

Here it should be remarked that if s is positive integers, G^ — s) and

Gj( — s) are always zero vectors which are derived from the initial con-

ditions. So we need not devide the difference equations for Gj(m) into two

cases (4. 7) and (4. 8), since Gj-^m — Py-i-r-p/) = 0 when
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In the neighbourhood of the infiinty, there exist the formal solutions

which have the forms (1. 3). Next we remark about the coefficients of

them.

Proposition. 4. 2. All eigenvalues of the matrix B are distinct by the
pentagonal condition (1.4), so the coefficient vectors Hh(s) of the formal solutions

(1. 3) satisfy the following difference equations

(4.10) (au-

with the initial conditions

(4. 11) (B-\k}H^} = 0 (* = l,2,...,fi)

Now we define the matrices £P(£, m) (k= I, 2, ••• , n).

Definition. 4. 1. We define the formal power series in a complex S by

(4. 12)

where we denote the transposed vectors by * suffix.

For these matrices £?A(£, w), we carry out the formal calculations.

, w) =

(4. 13)

From the relations (2. 6), we have ®^
Hence we get

> "0 =

- j f f V ^

On the other hand, if we use the relations (4. 10) and (4. 11), we get

(4. 14) £*&*(£> ™1 = fi (s-a
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= 2 (\k-

S, m) .

Eliminating 3k(S, m—1) from the differential equations (4. 13) and

(4.14), we obtain the differential equations

d£

If we eliminate £ ——'- from the differential equations (4. 13) and
dS

(4. 14), we have

(4. 16) (m + ̂ -A)3k(e, m) = (S\k~\^B)EFk(8y m-l)-&*(6, m)-Z* .

As for the matrices 2k(£, m), we obtain the next lemma.

Lemma 4. 1. The matrices £P(£, m) converge uniformly on the closed

unit disk £ | ^ 1 of the complex 8-plane because of the pentagonal condition

(1.4).

So in particular, £?*(!, m) are the convergent power series and then

satisfy the difference equations

(4. 17) (m + Pl-A)^(ly m) = B3k(l, m-l}-3k(l, m)-Z# .

Proof. We showed the matrices £F*(£, m) satisfy the differential

equations (4. 15).

If we can prove that £P(£, m) have the convergent power series at

the origin, £ = 0, the formal calculations we carried out are justified and

we obtain the convergent power series (4. 12).

We put

(4. 18) 3\e, m) = {F&, m), Fk
2(8, m\ ..., Fk

n(£, m)}

where F*(£, m), ¥2(8, m), • • • , jF£(£, m) are the column vectors.

We write out the differential equations (4. 15) by the column vectors,

then we have
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Pl-A)Ft(t, „)

(4. 19)

All the vectorial differential equations (4. 19) have only n regular

singular points at —^—*- (i=l, 2, • • • , ri) in the finite £ -plane. In par-
^k

ticular, £ = 0 (in the case when i = k) is also a regular singular point.

So according to the fundamental theorem of the ordinary differential

equations, it is easy to see that the formal power series F*(G, m), and

repeatedly F^(B9 m), • • • , Fn(6, m) converge uniformly in the neighbourhood

of the origin and become the solutions of (4. 19).

Since the nearest singular points to the origin are some of -^—-—i
Xfe

(i =jpk), the radius of convergence is less than the minimum of the absolute

values of — *- (i^k\ all of which are larger than 1 by the pentagonal
^k

condition.

Therefore we can conclude that the formal power series 3?*(G, m)

defined by (4. 12) converge uniformly on the closed unit disk |£| ^1 and

are the solutions of the differential equations (4. 15).

Here if we substitute £ = 1 in both sides of (4. 16), we get (4. 17).

Definition. 4. 2. For a positive integer a we define the vector valued

functions Pk
Ji(r(w) (j' = l, • • • , w, k = l, 2, - • • , n) of a complex variable w as

follows.

Forj = l,

(4. 20) P}» =

and for j = 2, 3, • • • , n,
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(4.21) pj§» =
r-l)S=

So it follows that for k=l, 2, • • • , n,

(4. 22) Fi(l, w} = °~*

and

(4. 23) F}(1, w} =
<r-i

•2s=0

Lemma. 4. 2. IFie define h by,

(4.24) A

Then P] J(w) are holomorphic and bounded in the right half-plane

(4.25) R e w ^ A - o - .

Proof: At first we prove the lemma for j = 1.

By the assumption (2), it is easy to see that h^hQ.

Applying Abel's transformation to (4. 20), we have

P* ^(w) = — ^ PT*fAa*f™ -L *\£*(w-o + °) Si(w + s)

1

where z^0 denote the integer defined by (3. 13).

Here gl(w0 + p) P{tP(w^) are bounded, since they are the remainders
00

of the convergent power series by the lemma 4. 1, and E <Ii <r(w>wQ>P)
P = (T+l '

are absolutely convergent and uniformly bounded by the lemma 3. 2, which

also guarantee the validity of Abel's transformation carried out in the above

calculation.
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Hence we can conclude that P{t(r(w) are holomorphic and bounded in
the right half-plane (4. 25).

For j = 2, 3, • • • , n, we have

~ 1 ) 2 # Vfc

+2

x

So we have

2 { - 1 - *U;+*)*K»+*)1 p.
p^tw + p-a^ + Pi. gi(w + o—l) >

^(w + o— 1)

yi

Here Pltp(w) are holomorphic and bounded by the above proof.

phic, and 2 f _ l _ x £J-i("+*)gi>+*)) are absolutely
^U + ̂ -a^ + p, ^iV + o— 1) J

convergent and uniformly bounded by the lemma 3. 3.
So we can conclude that P]^(w) (j=l, 2, ••• , n) are also holomorphic

and uniformly bounded.

Lemma 4. 30 For j = 1, zAe se* of {F{(1, m): k = 1, 2, ••• , n} con-

stitutes an independent set of solutions of the difference equations (4. 5) for all
non-negative integers m.

Proof. According to the lemma 4. 2, for sufficiently large w such
that Reoj^A— -1, we have
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*•}(!, w) =

\w >

Now we calculate the Casorati-determinant (Wronskian) for suf-

ficiently large w.

C(w) = det
s* det (

Here the vectors Hk(0) (k = l,2,*~,ri) are the eigenvectors of the

matrix B which correspond to the distinct eigenvalues \k respectively, so

the Casorati- determinant C(w) can not be zero for large positive real

numbers because of the properties of gi(w).

On the other hand, using the difference equations (4. 17), we have

from which we can deduce C(w — 1)4=0 from C(^)=}=0, if det(p1 + ^— A)

=1=0. But det(p1 + w— A) cannot be zero except for w=—m2J — m 3 , - » ,

-mn.

Hence for positive integers w, C(w) are not always zero.

We proceed to some of main theorems which determine the so-called

"Stokes' multipliers".

Theorem 4. 1. There exists a set of scalar constants {Tf ; k = 1, 2,"-,7z}

such that

(4. 26) GJm) = £ r?F}(l, «)
*=1

becomes the solution of the difference equation (4. 5) w&A £/*£ initial condition

(4. 6).

Proof. Since F{(lym) satisfy

(m + ft-^FKl, w) = BF}(1, iii-l)

by (4. 17), G^m) also become the solution of the same difference equation.

We can determine the constants 71*, using the initial vectors G^O), by

S rj^Ki, 0) ,
*=i
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for F{(1, 0) (k= 1, 2, ••• , ri) are the independent vectors and det {F{(1, 0)}

are not zero.

Lemma 4» 4. Using the "Stokes* multipliers" T{, we can obtain a

special solution G$(m) of the difference equations,

Proo£ By (4. 17), the vectors FJ(1, m) satisfy

Multiplying T{ to both sides of the above relations, and summing

them up over k, we have, because of P1 — m2 = p2,

{FJ(1, m-m2-l)-G1(l3 m-m2) .
A=l *=1

Hence we put

(4. 27) G2*(m) = g TJFJ(1, m-m2) ,

then Gf(m) satisfies the above difference equation.

Theorem 4. 2. TAer0 omfo « set of scalar constants { T | ; k = 1 , 2, • • • , n}

such that

(4. 28) G2(m) = Gf(m)+2 r|F{(l, w-w,)
A=I

becomes the solution of the difference equation (4. 7) z^YA ^A^ initial condition

(4.9)/or;=2.

They are determined by

(4. 29) G2(m2) = G$(m2)+£ rjF{(l, 0) -
*=1

Proof. We can obtain the general solution of the inhomogeneous

equations by adding the general solutions of the homogeneous equations to

a special solution. The homogeneous equation of the form

(p2+m-A)G2(m) = BG2(m-l)

(pl + m-m2-A)G2(m) = BG2(m-l) ,

therefore F{(13 m — m2) become the solutions of the above difference

equations. From the independence of the vectors F{(1, 0), it is easy to

determine the "Stokes' multipliers'' T\ uniquely.
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Theorem 4. 3. There exist the "Stokes3 multipliers33

{ T k
j : k = l,2,.~,n, j =2, 1,- ,n} .

And using them, we can represent the solutions of the difference

equations (4. 7) (4. 8) as follows

(4. 30) Gp(m) = 22 Ti+1

We have a special solution of the inhomogeneous equations (4. 7)

(4. 8) for j =p such as the following forms

(4.31) G*(m) = '£±T>,+1-jF
t
i(m-mp) (p = 2, 3,- ,n) .

j=2 £=1

Proof. We prove the theorem 4. 3 by induction. We already proved

it for p = 2 by the theorem 4. 2.

Now supposing that it is right for p, we will prove that it is also right

for ^ + 1.

The vectors F](m) (j = 2, 3, ••• , n) satisfy

(Pi + m-mp+i-A)F](l, m-mp+l)

= BF](l, m-l-m^-F^l, m-mp+1} .

Multiplying Tk
p+2_j to both sides of the above relations, and summing

them up from k = l to k = n and from j =2 to j =p + l, we have

(pP^+m-A)G*+1(m) = fiG*+1(«-l)-g 2 T^jF^l, m-mp+l}.

The last term

2 2 T^-jF^l, m-mp + mp-mp+l)

= 2 2 T^jFRl, m-mp + Pp+i-Pp)

= Gp(m-pp+pp+1)

Hence (5*+1(wz) becomes a special solution of the difference equation

(4. 7) for p+1. On the other hand, F*(l, m — mp+1) are the solutions of

the homogeneous part of the equation.

So we have the solution Gp+1(m) as follows

Gp+l(m) = <3*+1(«) + 2 Tk
p+lF1(l, m-mp+1) .k=l
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Here the "Stokes* multipliers" Tk
p+l (k = 1, 2, ••• , ri) are determined by

(4. 32) G,+1(«,+1) = G*+1(^+1)+2 rWJtt, 0) .
*=1

5e Now we proceed to the main part of this paper. We investigate the

behaviors of the convergent solutions near infinity.

Lemma 5. 1. (E.M. Wright) If cp(w) is holomorphic and bounded in

the right half-plane

(5.1) Rew^A'X)

and

(5.2)

then we have

(5.3) ±

as z tends to infinity in the sector

(5.4)

Lemma. 5.2. If a >/z* = [h] + l, where h is defined by (4. 24), -we have

(5. 5)

and for j = 2, 3, • • •, n,

(5. 6)

m ^Ae sector

(5.7) (a rgX^I^I -Tr .

Proof. Here we prove the lemma only for j =2, 3, • • • , n. At first

we decompose the left hand side of (5. 6) so that we can apply the above

Wright's lemma.
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= 2

= 2 ^(m-

Each component of P* J(w — <r) is holomorphic and uniformly bounded

in Rew^h by the lemma 4. 2, and the condition (5. 2) of the Wright's

lemma is satisfied by the definition of h, (4. 24).

So applying the Wright's lemma 5. 1 to the first term of the right hand

side, we have

This proves the lemma 5. 2.

Here if we define the matrix .£?*(«;) as follows

(5. 8)

then we can rewrite the result of the lemma 5. 2 by the following simple

form.

(5. 9) 2 S»(«)
m=0

= s

0
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where # suffix is used to indicate that the matrix or the vector is trans-

posed, and —> denotes the column vector.

Lemma. 5. 3. In the sector 3)k of (3. 20), we have

(5. 10) 2 3*(1, m)tm =

/=!

Proof. By the definition 4. 1, we have

Applying the corollary of lemma 2. 2 to the first term and the lemma

5.2 to the second term, we obtain

2

-2 ®W*-o*-'+o(**'-<rXi, i,-,i)}

'if (S ̂ *W®^-
/=! 5=0

Lemma, 5,4, For t in 3)k, we have
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(5.11)
m=Q

Proof.
oo mp~l oo

S c$k(\ m m \fm — V^ c$k(\ m wi \tm-4-tmP\^ Cfkf] nt\fn
*=>L \ J- y "*• "-h) f ' *=^- \ ) •h)*' l^ ^ / I ">̂ . \ •!• y "'I'I If

m=Q m=Q

The last two terms are calculated as follows

o--fc* mP

1=1 ' 1=1
<r-h*

— — sl=™p+l
(T-h*-m.

Hence, multiplying ^p^ and using the relations P1 — pp = mp, we can

obtain (5. 11).

w

Theorem. 5. 1. For t in £D= {\3)k, we have

1 Tk \

Tk
p-i

« w '«

- 2
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Proof. In the theorem 4. 3, we obtained the relations between Gp(m)

and F*(ni). We can rewrite them as follows

(5. 13)
& = 1

0

16 /.

Multiplying fp*+m to both sides of the above relations (5. 13) and

summing them up over m, we have

}T* \

= tpp 2 Gp(m)tm = £ f] ^ff*(l, m-mp)t
m'

m—n * i i w, n ^
T{

0

16

and by the lemma 5.4, we obtain

ITi

n -2 20 *=i • -

lo ;
The last term can be calculated as follows

IT* \

Tk
p-i

<r-h*-mp „ I

- 2 2^(1. -i-™>p} TI
0

\ 6

This proves the theorem 5. 1.

/T*\I -*- \
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Corollary of theorem 5.L If, in the sector S), there is at least one

index A, for which Re (\kt) is non-negative, then we have

/T* \

(5. 14)
k=i

0

,6

Proof. If in the theorem 5. 1, <r is a sufficiently large positive

integer, we have

1=1
For, when / is a positive integer, Gp( —/) = 0 which are derived from

the initial conditions (4. 6) and (4. 9). And we can imbed the other terms

into the right hand side of (5. 14).

/ 0 \

k]

Here we remark that Hk(Q) =

\ 0 /

Now we will show the main theorems in this paper.

On account of simplicity, we assume that there exist at least one index k,

for which Re ( \ k f ) is non-negative in the sector 3).

Theorem. 50 2. We have

k rpk /Ttk\
1 ^2 J- n

(5. 15) (XM, X2(t\.-, XK(t)} = 2 ^°' - ,-,-,- ,

x o ''• ^!
m iAe sector 51.

Theorem. 5. 3. For t in the sector 2), we have
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(5. 16) {X,(t\ X2(t\.-., XK(t)} =
yj •• _ :

0 Tk ,1 I/

Proof. We can rewrite the relations (4. 1) (4. 2) between Xj(t) and

Xj(t) in the matrix form.

L (logQ (logQ2... (log
1! 2! (»-!)!

2!

0

So we have, by the theorem 5. 2,

\(t),xj.t),.~,xj(.t)} = ±*tf>
I Tk npk
1 I 1 2 '"

0

Here we can decompose the matrix of the "Stokes' multipliers" as

follows
... TM" •* n

0 -.

where / denotes the identity matrix.
Hence we can exchange the matrix of the "Stokes' multipliers" for

the matrix tz*. Since t~z*-tz* = I, we obtain (5. 16).

The nature of the matrix solutions of the differential equations (1.1)

near infinity are represented by the very simple forms in the last theorem

5.3, and it is not difficult to represent the matrix solutions in component-

wise.
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In order that we can analyze the solutions of the differential equations
more easily, we are now investigating the matrix functions, for instance,

matrix F-functions and matrix ^-functions on which we will give some

results in the subsequent paper.

REFERENCES

[ 1 ] K. Okubo, A global representation of a fundamental set of solutions and a Stokes
phenomenon for a system of linear ordinary difTerntial equations, Jour. Math. Soc.
Jap. 15 (1963), 268-288.

[ 2 ] K. Okubo, A connection problem involving a logarithmic function, Publications of
the R.I.M.S. 1 (1965), 99-128.

[ 3 ] K.O. Friedrichs, Special topics in Analysis. Lecture Note of New York University,
(1953-1954).

[ 4 ] W. Wasow, Asymptotic expansions for ordinary differential equations Interscience
Publishers. (1966).

[ 5 ] W. Wright, The asymptotic expansion of integral functions defined by Taylor
series, Phil. Trans. Roy. Soc. London. A 238 (1940), 423-451.

[6 ] R.D. Carmichael, On a general class of series of the form 2c»g(a;-l-w), Trans. Am.
Math. Soc. 14 (1916), 207-232.




