On the study of a singular peoint of
Briot-Bouquet type of a system of
crdinary nonlinear differential equations

By

Masahiro Iwano*

0. Introduction.

In this note we consider a system of ordinary nonlinear differential

equations which, in vectorial form, can be written

(&) zy' =f(z, ) (Z:fi*)

Here:
i) =z is a complex variable.
ii) y is a column vector of n components.
i) f(x,y) is an n-dimensional column vector function of x and

v, holomorphic and bounded in a domain
A.D zl<a, Iyl<? (131 =max 1)

and vanishing at (0,0), y; being the ;™ component of y.

The singular points z=0 of the equation (A) are usually said to
be of Briot-Bouquet type. These singular points have been studied by
diverse authors since C. Briot and J. Bouquet. The present author is
specially interested in the case when the eigenvalues of the matrix
F=£,(0,0) are all zero.

1°, In 1937, M. Hukuhara [1] studied first the case for n=1. In

the case when #n=2, some difficulty comes up in the step of a formal
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transformation. After twelve years, M. Hukuhara [2] discussed about
the construction of formal solutions of the equation (A) for the case

when the vector f(x,y) has two components of the form

0.1) [z, y) =yHMF(x,y)y,  (yH=yy52),

where F(x,y) is a 2-by-2 diagonal matrix and the matrix F(0,0) is
nonsingular, <# is a 2-dimensional row vector with components 7, and
m, nonnegative integers not simultaneously zero.

Recently, the present author has studied an equation similar to
Hukuhara’s i.e. the equation (A) for the case when the vector f(x,y)
has the following form, instead of (0.1),

0.2) flx, ) =y HF(y)y+xg(x, y),

where F(y) is a 2-by-2 diagonal matrix and g(x,y) is a 2-dimen-
stonal column vector.
He introduced the following assumption:

Let a be the 2-vector formed by the diagonal components of the

matriz F(O). Then, boilr components of the 2-vector a have

1
(M- a)
positive real parts, where the symbol (-) denotes the inner product.

Under these assumptions, M. Iwano [2] obtained formal solutions
of diverse types and investigated the analytical meaning of each of these

formal solutions.

2°. The results obtained in M. Iwano [2] can be extended to the
case for n>2 if we introduce the following assumptions similar to those
in the case of n=2:

iv) The n-vector function f(x,y) admits the uniformly conver-

gent expansion
(A.2) Sz, ) =y H*1.(fP )y + 2 ()2,
(A.3) yM=yiryfeyin,

for (x,y) in the domain (A.1), where 1,(y) is an n-by-n diagonal

matrix such that the n-vector formed by its diagonal components
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coliicidcs with Lhe n-vecior vy, the n-vectars f®(y) (k=0) are functions

holono; phic and bounded in y for
(A9 Iy,

M is an n-dimensional row vector whose components are nonnegative

integers m; (j=1,2,---,n) not simultaneously zero.

v) The n-vector a, where

1
(M-a)
(A.5) a=f(0),
has it components such that their real parts are all positive.

Under the assumptions i), ii) ~v), the author proved the following
theorem in the paper (M. Iwano [3]) titled “Convergent solution of

ordinary nonlinear differential equations”:

Theerem A. Suppose that all ihe assumptions i), i) ~v) are
sacisfied. Then, the equation (A) admits a solution y=S(x, U) with
the properties that:

(a) The nvector S(x,u) is a function of x and u (the n-vector),
holomorphic and bounded in a domain

(A.6) lz|<a”, |ull<<®', aHA=D("),

where

(A.7) 5(0") ={w: O,<arg w<0,, 0<|w|<}

with

(A.8) 6,= ——71——r£i1n arga;+48,, 6,= n—%{alx arga;— 40, .

0o being a sufficiently small positive constant. Moreover, S(x,w) admits

the uniformly convergent expansion

H S(x, ) =1u+1,() P®(z) —i—iP“”(u) x*
k=1

Jor the domain (A.6).

(b) The coefficient P® (w) is an n-dimensional column vector

Junction holomorphic and bounded in u for

(A.9) ]| <<&”
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and developable there in a uniformly convergent power series of u:
(A.10)° POw)= > PQu, (|JC] =ij>.
| H|=1 i=1

If k=1, the coefficients P®(u) are n-dimensional column wvector
Junctions holomorphic and bounded in u for
(A.11) [leef|<<d", uMeD(c").
and admitting the asymptotic expansions
(A.10)* P® () =>PQuX

H

as u tends to O in the domain (A.11).

(c) U=U(x, xo, vt") is the holomorphic solution of a simplified
equation satisfying the initial condition U=u" at x=u1x,, where (xo, u°)

is an arbitrary point in the domain (A.6). The simplified equation

has the form
(R) zu' =uMl,(a+ > Bguf)u.
HeB
Here, © is the set of wvectors K jfor which we have
(A.12) (K —-M) -a)=0,
and if the n-vector constant B, is non-zero, we have
(A.13) ((K—=M) -Bg)=0 for any Ke@.

3°. However, in the proof of the Theorem A, he assumed that
the following two theorems have been established:

Theorem A.1. Under the same assumptions as in Theorem A,

there exists a formal transformation of the form
€ y~ut 1@ PO ) + S PP W2,
=1

where the n-vectors P®(u) are formal power series of u given by
(A.10)% such that the equation (A) is formally transformed into
the equation (R).

Theorem A.2. The nvector function P®(U) can be uniquely
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determined as a solution of the non-linear differential equation

(A.14) zP'=UM(A+P)ML,(A+P)fO(U+1,(U)P)
—(a+a*UM) —1,(a+a*UM)P),

(A.15) at= S BuUHK—M
HeS

in such a way that the n-vector P®(u) is a function holomorphic
and bounded in u for

(A.16) llee]|<<BY (0<<b"<<by<<b)

and developable there in the uniformly convergent power series
(A.10)°. Here, 1 is an n-dimensional column vector whose components
are all equal to 1.

If k=1, the n-vector functions PP (U) can be uniquely determined

as solutions of the linear differential equations
(A.17)* xP'=—*kP+F(U+1,(U)PO(U))P+R®(U),

(A.18)  F(y) =%<yﬂ‘1n<f“’>(y)>y>, F(0)=0

in such a way that the n-vectors P®(u) are functions holomorphic,
bounded and admitting the asymptotic expansions (A.10)* as u tends

to 0 in the domain
(A.19) lel[<<ty, uHMtED(c), (0<c"<cy).

Here, the n-vector R® (u) is a known funciion admitting an asymptotic
expansion in powers of w as u tends to 0 in the domain (A.19) if
we assume that the functions P®(u) have been already determined
for h<k.

Therefore, for the complete proof of the Theorem A, it is neces-
sary to prove both the Theorem A.1 and Theorem A.2 which were
used without proof. However, as will be seen later, the Theorem A.2

will be proved by slightly modifying the proof of the following theorem:

Theorem A.3. Under the same assumptions as in Theorem A,

the equation (A) admits a solution y=S(x, U), where the n-vector
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S(x,u) is a function holomorphic and bounded in (x,u) for the

domain (A.6) and admits the asymptotic expansion
(2 S(x,w)=u+1,(u) > PRuX+ > PYxtul
A

as x and u tend to 0 in the domain (A.6).

Remarks 1. The meaning of the asymptotic expansion (g) is as
follows: For any positive integer N>>1, we have the inequality

N-— N-1
A.20) S w—u-L@ 3 PRut— 5 PYatu
| K| =1 E+|H|=1

<Kw(lz|"+ ™
for the domain (A.6), where Ky is a certain positive constant.

2. The power series (g) coincides formally with the power series
() if we replace the nm-vectors P®(u) (k=0) by the power series
(A.10)*.

4°, Our purpose in the present note is to prove the Theorem A. 1,
Theorem A.2 and Theorem A.3.

In Chapter I, we shall discuss about a formal tranformation and
prove Theorem A.1l. The Chapter II will be devoted to the investi-
gation of the growth of a general solution U(x, xy, #°) of the simplified
equation (R) near the origin x=0. We shall prove some fundamental
inequalities (See Theorems 6.1 and 7. 1) about the growth of the solution
U. The Theorem A.3 will be proved in Chapter III. In the last
Chapter, we shall give a brief sketch of the proof of Theorem A.2.

5°. We shall explain the notation.

For the n-vector y, we denote its ;™ entry by y; and ]]yflzm;fc}yj!
is the norm of v. The expression 1,(y) denotes an n-dimensic;nal di-
agonal matrix such that the n-vector formed by the diagonal components
coincides with the vector y.

1. is the n-by-n unit-matrix.

¢; is the n-dimensional row unit-vector such that its j* component

only is non-zero and equal to 1.



On the study of a singular point of Briot-Bouquet type 313

1 is an n-dimensional column vector whose components are all equal
to 1.

The norm of the n-by-n matrix F is given by: [|F H=mjax§|F AR
F; being (j, k)-entry of the matrix F.

For the n-vector y, the symbol {y) stands for the z-vector which
is obtained by replacing every entry y; by its module.

For the n-vectors y and z, the vectorial inequality {y)<({z) means
that we have the inequality |y;|<|z;| for every j.

For the n-by-n matrix F, let F; be (j, k)-entry of the matrix F.
The symbol <{F) stands for the zn-by-n matrix formed by {|F;l|}.

@ means the direct sum.
To simplify the description, we use the following symbols for the
scalar w and the #-vector B:
wf= (w1, w, -, wk),

arg = (argpy, argpPs, ==, argB.),
Rep= (Reps, Reps, -+, ReB,)

l6l=max|g,l, ] =minlg,]

The components of the n-row vectors K= (ki k&, -+, k,) and
H=(hy, hy, -+-, h,) are all nonnegative integers and | K | =/ki+ Lo+ -+ Z,.
The symbol K { JH means that | K|<<|H| and we say that K precedes
H. The symbol yX stands for the scalar expression

yg}{:yfly;Z---)}’;l:.
For the n-dimensional column vector function f(y), the symbols
0 oH ] .
By ¥A&)) andm f(y) denote n-by-n matrices defined by the expres-

sions:

2 (8 S P
TS = (o f ) o s s L F)),

0% £, _<5“ A ,)
6_)/‘-K f(./>_ 3y’{1 f(.y); aygz f\j); ’ ayﬁ" f(}) .

When f(y) is an n-dimensional veccor function developable in
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power series of y, the symbol [ f(y)]x or, simply, [ v]» means that its
expansion lacks the terms of the degree less than M.

For the n-dimensional row vector K and the z-dimensional column
vector y, the symbol (KX-y) means the inner product.

For the n-vector y, the symbol y” is its transposed vector.

For the n-by-n matrix F, F™* is its inverse matrix.

Terminating the introduction, the author wishes to express his cordial

thanks to Professor Wolfgang Wasow for his valuable advice.

Chapter I. Formal transformation (Proof of Theorem A.1).

1. First step of formal transformation.

The equation (A) is of the form
(1.1 2y =3I, (O () y+ 2 fP() 2,
1.1. We shall first prove that the assumpiion
(1.2) SP0)=0
does not harm any generality of our discussion.

Proof. If (1.2) is not true, we make a transformation of the form
(1.3) y=z2+fP0)x.
Then, the transformed equation will be written as

22 =2 9H1,(fO(2)) 2+ 3 g® (),
k=1

where g™ (z) are n-dimensional column vector functions with the same
properties as the vector functions f®(y) and, especially,
£7(2) = fO) + FfP(0) — 20,
1.4) F2) =2 (2911,(f(2)2).
We shall now show that F(0)=0. Cur assertion results imme-

diately from this fact.
By a simple calculation we have
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F(2) = (mz=e1,(fP(2))z, -, mzH=eal,(fP(2))2)

+zﬂ4(aizll,,(f<°><z>> 2, 6; L(f®(2)) -Z>

2L Sz, o (O )
=2 ML, (fO(2))z(mz™, -+, m,z7)
I (ROPUNL TGRS RORUNLIG)
+2 ML, (fO(=)).

Hence, we have the identity
1.5) F@=p GHL(fO(=)2)

=21, (O () 2L () + 291, () DL
+ 2, (fO(2)).

However, since | M |=1, we see from this identity that F(0)=0, which

proves our assertion. Q.E.D.
1.2. Next we make a transformation of the form
1.e)~ y=z+p"()x", N=1,

where 2) is an #n-dimensional column vector whose components
h n d 1 col t h P t

are formal power series of z.
Let

1.7) x2 =2 M1, (FO(2)) 2+ z'” 2® () 2*

be the equation derived from (1.1) by the formal transformation (1.6)%.
Then, we shall prove that:

We have the relation
1.8 g () =f*= (A<N),
W9 gV =fO D)+ PR ()~ Np®()
—zﬂ—ap (;’;(z) L)z

where F(2) is given by (1.4).
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Proof. The inverse transformation of (1.6)" can be written as
(1.10)¥ 2=y —pP(y)z"+ [z]a .

Differentiating the relation (1.10)" with respect to x, we have
x' =zy - (NP‘”’ () + 22 (;;<y 2 xy’) 2+ [x]aw
=3Oy + 3O ()
— (N () + LDy, (£ (92)) "+ Ll

Substituting (1.6)" for y, we can easily verify that the relations (1.8)"
and (1.9)%¥ are satisfied. Q.E.D.
Now we consider the partial differential equation

1) 2 I (fO))e=—Np+ F()p+F™(2),

which is obtained by putting g™ (2)=0 in (1.9)".
We can assert that the equation (1.11) admits a formal solution

of the form
(1.12) P~p 42,
H
where p 4 are n-dimensional constant column wvectors.
Proof. Noticing that
L(f®(=)z=1.(2) f®(2),

we put the formal solution (1.12) into the equation (1.11). Then,

we have

(1.13) SUK-FO(2))p 2+
JC
- _N§{PJ62J{+ZF<2)PJ{Z‘/C+_][(N)<Z).
K

However, as we have just seen, 7(0)=0 and | M |=1. Therefore, we

get the equation

(1.14) Npy=— > (H-fPpgy+
=K 1= H|

Foupy—a+ %>
[ K|

|]/\3&M
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where 9, 4 and F 4 stand for the coefficients of the terms zX in

the uniformly convergent expansions of the functions f®(2), f*(z)
and F(z) in power series of z respectively. From this recurrence
formula we see that the coefficient vector p j is expressed by a linear
JSorm of the coefficient vectors p 4 such that 93 K. This proves the
existence of the formal solution (1.12). Q.ED.

1.3. Thus, applying successively formal transformations of the form
y=2z+PP(2)x,

21=23+ P®(2,) 2%,
(1.15) e, ,

..................

we have the following proposition:

Proposition 1.1. There exists a formal transformation of the
Sform
(1.16) y~zt “2 PO(2)
such that the equation (1.1) is formally transformed into the equation
1.17) 22 =2z ML, (fP(2))z=2M1,(2) f®(2)

by the formal transformation (1.16). Here, the n-vectors p® (=) are
Sormal power series of =z and the n-vector f®(2) is the same as in

the equation (1.1).

2. Second step of formal transformation.

We try to transform the equation (1.17) into as simple an equation
as possible.

The equation (1.17) can be written as

(2.1) 22’ =ML, (2) (a+ > ayzdl).
[A|=1

2.1. Now we consider a transformation of the form

(2.2)¥ z=u+1,(u) > pyuf,
| HK|=N
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where p 4 are n-dimensional constant column vectors.

The inverse transformation of (2.2)" can be written as
2.3)" u=z—1,,(z)|JﬂZ=NpJ<sz+l,,(z) [=]aw -
Differentiating (2.3)" term by term, we have

w =z = (L)) Sp 2 (=%
—L(2) %PJ{-:CCZJ(),_F-:C(ln(z) [=]u)".
It is easily verified that
z(1,(2))'=2M1,(2)1,(f (=),
x(2H)' =2 M+ H(K- (),
z(1,(2) [2]ow) =21, (2) [2]uy .
Hence, we have the equation
(2.4) zu' =2 M1, (2) (fP() —1L(fk) )IJCENpJ{sz

—|J<|E= N(JC FOEp K+ (2]aw).

From this we see that the transformed equation (i.e. the equation

satisfied by u) has also the same form as (2.1):
(2.5) xu' =uM1, (1) (az—l—%ﬁﬂuﬂ)

and, especially,

BJ{:{

2.6)" .
w, ~ (K @bxt (Hepa  if |K|=N.

The last relation in (2.6)" can be easily verified by picking up the
terms of the form «M1,(w)[---luX for |K|=N, the symbol [---]
standing for an n-dimensional column vector, in the expression

2 ML, (2)f@(2) with z=u+1,(w)>p 4yuX. These terms are given by
H

0
u MY, () or_juH+ " (M1, () a) L, (w) p yuk

=uM1, () (a g+ (M-p ) a+1.(a)p ) uX.
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2.2. Now we consider the linear equation

(Kea)p—(M-pla=ay—By (p=p -
As can be easily seen, this equation can be written as
@7 Lp=ay 6y,
where
(2.8) L=(X a)1,—all.

We can prove that the determinant of the matrix L is equal to

(K-a)" " ((KX—=M) -a), ie.
(D det L=(K-a)" ' ((K—M) ).

The proof of this formula will be given in the next section.

Since the assumption v) in Introduction is supposed to be satisfied,
the quantity (K-a) never vanishes if | K|=1. Hence, the determinant
of L is equal to zero if and only if the vector K satisfies the equation

29 (K= -a) =0.

We denote the set of vectors K for which we have (2:9) by &.
Clearly, & is a finite set.

Thus we have the following proposition:

If Ke&ES, we can determine the value of the coefficient vector p g

of the formal transformation (2.2)" so that the value of the n-vecotr

By ts zero.

2.3. Suppose K=©&. Then, the determinant of the matrix L
vanishes. We can assert that the rank of the matrix L with (K-a)
=(M-a) is equal to n—1.

Proof. Since | M |=1, there exists at least one index j* such that
m#5=0. Then, we can prove that the determinant of the (n—1)-by-
(n—1) matrix L# which is obtained by removing the components

of the j*" row and the j*™ column of the matrix L is equal to
mpras(M-a)"2, ie.

(II) det Lj* = 77lj* a{].* (j/l . CZ) n-—z.
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This determinant is non-zero and we have proved our assertion. Q.E.D.
The proof of the equality (II) will be given in the next section.

Moreover, if K@, as can be easily verified, we have
(2.10) ML=0.

On the other hand, we can assume, without loss of generality, that
the vector a is expressed by a direct sum of & column vectors a® with

dimension 7n; as follows:
o=aPPa®P- -~(~Bc;°‘)

with the property that two components of the vector a are commensu-
rable if and only if both of them are components of the same a® for
some <.

Then, there exist # non-zero complex constants y. and & column

vectors 2% 7n; with dimension #n; such that
(2 11) a(i): T4 ﬂ(i)

and the components of the vectors x“ are all positive integers. More-
over, the constant 7; is uniquely determined under the condition that
the greatest common divisor of the components of the vector x® is
equal to 1 or #®=1 according as we have #,>1 or i,=1.
Hence, the equation (2.9) becomes equivalent to & equations:

(2.9); ((Ki— M) -a®) =0, (=1,2,-,%),
with

JC=JC1®J<2@®JQ 5 ﬂ:ﬂl@ﬂz@“'®%x .

We divide the n-vector B into & vectors as well as the 7n-vector a as

follows:
(2-12> BJC:BS%@BE;%@"'@BE;%: BE%:T{,J{#G)>

where 7; 4 are certain complex constants.
Then, we can prove that we can determine the value of the coef-
Jicient vector p 4 so that the n-vector By is of the form (2.12) if the

complex constants r; y are suitably chosen.
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Proof. It is enough to prove that we can choose the values of

the constants y; 4 so that the conditions
rank L=rank (L, @ —B 4) =n—1

are compatible. Since we have the relation (2.10), these conditions are

equivalent to
(M- (“J(_BJC)) =0.
By the definition of the vector By, this equation is written as

(2. 13) (g%'aJ() _E’rl, J{(LCJHL ',LL(:)> =0.

However, since at least one of the quantities ( ;- x®) is positive, the

condition (2.13) can be certainly realized by a suitable choice of the

constants 7; . Q.E.D.
Thus, by applying successively {ormal transformations of the form

{

}

\
!

=w+L.(u) 20 Prudt,
[HI=1

m=u+1,() > Py,
[ A =2

(2.14) ]

b

“ wuna=uy+1,(un) 20 PrunX,
| |J =N

(ee; (j=1,2, ) are n-dimensional column vectors) we have the follow-

ing proposition:

Proposition 2.1. We can determine the values of the coefficient

vectors py of a formal transformation of the form

(2.15) z~u+1,(u) > pyult
| A =1

so that the equation formally derived from the equation (2.1) by the
formal transformation (2.15) takes the form

(R) zu' =uMl, (u) (a+ > Bgu)
He6

=uM(1, () + 2 LBy ud)u.
He6
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Here & is the totality of the wvectors Y such that ((H— M) -a)=0
and B4 are n-dimensional column constant vectors defined by the
Jormula (2.12), and if B 40 we have

(2.16) (K—=H)-Bg)=0  for any KE&.

Remark. © is a finite set, and the equation (2.16) is an immediate
consequence of the equations (2.9);, (2.12) and (2.11).

3. Proof of Theorem A.]1.

A combined formal transformation of two formal transformations
(1.16) and (2.15) can be obviously written in the form (f) appearing
in Theorem A. 1 in Introduction. By virtue of the Proposition 1.1 and
Proposition 2.1, we have the Theorem A. 1.

Therefore, for the complete proof of the Theorem A. 1, it remains

only to prove the identities (I) and (II) appearing in Section 2:
(D det L=(K - a)"*((K—M) -a).
(II) det Lj*= M i* ik ((-% . ae) "2,

3.1. We consider the following determinant:

b—-lnlw] —Myay oo b — M,
— My b—maay, —mMsay, - — M,y |
D(H, ) = .
|
— N, e — M, b—m,,a,,l

Since D(M, &) =det(bl,—aM), it is obvious by (2.8) that
detL=D(M,a) with b=(K-a).

We shall prove that

(3.1) D(M, ) =b""(b— (M-a)).

The formula (I) results immediately from (3.1).

Proof. Adding the components of thz 279 .-+, 7™ columns respec-

tively to the components of the 1* column, we have
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b-]ﬂlﬂél — My oo e — M,y
b— | M|y b—r13005 -+ — M
D(HM, &)=
b— |\ Ma, —mya, - —m,a, b—m,a,
1 — My — M,
1 b—myay, —Msa, — M,
=5b
1 — My, ot —Myaly b_—}nn“n
1 — 1y — L,
@y b—myay, — Nlzay —
+ (=D [ M|y
a, — My, —Mpatt, b—1, e,

However, we see that the first determinant is equal to 6D (M, &),
where
(@)= (a3, -+, an) with ai=a;—ay,
M= (g, -+, 171,

This can be easily verified by substructing the components of the 1°
row from the components of every cther row and by expanding the
resulting determinant with respect to the components of the 1% column.

On the other hand, the last determinant can be easily calculated as
follows: By adding the components of the 1%* row multiplied by —e«;
to the components of the j* row for every j, the resulting determinant
is reduced to a determinant of the upper triangular form and is equal
to (—1) | M|a b

Thus, we have the recurrence formula

D( My, a®) =bD (M, o) — | Mo | 6772,
where

HMy=M, =a.
Similarly, we can derive the following relations:

D( Sy, ) =bD (s, o) — | Ty | b,
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D(Hyay @) =D ( My, &™) — | Moz | 730,
D(j/l,,_l , a:”'l) =H— I L%n—l ]a;—l’
where

‘-Wk: (mk+1: ) mn) >

: & k—~1 k-1
(a‘k> T= (a:+17 T a:> with Aj=da; —adp .
Since, by definition of &%, we have
al=a = a = =,

it follows then that
D(ﬂ, “) =p"— (IL%O 'w1+ ,&%1 lﬂf;‘}‘ S 'L%’ln_l Iﬂl:—1>b”—1
=t b— (M -a)). Q.E.D.

3.2. We can assume without loss of generality that m,5~0. Since
(K-a)=(M-a), the matrix L, is written as

L]_: <<_%4 - a) 1,,_.1_ a*ﬂl 5
where
L(j_]’ll:: (7”2> "':ﬁln): (a*>T: (D!g, "‘,tlf,,).

This matrix has a form similar to the original matrix L except that
the size of the matrix L, is n—1 by n—1. Hence, we see that the
determinant of L, is equal to D( My, &*) with b= (M -a). Therefore,
the formula (38.1) shows us that

det L= (M- a)"*((M-a) — (M- a*)) = (M- )" *mya;5=0.

This proves the formula (II).

Chapter II. Integration of the simplified equation (R).
4. Equations equivalent to the equation (R).
We introduce an auxiliary variable

4.1 wW=uM,

Then, by a direct calculation, we can derive from the equation (R)
the following equations:
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(?u—é—{—”r~:x< 1 >
e N T+ 3 B
(4.2) )
1 N du 4 < oz—l—ZBﬂuﬂ[ )
dw '\ (M-a) + (M- B g)u

Therefore, we see that the differential equation (R) is equivalent to
a system of the equations (4.1) and (4.2).

On the other hand, we can prove the following proposition:

Proposition 4.1. Let x (W) and w(&) be the holomorphic solution
of the equations (4.2) such that x(@°) =z and u(Q°) =u". Then, we
have the identity u(W)MN=w if and only if the relation (u*)MN=7"
holds.

Proof. A simple calculation shows us that the expression u«(2)<H
~dY
d/\

solution of this equation is identically zero or never vanishes, which

— %@ is a solution of the linear differential @

=Y. However, the

proves our proposition.

5. Parametric representation of solution.

5.1, Let U=U(x,x, ") be the holomorhic solution of the equa-
tion (R) satisfying the initial condition U=:" at x=x,.

Then, we can assert that:

Propesition 5.1. The function U(x,x, u*)J =N is independent
of x for every K.

Proof. Since U is a solution of the equation (R), by an elementary

calculation we have
z(UH=HM)' = UL{((K—M) -a) +ﬂ26((<75“$7ﬂ) B gp) U},
=

By the definition of the set &, we have ((K— M) -a)=0. On the
other hand, the formula (2.12) implies that

(K =) -84 =2 @r; g (K= M) - 1) =0,

The last equality results immediately from the equation (2.9); and the
relation (2.11). Q.E.D.



326 Masahiro Iwano
Owing to this proposition, the zn-vector a* defined by
(5- 1) a*= > BJ[U<$, o, Z‘O)ﬂ{—‘m
Hes

does not depend on z. Therelore, we see, by virtue of the Proposition
4.1, that the solution == U(x, zs,z") is equivalent to the solutions

z=2(w), u= ﬁ(w} of the equations

[wz dx *x( 1 )

®) ) (M) + (H-a®)w )’
] w du 1 ( a+a*w )u
Y dw T\ (GHw) + (HoaDw

such that Z(w®) =z and U(w®) =« with

(5.2) w'= ()M,

As we have already seen, the relation (5.2) implies that
(5.3) w= ﬁ(w)ﬂ.

Since the coefficient matrix of the second equation of (R’) is of
the diagonal form, we can integrate (R’) by quadratures as follows:
(M-a%)
2= é(” (%ﬂéf‘))wymw eXp(_ (ﬂ!/l-la)w)’
(5.4) ¢ « o o
1 T (w) = L,(wm—))l,,(((ﬂ- o)+ (- a*) ) T m)a

(CH=1).

A\
Here, the constant ¢ and the z-dimensional column vector C must be
so chosen that #(w") =z, and U(w®) =’
5.2. If we want to express U as a function of x, we must eliminate
w from the relations (5.4).

To do this, it is convenient to use a certain transcendental function
introduced by M. Hukuhara [1, 4]. Following Hukuhara, we put

(5.5) x=cexp( E% w;?X) wz—%.
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Then, the first equation of (R’) is transformed into

aw _ 1
(5.6) —dX——l—G——W .

By integrating this, we have
(.7 X+é6=W—log(W+1).

Let W=9(X+¢&) be defined implicitly by (5.7) and consider the
branch of $(X) such that $(X) —X—logX vanishes at X=oco. Then,

the general solution U of the equation (R) can be written as

(5.8) |

[4

o™ o
U= 1,,(&><X+ &) —<ﬂ1-a>)1,,(<<ﬁn-a> L+ X +e)™)) e “wl'@)c,

Cot— __ (M-a)
C 1, X &) logx.
5.3. Let
(5.9) D(c)={w: 0.+28<argw=0.—28, 0<|w|<c},

(5.10) D*(¢) = {w: 0_+20—r<argw=<6,—28+=, 0<|w|<c},
where

(56.1D) 6.=—arg(M-a) i%,

0y being an arbitrarily fixed sufficiently small positive constant.

It should be noticed that, when w tends to O along a segment in
the domain D(c), the function #(w) defined by the first relation of
(5.4) decreases monotonously in module and tends exponentially to 0.

Then, the nature of the function x=2%(w) and of its inverse func-

tion is clarified by the following theorem:

Theorem 5.1. Let xy and w° be arbitrary points in the complex
x-plane and in the domain D*(c) respectively. We choose a value of
the constant ¢ so that the first equation of (5.4) is satisfied at x=x,
and w=w’.

Then, if w tends to 0 along a curve I'i,€D*(¢) (which starts
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Sfrom w=uw" and approaches w=0 from the interior of the domain
D(c)), the point x=x(w) describes a spiral-shaped curve I's,, turning
around the origin in the complex x-plane, and approaches x=0.

The converse is also true.

6. Estimation of the growth of the general solution of the
equation (R) near the origin x=0.

We consider a domain

(6.1) D) = {w: B;<<argw<®,, 0<<|w|<d(argw, )},
where @; and @, are the same as those appearing in (A.8) in Introduc-
tion and
P
d(e,c)=c expgg cot A{z)dr, (6,<6,<6,)
with
max (r — 6, + 28, &), 0, —206,<r<0,,
(6.2) AR) =1 2= . 0280, —20,,

2
Lmin(r—ﬁ_—l—nm%‘@, T—00), O.=r<0_+23.

The point cee® is evidently on the boundary of D(cy).

By the definition of 6_, 6., 6, and 6,, the function A(r) satisfies
the inequalities §,<A(R)<w—d, for 6,<r<@,. Hence, the function
d (e, ¢) is bounded with respect to both variables. Therefore, the domain
D(co) is contained in the domain D(¢”’) defined by (A.7) in Introduc-
tion for the suitably chosen positive constants ¢ and ¢’. The converse
is also true.

By virtue of the assumption v) in Introduction, we can assume,

without loss of generality, that

(6.3)

a T
argmu§7‘3%

for the same &, as before. Then, we can assert that we have
D(Cl) C@(Co) CD* (Cz) s <C1<C0<C2),
where the domains D(c) and D*(c) are defined by (5.9) and (5.10).
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Proof. We see by definition of 6_, 6,, 8 and @, that
(0. +7—280) — @22-—%—-1‘ max arg@Mf“_T)Jr 28,=56, ,

6, — (0+ - 260) = % — max arg% - 260260 5

ie.
0+ - 260<@g<0+ +r7— 260 5
and similarly that: 6_—z+200<<6,<l60_+20,. Q.E.D.
Let (&, %") be an arbitrary point in the domain
(6.4) x| <ae, |u]|<<bs, uHtED(cy)

and define the function Ul(x, xo, ") as a solution of the equation (R)
such that U=’ at x=x,. The solution u=U(x, xy, ") is equivalent
to the solutions x=%(w), u=U(w) of the equations (R") such that
Z (%) =, ﬁ(w") =" with w’= («°)H. These solutions are expressed

by the formula (5.4). Thus, we have the identities
(6.5) Uw)H=w, U@ (x))=U(z,z0,").
Moreover, we can prove the following theorem:

Theorem 6.1. There exisis, in the domain D(c,), a curve I's,
which starts from w=w" and approaches w=0 along a segment in

the sector 0_+28,<argw=0,—20,, such that we have the inequalities

d|z(w) | sin Gy . ;

AT | el sindo 750y
6.7 7 / gzi(ﬂll-a)llwi | Uw) |
o |l

on the path Tk, where s is the length of the curve I's, measured

rom the origin to the point w.
g

This theorem shows us that, as w tends to 0 from w=1w® both

|#(w) | and || U(w)|| decrease monotonously. Hence, we have the in-

equalities



330 Masahiro Twano

|2(w) |[Zlal, [T@) <]l for werd.
Therefore, it follows from (6.5) that
6.9) |z2(w) |<ao, |Uw)||<by, U(w)HeD(c)) for weTk.

Clearly, the path I'k belongs to the class of paths that appeared
in Theorem 5.1. Let T',, be a curve in the complex x-plane obtained
by mapping the curve T's by the first relation of (5.4), where the
constant ¢ should be determined so that w=w" is mapped into
x=ux, Then, we see that I'., is a spiral-shaped path which starts
from x=xz, and approaches x=0, turning around the origin in the
complex z-plane.

By virtue of the inequalities (6.9) and the ideﬁtities (6.5), we

have the following theorem:

Theorem 6.2. When x moves on the path T.,, the values of x
and Uz, xo, ¢t°) always remain in the domain (6.4).
Proof. It is sufficient to observe that the correspondence between

the points on these two curves I', and I, is one to one.

Remark. The domain of the point u satisfying the inequalities
(6.4) is in the product space of the Riemann surfaces of logu

= (logu, -+, logu,).

7. Proof of Theorem 6. 1.

7.1. Let (r,6) and (p, ») be the polar coordinates of the point w°

and the variable point w on the path I'i and let A{r) be the same
as before.
The curve I'}, is defined as follows:

If 6,—26,<6<<6., the path I'¥ consists of a curvilinear part I'':
9’
7.1 o—r exPS cot A(e)dr, 0, — 280 <h
[’

and of a rectilinear part I'":

6--280

0<p<r expg cot A(z)dr, 0=0,.—28.

0
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If 0.4-28,<<0=<60,—28, the path I'¥ consists of only a rectilinear

part I'":
0=p=\r, o=0.

If ,<<6<<6_-+24,, the path I'%s consists of a curvilinear part I':
(7.2) o=r expgjcot Alt)de, 60<p<6_+20,
and of a rectilinear part I'":
0=<p<r expS:_Jf250 cot A(c)de, @=0_+28.

It is clear that the path I'}, thus defined is contained in the do-
main D(c,).
After a simple calculation we have, by (R'),

1 dlz] 1 dw
(7.3) Tzl ds “Re<<m-xcw,m>w2)75>,

1 dHU|l> ( X;(w,U) 1 dw)
.4) (Ul ds mmRe (M-X(w,U)) w ds
where
U= ﬁ(u'), z=2(w), X(w,u)=a+ >F Bgudt+B g,

Hee— {M}
X,;(w,u) being the ;™ component of the 7n-vector X (w,u).

7.2. The rectilinear part T'"'. Since s=p= |w]| on this part, we
get dw/ds=¢'?. Hence, we have the equality (6.8), and the relations
(7.3) and (7.4) are reduced to

@.9)" L A= L Re( g7 (14 T Y

x| ds (M- a) (M- a)
and
124 1 d”U” l & _;_Y1<w:U>
@9 gidi=im 1nRe<<j% >(\ @ >
(M- Y (w, U\
<1+ T (Hw) ) )

respectively, where
Y(w, u) =X (w,u) —a=>*B 4uft+ B guw.
On the other hand. we observe that
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i) By definition of 6. and 6,, the inequality 6_+26<@=0,—28
implies that |p+arg (M- a) ]g%—z&,.
ii) Since |w]| and |[U]|| are assumed to be sufficiently small, we
can suppose without loss of generality that
(M- Y(w, U)) 1‘1 1 < L (M- Y(w, U)))]
(H-a) . >2 arg H-a) <00,
Y;(w, U)>< L (M- Y(w U)))"l

arg (1 + Yiw,U) (Z)j’ U>> —arg (1 + (ﬂ(é}w v) >>' <do.

(7.5) {H

>=

(7.7)

Therefore, we can derive from (7.3)" and (7.4)" the following

inequalities:

1 dlx|— sind, 1 dl[Ul llee]]’ sind,
x| ds —2[(M-a)|d® 1Ull ds ~Z|(5M al)o ’

which proves the inequalities (6.6) and (6.7).

7.3. The curvilinear part T'. Here, o is a function of ¢ given by
(7.1) or (7.2) according as we have 6,—28<C0 or 6<<6_-+28. Hence,
if we notice that the function A(z) defined by (6.2) satisfies the in-
equality 8, <LA(e)<z—0d, for 8;<r<0,, we have

‘é—wzw(cotA(qo)—i-i), i=v —1
@

and

+_ P g
“sin A(p) ¥
according as we have 6,—20,<¢<{0 or 0<ep<#_+20,. Therefore,

dw _ + APIPD /1
s T i=4—1
which proves the equality (6.38).
To prove the inequalities (6.6) and (6.7), we consider first the
following case:
L. Case when 0,—25,<6.
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The inequalities (7.3) and (7.4) imply respectively that

, 1 dix| AP (M- Y (w, U\
N P R(@% >(1+ -2 ))
and
, 1 d|lU[ 1 a; e Y; (w0, U)
(7 4) *”“—” ds = P 1n Re(/ﬂ >< -+ P )
(M- Y(w,U))\™
x(1+ (Ha) ))

However, by means of the inequalities (7.5), (7.6) and (7.7), it is
sufficient, for the proof of the inequalities (6.6) and (6.7), to show
that, for the function A(ep) already defined by (6.2), the inequalities

(7.8 |A(¢>—¢‘-arg(ﬁ%-a)i30|§,27'§_,50’

(7.9 |A(p) +arg Bulé (j=1,-m)

(a% a)

are simultaneously satisfied for 6, —28,<¢p<0,.
By definition of A(¢) we notice that

@ 0+ + 230 5 fOI 04_ - Bogqﬂg@z 5

Alp) = {
h & 0, — 28,00, — .

Substituting ¢—0,+28, for A(p) in (7.8) and (7.9),
we have

| —0,+ 28 —arg(HM-a) +d lg%—ao.

lo—0,+28+arg —=—"— 50]£

(ﬂ a)

By the formula (5.11), these inequalities are written as
1—%+250150|g%—60,

Iqo—%-i—arg dj+ 260i60!g%—50

respectively.
We see at once that the first inequality is automatically satisfied.
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On the other hand, we can easily verify that the second inequality is

satisfied in the interval
(7.10) —min(arg a) <e<r—max (arg ) —45,(=6,).

By virtue of (5.11) and (6. 3), we have the inequality
—min(arg a) g% —arg( M- a) — 36,6, — 3.

From this we see that the interval (7.10) contains the interval
0, —00=0=<80,.

Thus we have proved that the inequalities (6.6) and (6.7) are
simultaneously satisfied in the interval 8§, —8,<p<6,.

Substituting 8, for A(¢) in the inequalities (7.8) and (7.9), they

are reduced to

]60—¢—arg(ﬂl'w)iﬂofg%—ﬁo,
. - a; LAl T
[§g+a1g————(j%w) __&ﬂg 2 6().

The second inequality is automatically satisfied, because of the in-
equality (6.3). The first inequality is satisfied in the interval

—% —arg(M-a) + 360g¢§—g——arg(ﬂl-c;) — do.

By definition of 6. and 6., the first and the last expressions in the above
inequality can be written as 6.+ 30, and 8,—d..

Thus we have proved that the inequalities (6.6) and (6.7) are
simultaneously satisfied in the interval 6, —28,<{¢=<6.— d0.

This completes the proof for the case when 6, —28,<6.

II. The proof for the case when 6<f_-+2§, can be carried out in

quite a similar way. Q.E.D.

7.4. As can be easily seen from the proof of Theorem 6.1, we

have at once the following theorem:

Theorem 7.1. Let U;(w) be the j" component of the n-vector

Sunction U(w). Then, on the path I'ly we have the inequality
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(7.11) q ﬁd@“) |

IV

| a]|sindy 3
2w [l | O

which, in vectorial form, can be written

a<{ ﬁ(w)> lal|"sind, ~
(7.12) s ST ] CU)).

Proof. Since the coefficient matrix appearing in the equation (R)
in Section 5, is of the diagonal form. The proof of this theorem is

exactly the same as that of Theorem 6.1.

Chapter III. Main Theorem (Proof of Theorem A.3).

8. Preliminaries.

8.1. In Chapter I, we have proved that there exists the formal
transformation (f):

() y~u+1,(u) P®(w) + ZWP(") () x*

by which the equation (A) with (A.2) (i.e. the equation (1.1)) is

formally transformed into the equation (R):
(R) zu' =uM, (a+ > Bguf)u.
Hes
Here, the 7n-vectors P®(u) (k=0) are formal power series of u:
(A.10)* P® ) ~§P£§%wf€ .

The formal transformation (f) can be obtained by combining the
two formal transformations (1.16) (in Proposition 1.1) and (2.15)
(in Proposition 2.1). Therefore, we see at once that the power series
u+1,(u) P®(u) with (A.10)° coincides formally with the power series
u+1,(u) Xp 4 u’ appearing in (2.15). Moreoveover, after applying the
formal t;j;nsformation (1.16) to the equation (1.1), the expression
YN, (f@(y))y, which is the term independent of x in the right-hand
member of (1.1), rests invariable (See the equation (1.17) in Propo-
sition 1.1). Therefore, the power series

8.1) v~U+1,(U) > PQUX
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is a formal solution of the equation
(8.2) zv' =vHL, (@ (v))v,
provided that U is a solution of the equation (R).
From this it follows readily that we have the vectorial inequality
{(xp'—pﬁ”l,,(f(‘”(p) VP By| UM UI"KU?

ith p=U+1,(U > PO _ UX
iR P ( )1g|J{|§N—2 K

(8.3)

for ||U||<<b”, where &' is a small positive number and By is a certain

positive comnstant.

8.2. Let F(p) ke the n-by-n matrix defined by the formula (1.4)
with z=p. Then, by (1.5) we have the vectorial equality

(8.4) CE(p) o= 1p M| L p) <?(p)>1,‘(<p>)'1,
F(p) =fC(p) M+f3(p)1.(p) + L(fP(p)).
where ]/7\ (p) is an n-by-n matrix function holomorphic and bounded in

p for |lpll<<b. From this we see that there exists a positive constant
A; such that

(8.5) [F(p) I Ai]pll1ot
and
(8.6) CE(p) Y pr=As|pH| < p7,

because of the identity 1.({p))(p)=1.
8.3. Let xy and «° be arbitrary values such that
|| <<aw, |lu|<<by, @)HED(cK),

where the positive constants ay, &% and cy will be defined later and the
domain D(cy) is defined by (6.1) with co=cy. We define the function
U(x, 2o, u*) as the holomorphic solution of the equation (R) such that

U=u" at x=x,. Then, we have a formal solution of the form

) y~UtLNZPRUL+ 5 PRz UL
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9. Auxiliary theorem.

9.1. Put

N-2 N-1
9.1 P'(z,w)=u+1,(u) > PQuX+ X PQatuX.
| K|=1 E+|HKi=1
Observe that the zn-vector PY(x,u) is a polynomial in x and « without
constant terms.

Let us make a transformation of the form

9.2) y=z+P¥(x, U), U=Ul(x, xo, u°).
Then, the differential equation satisfied by z is written as
9.3 zz' =gz, U, 2),
where
9.4 glx,u,z) =flz,z+P"(x,u))
— —%P’V () ——a%PN (x,u) - xu'.

Here, the expression zu' must be replaced by the expression appearing
in the right-hand member of the equation (R).
Hence, we can assume, without loss of generality, that the n-vector

g(x,u,%) is a function holomorphic and bounded in (x, %, 2) for
(9.5) x| <ao,  ful[<<oo,  [=zl<<b:

for suitably chosen positive constants a,, & and b.

The equation (9.3) admits a formal solution of the form

(F) z~1,(U) 3 PQUX+ X PRLUX
| HIZN-1 bt | K= N2

From this fact we can verify that the n-vector g(x,u,z) satisfies the

vectorial inequalities

(9.6 gz, u,2))<A(lz |1, + E(u))<z)
+Bu{(lz "+ [z [l ™D 1+ [ | u] " u},
9.7 gz, u,2) —g(x, u, ©))SA(x |1+ E(w))<{z—2>

Jor (x,u,z) and (x,u,2) in the domain (9.5), provided that the n-

vectors z and £ satisfy the vectorial inequalities
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9.8 (20,20 =K(lz|1+<w)), (K>0).
Here, A is a suitably chosen positive constant independent of

(z,1,2, N), while By may depend on N. E (i) is an n-by-n matrizx

satisfying the vectorial inequality
9.9 E@)=|u |1, u)) EL ()7, [E@)|I=0([luf| |1,

where E is an n-by-n constant mairiz whose components are non-

negative numbers.

Proof. Since the n-vector g(x,u,z) is given by (9.4), the terms
depending on 2z appearing in the vector {g(x,u,z)) does not exceed,

in vectorial inequality,
A;F(y)y>+ |x|1)<{=z> with y=P"(0,2), (A,>0)

under the condition (9.8), if |x| and ||«| are small. Here, the n-by-
n matrix F(y) is defined by (1.4). However, since {P" (0, u) )< A{u)
(A:>>0), we see, by virtue of the identity (8.4) with <{p)=As{w), that
there exists an n-by-n matrix E(«) satisfying the vectorial inequalities
(9.6), (9.7) and (9.9).
The last expression appearing in the vectorial inequality (9.6) is
an immediate consequence of the vectorial inequality (8.3). Q.E.D.
The condition (9.8) will be naturally satisfied because we are ask-

ing the existence of a solution admitting the asymptotic expansion (Fy).

9.2. In order to prove Theorem A.3, it is sufficient to prove

the following theorem:

Theorem 9.1. (Auxiliary theorem). The equation (9.3) admits
one and only one solution z=0"(x, U), where the n-vector O"(x,u)

is a function holomoiphic and bounded in (x, u) for
9.10)y  |x|<ak,  llull<<by, wMED()

and satisfying there the vectorial inequality

(9. 1Dw 0" (z, w) )< Kn{ (| "+ [z [ [*D L1+ [[af[¥<up .

Here, Ky is a certain positive constant such that
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(9.12) Ky {(aw)™ + (ay) )"+ (bn) "} <bv.

In fact, by using this theorem Theorem, A.3 can be proved in a
following way: SY(x, U)=0"(x, U)+P"(x, U) is a solution of the
equation (1.1). Then, we can assert that, for any N'>>N, the iden-
tity SY'(x,u)=8(x,u) holds if (x,u) belongs to the common purt
of the domains (9.10)y and (9.10)y. Indeed, since the expression
2= 8%(x, U) — P"(x, U) is obviously a solution of the equation (9.3)
satisfying the condition <{z)=O0O ((iz|"+ ||| UI*D 1+ U"<U>»),
provided that (x, U) is in the ccmmon part of these two domains. How-
ever, such a solution must be equal to 9¥(x, U), which proves our as-
sertion.

Both sides of the identity S¥ (x, «) =.5"(x, «) are holomorphic {unc-
tions of x and u. Therefore, by the analytical continuation, this identity
must be satisfied for (x,«) in the union of the domains (9.10,y and
(9.10) ».

Let S(x,2)=S"(x,u). Then, we can assert that the :-vector

function S(x, «) is defined in the domain

lxl<<a”, |lul|<<d”, wuMeD(")
with

re r r rr r r
a''=sup aw, b"=sup by, c¢""=sup cw.

So, for the proof of Theorem A.3, it is sufficient to prove that
the n-vector S(x, %) admits the asymptotic expansion (g), i.e. satisfies
the inequality (A.20) in Introduction.

Let N'>N. Then, we have

Slx,w) —u—1,{u) > P Ouf— > PJ{(k)xkuJ(>

| A<N"—1 E+ | K<
SKw((x Y+ || [l D1+ [[af Y wp).
The norm of the vector appearing in the right-hand member does not

exceed the expression Ky (|x|¥ 7+ [le||¥" ") provided that |z]|+ |z]<<1.
On the other hand, there exists a positive constant C such that

[1,(w) > PQuX + > PRaruk]| JC (x| + [luf™).
N-1ZIHISN' -2 NZk+ | K| <N



340 Masahiro Iwano

Therefore, we see that the expression appearing in the left-hand member
of (A.20) does not exceed the expression

K[z [+ ¥ + C(z "+ [[ul) <K (|2 | ¥+ ] ™).

This proves the inequality (A.20).
Therefore, for the proof of Theorem A.3, it is sufficient to
prove Theorem 9.1.

10. Proof of Theorem 9.1 (the Auxiliary theorem).

Let ¥= {p(x,u)} be the family of the n-vectors ¢(x, %) which are
functions holomorphic and bounded in (x,%) for the domain (9.10)y

and satisfy there the vectorial inequality
(10. Dw Co(xau) ) Ky {(|z|"+ |z] "D 1+ [aul"u} .

Let (g, «%) be arbitrary values in the domain (9.10)y and define the

n-vector ¢(x,2) by the formula

(10.2) 7 ) = g(a, U, oz, U 22,

where the integration should be taken along the path I',, which has been
already defined in Section 6. Then, the mapping ¥ is defined as follows:

T
(10.3) o(x,u)—p(x,u).

The family & is not empty since {0} €F and § is convex, closed
and normal. On the other hand, by virtue of Theorem 6.2, as x is on
the path 1., the values of x and U(x,x,#") remain in the domain
(9.10)y if the initial values x;, and #«° belong to the same domain.
Moreover, as we shall show later, the integral (10.2) converges uni-
Jormly with respect to u° for each z,. This assures us that the mapping
€ has a well-defined meaning.

Our proof of the auxiliary theorem is based on the existence of a
fixed point of this mapping (See, for example, M. Hukuhara [3]).

We shall first prove the following two propositions:

Proposition 10.1. The mapping T transforms § into itself.
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This propetition is equivalent to the following three assertions:
(a) The integral (10.2) is convergent.
(b) We have the vectorial inequality

(10.4) <o, u) )= Kw{ (J2o| "+ 2o | [ 1+ [[2"][¥7 i .

(e) The n-vector ¢(x, u) is a function holomorphic and bounded
in (x,u) for the domain (9.10)y.

Propositien 10.2. T is a continuous mapping of F with respect
to the topology of uniform convergence.

This results immediately from the following assertion:

(d) If the sequence {o"(x,u)} tends to 0 with respect to the

topology of §, then the corresponding sequence {p"(x,u)} also tends
to O.

Suppose that these two propositions have been established. Then, by
means of a fixed point theorem, it is concluded that there exists a fixed
point of the mapping ¥, namely, a member ¢(x,u)EF such that
o(x,u)=9¢(x,u). We denote it by 0% (x,u).

Then, we can prove the following:

Proposition 10.3. The n-vector @"(x,U) is a solution of the
equation (9.3).
For the proof of this proposition, it is sufficient to show that:

(e) We have the identity

(10.5) d_c:i: oz, u') =G(xy, ),

where ' is a function x; defined be u*= U{(x;, o, 1!"), and
\. b b

(10.6) Gz, w) = g(z,u, ¢ (z, u))ix.

Our final proposition is stated as follows:

Proposition 10.4. The solution of the equation (9.3) satisfying
the condition

(10.7) z=O0(([z["+ |z [U[" D1+ U[*KU>)

is unique.



342 Masahiro Iwano

This proposition results from the following assertion:

(£) The quantity K defined by
(10.7)  K=max sup{ |6,z )| (2] o]l ] ey D7)

is equal to 0, where ¢(x, U) is the difference of two solutions satis-

Ving the same conditions.
g

11. Proof of the assertions (a)~(f).

11.1. The assertion (a). If we substitute the expression appear-
ing in the right-hand member of (10.1)y for 2, then the vectorial in-
equality (9.6) is reduced to

(11. 1 (glz,u, p(z, w)))=G(x,u),

where the n-vector G(x,u) is given by

(11.2) G(x,u) = |x|"{ (AKy|z|+Bx)1+AKvE(u)1}
+ x| [lul* ™ (AKy |z |+ Bx) 1+ AKy{up + AKyE (u)1}
+ e[ {By M| 1, + AKNE ()} <u).

We change the integration variable from x to w= U by the first

relation of (R’) in Section 5. Then, we have the vectorial inequality

dw |

L3 Gl en=| ), Tw)) -
ri, WX (w, Uw))|

where

(11. 4) Xw, =M a) + (H-a®)w=0(| M ).

Here, £ (w) and (7(7,0) are the same as those appearing in Section 5.
As we have already seen in Sections 6 and 7, w tends to 0 along
the path I'sy as x-tends to O along the path I'.,, and the part of the
path 'k, which is sufficiently near w=0, consists of the segment that
was denoted by I'".
As can be easily seen from the formula (5.4), we have

~ a ’
(11.5) 0 (w) u:o(lw;”Re—m-a) I ) for wer"
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and the function £(w) tends exponentially to 0 as w approaches 0 along
the segment I'".

Since, by (9.9), we have
(11.6) |E( D) |<Cil T | ™, C>0.
the norm of the vector G(&(w), ﬁ(w)) does not exceed the expression
Cy(|2 @)Y + x| (@) U() ¥+ | U(@)[|*) (C;=>0). Therefore, by virtue
of the condition (11.5), we see that, if N is large enough to satisfy
the inequality

11.7) N|R 1,

(ﬂf @)
the integral in (11.3) and, consequently, the integral (10.2) is con-

vergent.

11.2. The assertion (b). We can assume. without loss of gener-
ality, that

(11.8) X (w, Uw)) | 25| (H-a)|

for a(w) in the domain (9. 10) .

Let s and s, be the length of -the curve '} measured from the
dw

ds
for weryd. Therefore, by (11.3), we have the vectorial inequality

(11.9) <(o(xo, )0 <re—

origin to the points w and w® respectively. Then, we have =1

T Gaw), D)Ly

To obtain the inequality (10.4), it is suﬁiczent to prove that the
vectorial inequality

(11.10) ],ﬂ Nggx(u) U(w))l E

<Ku{ (J& @) |V + | 2@) || TU@) M1+ | Tw) M T () >

is satisfied for every s(0<s<.s,) or, what is the same thing, that we
have the vectorial inequality

(11.10)’ I(ﬂ )[_(x(w) U(w))l E

<KL {10 194 20 11T a0) 1791+ | T [T (.
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Now we shall show that the vectorial inequality (11.10)" is satisfied
for the domain (9.10) .

Owing to the Theorem 6.1 and Theorem 7.1, we have the in-

equalities
- d . N N sind, - LN
- (2@)] )22!@%_“)![10[2 |2 (w) |7,
L (126 1T @) )

(11.11) 1+ (N-1) |wll|ai") sindy, . 3 N-1

2 A D el sinde 3 0 ) G 1

d 7 N1/ 77 N« sind, ~ N1/ T
—EUI Uw) " KU w)?) gm [U@) [[* U (w)).

<

Therefore, for the proof of the vectorial inequality (11.10)', we

have only to get the vectorial inequality:
(11.12) 49(x, TJ);KNKNsinau- | £]Y +sindo- | 2] | TI" 1
+ Nilal|" sindo- | OH([|T[¥< T},
if we notice that w=U(w) . However, since the n-vector G(x,u)

is defined by (11.2) and we have the inequality (11.6), the vectorial

inequality (11.12) results from the following three inequalities:

(11.13) 4{AKy(| x|+ Cylluj| || + By} < KyN sind,,
(11.14) A{AK (x| +Cllul[lM +|u]) + By} <Ky sindy,
(11.15) 4(ARNCy+ By) <KyNla| sinds (by w=U(w)H).

The last inequality is obtained by the fact that there exists a positive
constant C, such that

E(OTY<C,| U <Dy,
because of the vectorial inequalities (8.6) and (9.9). The inequality

(11.13) is automatically satisfied if the inequality (11.14) is satisfied.
We take first the quantities 1/N, ay and by so small that

(11.16) {SA(“'N{ +COW I+ sind,
(1l.

8AC, < N/l sind,.
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and next Ky sufficiently large so that the inequalities (11.13), (11.14)
and (11.15) are satisfied for the values of £(w) and ﬁ(w) in the
domain (9.10)y. This is evidently possible. Moreover, for the positive
constant Ky thus determined, by taking, if necessary, the values of ay

and by much smaller, the inequality (9.12) also is satisfied.

11.3. The assertion (e¢). The inequality (10.4) shows us that
the integral (10.2) is uniformly convergent with respect to «° for each
zo. Therefore, if we could prove that, for any x; sufficiently near to
Zg, the relation

a1 (et ot un = (22"l

I'xl X n X
holds, the assertion (¢) would follow from the Lemma 1 in Section 25
in M. Iwano [1].

Here, the last integration should be taken along the segment join-
ing x, with z;, and the curve I',,, is an image of the curve I'}i by the
transformation defined by the first relation of (5.4), where ¢ must be

so chosen that #(w") =x,. Of course,

w' = Uy, 20, 1) M,
We notice that the point w on the curve I'¥, (?=0, 1) is on the segment
denoted by 1}’ (:=0,1) and is located in the sector

0+ 26,< arg w <0, — 28,

if |w] is sufficiently small.

Let £,(p) (=0, 1) be the points of intersection of a sufficiently small
circle |w|=p with the paths I'}; (=0,1). Then, the function max|£(w) |
for wEE@&(p} tends exponentially to zerc with p and we have ’

’

>——>O (as p—0).

H Re@f—@l

masx | T | = O(p

Therefore, as can be easily seen from the proof of the assertion (a), it
is concluded that:
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(11.18) HSE’(”g@(w% T(w), o(2(w), Tw)) ;.

— ”—>0 as p—0.
&olp) w"’X(w, U (w> )

Here, the integration must be taken along the circle [w|=0p.
P R N
Let x,(p)x:(p) be the image of the curve £&(p)&(p) such that
x;(p)Er,;(i=0,1) by the same transformation as before. Then, the
relation (11.18) is equivalent to the fact that

(11.19) ﬂ S oz, U, o(x, U))-C%H%O as p—0.

N
zo(p)x1(p)

As p tends to 0, the points x;(p) (=0, 1) tend to the origin. Hence,
the relation (11.19) proves the identity(11.17).

11.4. The assertion (d). Since the topology of § is defined by
uniform convergence, as can be easily seen from the proof of the vec-

torial inequality (10.4), this assertion is almost obvious.

11.5. The assertion (e). Since, by definition, we have
o) = | Gla, Ule, 1, u)) dz, (See (10.6)).
0

By virtue of the assertion (¢), we can apply the {ormula of differenti-

ation under the sign S Therefore, we find that:

ji—@(xz, ut) =Gz, uh)
1

+S"6G (x, U) {aU(.Z‘, x,u)  0U(x, x, ") 80U (xy, xo. u")} dr
0 oU 0x, ' ou' 0x, )

However, as is well known, U(x, x1, ') is an integral of the equation
(R) for an arbitrary constant x,. Hence, the expression in the braces

{ } vanishes identically, which proves the relation (10.5).

11.6. The assertion (f). Let ¢(x, U) be the difference of two
solutions satisfying the same conditions. Then, by virtue of the vec-

torial inequality (9.7), we have

) . 24 so N ~ . Ty ds
(11.20) <¢(xo,u>>gmgo 121+ E@) 6@ s
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Suppose K>0. The definition of K implies that
(11.21)  <g(&, UD<KA&1"+ |21 TI"H1+ | T T} .

Substituting the expression appearing in the right-hand member of
(11.21) for ¢(x, l~]) in the vectorial inequality (11.20), as we have
already proved, the integrand of the resulting expression does not
exceed, in vectorial inequality, the expression

T e (i + G 101+ (121 12110171

+Ca| O] [ T[T}

Integrating the vectorial expression above with respect to s from 0 to

so, we have the vectorial inequality

1AK (ay+ Cy(bw) | M +bYy) . e
N sind, (o 1"+ Tz [ "1
4AKC, 0[[N~=1/,,0
Tm{)”” %2 u®y

(o, u”) )<

because of the inequalities (11.11). However, by the inequalities

(11.16), the above inequality implies that:
(8o, 1) Y {1V L a5 T [}

From this it follows that 2K<_K, which contradicts our hypothesis.

Hence, we must have K=0.

Chapter IV. Proof of Theorem A.2.

12. The differential equations which determine the n-vectors
P®w) (k=0).
Let U be the same as that in Section 8. As we have already

proved, the formal power series
(F*) y~U+ LD PO +3 PO,

which is obtained by replacing # by U in the power series (f) appear-

ing in Theorem A.1, is a formal solution of the equation (1.1).
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By differentiating both sides of the formal solution (F*) term by
term, we obtain formally

(12.1) YHL () f(y) +,:21f(”(y) zt~zU’
+1,(zU") PO(U) +1,(U) z(PO(U))’
~L§ (PP (U) +2(P®(U))} o, ( =%)

with identities

x(Pm(U))'._—_—_Q_P%)(%_@xU' (k=0),

where U’ must be replaced by the expression in the right-hand mem-
ber of the simplified equation (R) with = U. Hence, £(P®(U))’ can
be regarded as functions of U alone.

Substituting the formal solution (F*) for y appearing in the left-
hand side of (12.1), the equation (12.1) can be reduced to a formal
identity between formal power series of x whose coefficients are also
formal power series of U. Hence, comparing the coefficients of the
terms x*(2=0,1,---) of this formal identity, we can find differential
equations satisfied by the n-vector functions P®(U) (k=0,1,---).

By a simple calculation, we see that these differential equations
are given by the formula (A.14) or (A.17)* in Introduction according
as we have k=0 or 2=1. More precisely, the n-vector R®(x) ap-
pearing in the equation (A.17)* is expressed by the sum of the n-vector
FPu+1,()P®°@)) and a linear form of the n-vectors

6azi<f(f<j) (u +1. (ZL) P <u>> . p® (u) A

GK|+i=<k, 1=G<k—1, ];")(z) =2M1,(2) (=) (G=0) or [fP(2)
G=1).

Moreover, these differential equations possess formal solutions of
the form

(12.2%)* P(k),\,gp‘(;é U,

which is obtained by replacing # by U in the power series (A.10)* in
Introduction.
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13. Determination of the n-vector function P® (u).

13. 1. We consider the differential equation (A.14) and its formal
solution (12. 2) °. Observe that the expression appearing in the right-
hand member of (12.2) is developable in a uniformly convergent pow-
er series of P whose coefficients are functions developable in uniformly
convergent power series of the z-vector U. Hence, the equation
(A.14) can be written as

(13.1) xzP'=UMh(U, P),

where A(u, p) is an n-dimensional column vector function holomorphic

and bounded in (z, p) for
el <<be, llpll<<ds.

As we have already seen, this equation admits the formal solution
(12.2)°:

(13.2) P~ > PQUX.
[K[=1
We shall prove that the power series (13.2) is uniformly conver-
gent for ||U||<<by and represents a solution of the equation (13.1).
Instead of proving the uniform convergence of the formal solution
(13.2) directly, we will prove the uniform convergence of the power
series

(13.2%) P~ 3 PQVL
| HT=1

Here, V=V (x, 20, v") is the holomorphic solution of the differential

equation
(13.3) 2(M-X(©0))v'=1,X(v))v
with
X(w)=a+ > Bgv¥#
HeS
satisfying the initial condition V=1 at x=x, where xy and v* are
arbitrary values such that

|20 | <aq, flo°]| <<ty
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Then, we can prove the following proposition:

Proposition 13.1. The formal power series (13.2*) is a formal

solution of the differential equation
(13.1%) (M- X(V))P'=h(V,P).

Conversely, let P=g(V) be the actual solution of the equation
(13.1%). Then, the n-vector g(U) is a solution of the equation (13.1).

Proof. Let g(U) be the n-vector expressed by the formal power
series (13.2). Then, since g(U) satisfies formally the equation (13.1),

we have the formal identity

a%%fle':Uﬂl h(U, g(U))

with

9g(U) <y po 1
Lo~ SUSPGHL),

which, by virtue of the equation (R), implies that:
U8 1, (X (1)) U= U (U, (V).

From this, we see that the n-vector g(u) satisfies formally the partial

differential equation
(13.4) %i—l,,(X(u))u:h (%, 2).

Owing to this equation, it is readily seen, by a direct calculation, that
the n-vector g(V) is a formal solution of the equation (13.1%).
Suppose that the n-vector g(V) is the actual solution of the equa-
tion (13.1%). Then, a short calculation shows us that the n-vector g(v)
must satisfy the partial differential equation (13.4) with u#=wv. This
fact means that the n-vector g(U) is an actual solution of the equation
(13.1). Q.E.D.

13.2. In order to prove the uniform convergence of the formal

solution (13.2%), we apply a transformation of the form

(13.5) P=g+ P (V)
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to the equation (13.1%), where

(13.6) P'w)= 3 PYuk.
| HIZN

Noticing that the quantity (- «) appearing in the expression (- X (v))

is non-zero, the transformed diffe-ential equation can be written as
(13.7) g =h(V,q).

Here, /;( v,q) is an n-dimensional column vector function holcmorphic
and bounded in (v,q) for

(13.8) ol <<t lgll<<d:

and satisfying there the inequalities

(13.9) (o, @) || <Aligll + Bylloll*,
(13.10) 1h(e,q) —h(v, < Allg—4l,

if (v,g) belongs to the domain (13.8). A is a positive constant inde-
pendent of (v,q, N), while By may depend on N. Moreover, the
equation (13.7) admits a formal solution of the form

~ 3 POVK,
7 ungN A

13.3. Let L., be the segment joining the point x, with the origin
and s be the length of this segment measured from the origin to the
point x.

Then, we have the following proposition:
Proposition 13.2. We have the inequality

| V]~ sino,

|
on the path L., .
Proof. We have the relation
1 de 1
s =Tzl for x€L,,.

Therefore,
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s =R G T)
e | (-2 (1B

if we notice that V is a solution of the equation (13.3). We can
choose the value of &y so that the expression in the blacket is not less
than 1/2 in module and its argument is not greater than & in module
for || V]j<<by. Hence, the inequality (6.3) yields the inequality (13.11).
Q.E.D.

We can prove the following propesition:

Proposition 13.3. The differential equation (13.7) admits one
and only one solution q=0"(V), where the n-vector 0"(v) is a func-
tion holomorphic and bounded in v for ||v|<<by and satisfying there
the inequality
(13.12) oY (o) | < Kul[]",

Ky being a certain positive constant.

Proof. Let = {p(v)} be the family of the n-vectors ¢(v), which
are functions holemorphic and bounded in v for [v|<<by and satisfying

there the inequality

(13.13)x flo (@) < Kyllv|~.
Then, the mapping T is defined as follows:
I
¢(v)—9(v),
where
(13.14) 5=, WV, eV,

Here, v° is an arbitrary value such that |[v°||<<6y. The fact that the n-
vector »(2") does not depend on x, can be easily verified by changing
the integration variable from z to V; by the relation

z(M-X(V)) Vi= (“1+Eﬁj{,lv"q{) Vi,
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where the letters with the subindex 1 signify the first entries of the
corresponding 7n-vectors.

For the proof of the Proposition 13.3, it is sufficient to prove six
assertions corresponding to the assertions (@) ~(f) in Section 10. We

consider the following correspondence:
(1) The integral (13.14) to the integral (10.2);
(2) The path L., to the path I'.;
(3) The inequality (13.13)y to the veclorial inequality (10.1)y;
(4) Proposition 13.2 to Theorems 6.1 and 7.1;
(5) The inequalities (13.9), (13.10) to the vectorial inequalities
(9.6), (9.7).

Then, the proof of these six assertions is almost exactly the same as or
rather simpler than that of the original assertions, because, in this case,
we can replace the symbol { ) appearing in Sections 9~11 by the

norm || ||. For example, the proof of the corresponding assertion (b):
(13.15) o () [<Knl2"[*

can be carried out as follows: By virtue of (13.9) and (13.13)y, we

have

oo 1< Si' (AKy+ By || Vi~ 4121 = |z]),

||

which, owing to the inequality (13.11), implies that

— g 21 (M-a) | (AKy+ By)
o)< N“al”r Sind,

2|,

Therefore, in order to obtain the inequality (13.15), it suffices that we
have

(13.16) 2] (M-a) | (AKy+ By) < N| |’ sindy- Ky.
We first take N so large that
4| (M-a) |A < N|a| sinde

and next Ky large enough to have the inequality (13.16).
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13.4. By virtue of the Proposition 13.3, we see that
PYV)+0"(V)

is a solution of the equation (13.1*) and is independent of N. There-
fore, if we denote this expression by S(V), the n-vector S(V) admits
the asymptotic expansion (13.2*) as V tends to 0 in the domain |/v|
b, with by =sup ;. However, since the point v=0 is an inner point
of the domain in which the solution S(V) is defined, the function S(v)
is holomorgphic at v=0. Hence, it is concluded, by virtue of Cauchy’s
theorem, that the asymptotic expansion (13.2*) is uniformly convergent
for || Vl|<<by. Therefore, owing to the Proposition 13.1, the power
series (13.2) also converges for j|U|[<<by and represents a solution of
the equation (13.1) (i.e. the equation (A.14)). We define the n-
vector P® () by S(u).

14. Determination of the m-vectors P®(u).

Since the method to determine the functions P® (%) for k=2 is
quite the same as that for the n-vector P®(u), we discuss the case for
k=1 only.

14.1. As we have just seen, the vector function P®(z) is ex-

pressible as uniformly convergent power series of « for |jz[[<b;y. Hence,

the equation (A.17)' appearing in Introduction can be written as
(14.1) xP'=—P+-F(U)P+R(U),

where the #n-by-n matrix F(«) and the n-vector R(z) are functions
holomorphic and bounded in « for [lu|<<b, and, especially, F(0)=0.

Moreover, this equation admits a formal solution of the form
(14.2) P~>PQU.
K

Let z=%(w), u= U(w) be the holomorphic solution of the differ-
ential equations (R’) in Section 5, i.e.

du
dw

R) W (M- X (@) fz%:x’ w(H- X)) P —1,(X ),

with
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Xw)=a+ >3 Bgu
Hes
satisfying the initial condition £(w®) =z, U(w’)=1u".
Here, x, and #° are arbitrary values such that
|zl <<ay, [u°<by, @)HED(c),
and the quantity o’ is defined by
w'= (u°> ﬂl}

where the domain ®(c¢"") is defined by (6. 1) with c;=c¢;. Then, as we

have already seen, we have the identities
U(w)M=w, Ulz,z0,u®)=UE"(2)).
We can assert that:
Proposition 14.1. The formal power series
(14.2%) P~§P§%(~](w)ﬂ
is a formal solution of the differential equation

(14.1%) uv2<ﬂ-x<ﬁ>>%:—P+F<(’7>P+R(ﬁ>, (T=Tw)).

Conversely, the solution g(ﬁ(w)) of the equation (14.1%) becomnes
a solution of the equation (14.1) if we replace E(w) by Ulx, xo, u).

The proof of this proposition is almost exactly the same as that of
the Proposition 13. 1.

14.2. We can prove the following assertion:

The differential equation (14.1%) possesses a solution P=S(U(w))
which admits the asymptotic expansion (14.2%) as U(w) tends to 0

in the domain

(14.3) e || <<by, uMNED(cy).

In order to prove this assertion, we make a transformation of the
form
(14.4) P=p+P¥(U(w)),

where
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PY(w)= > PQu.
[HI<N
If we notice that (M- X)) = (M- -a) +O(w), the transformed equation

can be written as

adp
(14.5) w7 = (ﬂ >p+F1(U)p+R1(U)
with
_ 1 SIM-Ba) ut
@ = %y T Hw) (X @)y

where R;(#) is an n-dimensional column vector function holomorphic
and bounded in u for [[u|<<&y.

Since this equation admits a formal solution

| K|=N
we can prove that the inequalities
(14.6) R[4, [ Ry (e0) | < Bwiu|™

are satisfied for ||u|<<&;. Here, A is independent of N and %, while
By may depend on N.

It should be noticed that, since F;(0) =0, the quantity A can be
taken as small as we want.

We apply a further transformation of the form

14.7) p=q expAd(w), A(w)=1/(HM a)w.
Then, we have the equation
(14.8) gz% —w {F (D) g+ Ri(T) e ™} |

14.3. Let Ik be the same as that appearing in Theorem 6. 1.

Then, we can prove the following:

Proposition 14.2. Let s be the length of this curve measured
Jrom the origin to the point w. Then, we have the inequality

d r I[N —Red(w sin &y 1 TTIIN ~ReACw
(14.9) —ZS‘_<” Ull"e ”)2W(“U” g o)

on the path T'.
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Proof. Since

1

1
wrd  Clhow_ 1 aw

dw T () ’

the differential equation satisfied by the function exp(—m ) co-

incides with that for the function £(w) if we put there &*=0. Hence,

as we have already seen in Theorem 6.1, we have

1 1
d (v ReCiayw (N]wl|el” +1)sindo( | 75 v, Re(TH-a)w

1
sindg YN ~Re(ﬂl-a)u'
=3 (Hoa) | sw12<”U” ¢ )

Q.E.D.

Using this inequality, we can establish the following proposition:

Proposition 14.3. The differential equation (14.8) admits
one and only one soluiion q=0O" ((7(10)), where the n-vector O"(u) is

a function holomorphic and bounded in u for

(14.10) » 1l <<by, uMNeD(cy

and satisfying there the inequality

(14.11) 0" () | < Kllu][¥ &4, (w=uM),
Ky being a certain positive constant.

Proof. For the proof of this proposition, let = {p(x)} be the
family of the n-vectors ¢(u), which are functions holomorphic and
bounded in # for the domain (14.10)y and satisfying there the inequality
(14.12)~ o (@) |<Knllu|" exp(—Red(uH)).

We define the n-vector ¢(x) by the formula

(14.13) 5@ = W (BT @) e(Tw)) + Ri(Tw))e ") due,

0

where «° is an arbitrary point in the domain (14.10)y and

w'= (u") M,
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Then, the mapping ¥ is defined as follows:

T _
o(w)—o(w).
The proof of the Proposition 14.3 is almost exactly the same as
that of the Theorem 9.1, which was given in Sections 9~11, except

for the proof of the inequality
(14.14) o () | <Kyl || Ve o4,

Therefore, we discuss the inequality (14.14) only.
By the inequalities (14.12)y and (14.6), we have

lp@) <\ (AKw+ B | T ¥ e |w|as,

where s, is the length of the curve I'k.

By definition of the curve I'% in Section 7, if s is sufficiently small,
we have s=|w| and [T (w)| is a bounded function whose nature is
clarified by the relation (11.5), while the function exp (—Red(w))
tends exponentially to zero with s. From this we see that the integral
appearing in the right-hand member of the above inequality and, con-
sequently, the integral (14.13) is uniformly convergent.

On the other hand, by using the inequality (14.9), we have im-
mediately the inequality
2| (M-a) ! (AKy+ By) [[a0][¥ g eace),

sin 50

o)<

Therefore, to obtain the inequality (14.14), it is sufficient to show that

we have

However, as we have already remarked, we can assume, without loss of

generality, that
4| (M- &) | A<<sind,.
Then, by taking Ky sufficiently large, we have the inequality (14.15).

14. 4. By virtue of the Proposition 14. 3, we see that
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PY (T () + 07 (T (w))e AT @y

is a solution of the equation (14.1*) and is independent of N. We
denote this expression by S( ﬁ(w)). Then, the n-vector S( ﬁ(w}) ad-
mits the asymptotic expansion (14.2*) as U(w) tends to 0 in the do-
main (14.3) with &y =sup by and cy=sup cu.

Owing to the Proposition 14.1 the n-vector P®(«) defined by S(z)

is a solution of our problem.

14.5. The determination of the z-vectors P®(x) for £=2 can be
carried out in quite a similar way. The only difference between the
case for £=2 and the case for 2=1 is as follows: For 2=2, the n-vector
R®(u) appearing in (A.17)* in Introduction depends actually on the
n-vector P®(x). Hence, the vector function corresponding to the -
vector R;(z) appearing in (14.5) admits an expansion not convergent

but asymptotic in powers of u for the domain (14.3).
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