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On the study of a singular point of
Briot-Bouquet type of a system of

By

Masahiro IWANO*

0. Introduction.

In this note we consider a system of ordinary nonlinear differential

equations which, in vectorial form, can be written

(A) xy'=f(x,y}

Here:

i) x is a complex variable.

ii) y is a column vector of n component's.

iii) f(x, y) is an n- dimensional column vector function of x and

y, holomorphic and bounded in a domain

(A.I) \x\<a, \\y\\<b

and vanishing at (0, 0) , ys being the /h component of y.

The singular points x = 0 of the equation (A) are usually said to

be of Briot-Bouquet type. These singular points have been studied by

diverse authors since C. Briot and J. Bouquet. The present author is

specially interested in the case when the eigenvalues of the matrix
F=/i(0,0) are all zero.

1°. In 1937, M. Hukuhara [1] studied first the case for 72 = 1. In

the case when n^2, some difficulty comes up in the step of a formal
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transformation. After twelve years, M. Hukuhara [2] discussed about

the construction of formal solutions of the equation (A) for the case

when the vector f(x, y) has two components of the form

(0. 1) f(x, y) =

where F(x, y) is a 2-by-2 diagonal matrix and the matrix F(Q, 0) is

nonsingular, Jtt is a 2 -dimensional row vector with components mi and

mz nonnegative integers not simultaneously zero.

Recently, the present author has studied an equation similar to

Hukuhara' s i.e. the equation (A) for the case when the vector f(x, y)

has the following form, instead of (0. 1),

(0. 2) f(x, y) =y*tF(y)y + xg(x9 jO,

where F(y) is a 2-by-2 diagonal matrix and g(x,y) is a 2-dimen-

sional column vector.

He introduced the following assumption:

Let a be the 2-vector formed by the diagonal components of the

matrix F(Qi) . Then, both components of the 2-vector — ̂ -a have

positive real parks, where the symbol (•) denotes the inner product .

Under these assumptions, M. Iwano [2] obtained formal solutions

of diverse types and investigated the analytical meaning of each of these

formal solutions.

2°0 The results obtained in M. Iwano [2] can be extended to the

case for n>2 if we introduce the following assumptions similar to those

in the case of n = 2:

iv) The n-vector function f(x, y) admits the uniformly conver-

gent expansion

(A. 2) /Gc,;y)

(A. 3)

for (_x,y) in the domain (A.I), where l«(.y) is an n-by-n diagonal

matrix such that the n-vector formed by its diagonal components
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coincides with ihe n-vccior y, the n-vectors f™{y) (&2^0) are functions

hclomoi phic a,? d hounded in y for

(A. 4) \\y\\<l>,

Jtt is an n- dimensional row vector -whose components are nonnegative

integers nij (j = l, 2, • • • , n) not simultaneously zero.

v) The n-vector -7-̂  — -^OL, where
(UYL • a)

(A. 5) «=^(0),

has n components such that their real parts are all positive.

Under the assumptions i), i i )—v) , the author proved the following

theorem in the paper (M. Iwano [3] ) titled "Convergent solution of

ordinary nonlinear differential equations" :

Theorem. A0 Suppose that all the assumptions i), iD~~v) are

satisfied. Then, the equation (A) admits a solution y=S{x, £7) with

the properties that:

(a) The n-vector S ( x , t f ) is a function of x and u (the

holoinorphic and bounded in a domain

(A. 6) \x\<a", | u\\<b",

where

(A. 7) ®(c") = {w: ©!<a

with
n n

(A. 3) &i= — n — min arg^ + 450, ®2~7r — max argojy — 43Q.
y=i j=i

dQ being a sufficiently small positive constant. Moreover, S(x, 11) admits

the uniformly convergent expansion

( f ) S(x, u) =u+ 1, GO Pco) (zO + fl Pw 00 3?
* = 1

/o?- £/2<? domain (A. 6) .

(b) T/z£ coefficient P(0) (M) zs a/z n~ dimensional column vector

function holomorphic and bounded in u for

(A. 9) ||
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and developable there in a uniformly convergent power series of u\

(A. 10) • P<°> («) = j^P^u-X, (\<X\= i^) -

//" k^l, the coefficients Pw(u) are 71- dimensional column vector
functions holomorphic and bounded in u for

(A. 11) \\u\\<b", «^fe®(c"). '

aw£? admitting the asymptotic expansions

(A. 10)* Pw(zO—

#5 « tends to 0 m £/i£ domain (A. 11).

(c) £/== J7(.r, .TO, ££°) zs ^/ie holomorphic solution of a simplified
equation satisfying the initial condition U=u° at x=x0, where (x^u^)
is an arbitrary point in the domain (A. 6). The simplified equation
has the form

(R) xu=u^ln(a+ S PafU^u.

Here, @ is the set of vectors JC for which we have

(A. 12) ((JC-JH) •*)=(),

an^ f/" ^/z^ n-vector constant ]3^ z'5 non-zero, we have

(A. 13) ((JC-c5K) -19^) =0 /or any

3°. However, in the proof of the Theorem A, he assumed that

the following two theorems have been established:

Theorem A. L Under the same assumptions as in Theorem A,
there exists a formal transformation of the form

(f) 3-

where the n-vector s Pw(u) are formal power series of u given by
(A. 10)*, such that the equation (A) is formally transformed into
the equation (R).

Theorem A8 2. The n-vector function Pco) ( £7) can be uniquely
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determined as a solution of the non-linear differential equation

(A. 14)

(A. 15)

in such a way that the n-vector PCO)(^) is a function holomorphic

and bounded in u for

(A. 16)

developable there in the uniformly convergent power series
(A. 10)°. Here, 1 is an n-dimensional column vector whose components
are all equal to 1.

If k^.1, the n-vector functions PCA)(LO can be uniquely determined

as solutions of the linear differential equations

(A. 17)* xP'=-kP+F(U+ln(U^P™(U^P+Rw(U^

(A . is) F(;y) =~(y^L i. C/CO) (*) Xv) , KO) = o

m such a way that the n-vector s Pw(u) are functions holomorphic ,

bounded and admitting the asymptotic expansions (A. 10)* as u tends

to 0 in the domain

(A. 19) ||

Here, the n-vector Rw (u) is a known function admitting an asymptotic
expansion in powers of u as u tends to 0 in the domain (A. 19) if

we assume that the functions Pw(z/) have been already determined

for h<^k.

Therefore, for the complete proof of the Theorem A, it is neces-

sary to prove both the Theorem A. 1 and Theorem A. 2 which were
used without proof. However, as will be seen later, the Theorem A. 2

will be proved by slightly modifying the proof of the following theorem :

Theorem A. 38 Under the same assumptions as in Theorem A,
the equation (A) admits a solution y = S(x, C7), where the n-vector
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S(x, ii) is a function holomorphic and bounded in (x, u) for the

domain (A. 6) and admits the asymptotic expansion

(g) SGc, «)—" + !.(«) f] P(QJ
1JC|=1

as x and u tend to 0 in the domain (A . 6) .

Remarks 1. The meaning of the asymptotic expansion (g) is as

follows: For any positive integer JV>1, we have the inequality

(A. 20) \\S(x,u)-u-lK(u) "s P^

for the domain (A. 6) , where KN is a certain positive constant.

2. The power series (g) coincides formally with the power series

(f) if we replace the n-vectors Pw(ii) (£^0) by the power series

(A. 10)*.

4°. Our purpose in the present note is to prove the Theorem A. 1,

Theorem A. 2 and Theorem A. 3.

In Chapter I, we shall discuss about a formal tranformation and

prove Theorem A. 1. The Chapter II will be devoted to the investi-

gation of the growth of a general solution U(x, XQ, 2^°) of the simplified

equation (R) near the origin x = Q. We shall prove some fundamental

inequalities (See Theorems 6. 1 and 7. 1) about the growth of the solution

U. The Theorem A. 3 will be proved in Chapter III. In the last

Chapter, we shall give a brief sketch of the proof of Theorem A. 2.

5°0 We shall explain the notation.

For the ?z-vector y, we denote its /h entry by yj and \\y\\ = max]jy j?-|
.7=1

is the norm of y. The expression lf,(30 denotes an ?z-dimensional di-

agonal matrix such that the n- vector formed by the diagonal components

coincides with the vector y.

!„ is the ?2-by-n unit-matrix.

Cj is the 72-dimensional row unit-vector such that its jth component

only is non-zero and equal to 1.
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1 is an n -dimensional column vector whose components are all equal

to 1.
n

The norm of the n-by-n matrix F is given by: !|F||=maxS|F,-*|,
j *-i

Fjk being (y , £) -entry of the matrix F.

For the ^-vector y, the symbol <^> stands for the n-vector which

is obtained by replacing every entry ys by its module.

For the n- vectors y and z, the vectorial inequality <3/><I<2:> means

that we have the inequality j ys \ <[ | Zj \ for every j.

For the n-by-?i matrix F, let Fjk be (j, K) -entry of the matrix F.

The symbol <F> stands for the n-by-n matrix formed by { \ F j k \ } .

0 means the direct sum.

To simplify the description, we use the following symbols for the

scalar w and the ^-vector ]3:

= (argft, arg/32, •

Re/3= (Reft, Reft, --

||j9|| = max|j5,|, ||l9|
j j

The components of the ?i-row vectors JC = (k^ kz, • • • , k^) and

M = (7ii, 7z2, • • • , 7i«) are all iionnegative integers and \JC\ =ki + k*-\ ----- h kn .

The symbol J{, { M means that \J{\<.\M\ and we say that JC precedes
M. The symbol y^ stands for the scalar expression

For the n-dimensional column vector function f(y), the symbols

oy
sions :

-f(y') denote fi-by-n matrices defined by the expres-

When f(y) is an ;z-dimensional veccor function developable in
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power series of y, the symbol [f(y)]M or, simply, [y]*f means that its

expansion lacks the terms of the degree less than M.

For the w-dimensional row vector JC and the n-dimensional column

vector y, the symbol (JC-y') means the inner product.

For the ?z-vector y, the symbol yT is its transposed vector.

For the n-by-n matrix F, F~l is its inverse matrix.

Terminating the introduction, the author wishes to express his cordial

thanks to Professor Wolfgang Wasow for his valuable advice.

Chapter I. Formal transformation (Proof of Theorem A.I) .

1. First step of formal transformation

The equation (A) is of the form

(1.1) xyr

1.1. We shall first prove that the assumption

(1.2) /(1)(0)=0

does not harm any generality of our discussion.

Proof. If (1 . 2) is not true, we make a transformation of the form

(1-3) y = z+J*1\G)x.

Then, the transformed equation will be written as

where gw(z) are ;z-dimensional column vector functions with the same

properties as the vector functions fw(y} and, especially,

(1.4)

We shall now show that F(0) = 0. Our assertion results imme-

diately from this fact.

By a simple calculation we have
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Hence, we have the identity

(1.5) F(*)=-

However, since jc_5K|2^1, we see from this identity that F(0) = 0, which

proves our assertion. Q.E.D.

1. 2. Next we make a transformation of the form

(1.6)" y = z+pm(.z)x«, N^l,

where pm(z) is an n-dimensional column vector whose components

are formal power series of z.

Let

(1.7) xzr = z^ln(r\z^z + ±g^\z^xk

k=i

be the equation derived from (1. 1) by the formal transformation (1.6)^.

Then, we shall prove that:

We have the relation

(1.8)* ff00 GO =/»(

(1 . 9) N g™ (2) =/c«

'where F(z} is given by (1.4).
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Proof. The inverse transformation of (1.6)* can be written as

(1.10)* z=y-pm(y)x»+ [x]2N.

Differentiating the relation (1.10)* with respect to x, we have

xz' = xy' - ftp™ (30 + 9^(3° xj)x*+ [x] ̂

Substituting (1.6)* for y, we can easily verify that the relations (1.8)*

and (1.9)* are satisfied. Q.E.D.

Now we consider the partial differential equation

(1.11) z^<j£in(fW(z»z== -Np + F(z)p+fW(£9

which is obtained by putting gm(z)z=Q in (1.9)*.

We can assert that the equation (1.11) admits a formal solution

of the form

(1.12) P

where pj^ are n-dimensional constant column vectors.

Proof* Noticing that

we put the formal solution (1.12) into the equation (1.11). Then,

we have

(1.13)
JC

However, as we have just seen, F(0)=0 and |t5K|^l. Therefore, we

get the equation

(1.14) NPjc=- - j c S
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where f (3), f (^) and F # stand for the coefficients of the terms z<% inJ <Ji ' J «JC c/l

the uniformly convergent expansions of the functions /co)00? /c*°00

and ^(2) in power series of # respectively. From this recurrence

formula we see that the coefficient vector pj^ is expressed by a linear

form of the coefficient vectors p^ such that M\ JC. This proves the

existence of the formal solution (1.12). Q.E.D.

1. 3. Thus, applying successively formal transformations of the form

(y = zi+p™(zjx,

(1.15)

we have the following proposition:

Proposition 1.1. There exists a formal transformation of the

form

(1.16) y~~z + ^pw(z)x*

such that the equation (1.1) is formally transformed into the equation

(1 17) x*f = z<3Ml (f™(•*')}z = z^Hl (Y)fco)(V)V . - 1 - . - L / y u— ^ J -wVj \^JJ^ ** *-n\^JJ v-^y

by the formal transformation (1.16). Here, the n-vectors p^(z) are

formal power series of z and the n-vector fw(z) is the same as in

the equation (1.1).

2* Second step of formal transformation*

We try to transform the equation (1. 17) into as simple an equation

as possible.

The equation (1. 17) can be written as

(2.1) xz =z<3tt\tt(z)(a,+ S a-jrZ<Jfym

2o 1. Now we consider a transformation of the form

(2.2)* 2: = «+l,2(^0 ]
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where pj^ are n-dimensional constant column vectors.

The inverse transformation of (2.2)^ can be written as

(2.3)" * = *-!.(*) S p^z^ + ln(z)[z-\w.
\JC\=N ^

Differentiating (2.3)" term by term, we have

d
^^t ^~ ^^*.n^~;; ^—ij^j^-^ \ j

It is easily verified that

Hence, we have the equation

(2.4) arc'

From this we see that £/ie transformed equation (i.e. £/ie equation

satisfied by it) has also the same form as (2.1):

(2 . 5) ;ro' - u-M In (u) (
JC

and, especially,

if
if \JC\=N.

The last relation in (2.6)" can be easily verified by picking up the

terms of the form u^lu(u)[^-]u^ for \JC\=N, the symbol [ • • • ]

standing for an n -dimensional column vector, in the expression

with z = u+ln(u)^pj^u^. These terms are given by

$ /•.. qii| / N ^| (t^-h u^

in(u) (^j^+ (JA.'p^a-\-\K(
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2. 2. Now we consider the linear equation

As can be easily seen, this equation can be written as

(2.7) Lp=*JC-pjC9

where

(2.8) L=(JC-fl01.-«c5«.

We can prove that the determinant of the matrix L is equal to

(JC-^^CCcX-c^-flj), i.e.

(I) detL=(JC-a)'"1((cX- tafO-«).

The proof of this formula will be given in the next section.

Since the assumption v) in Introduction is supposed to be satisfied,

the quantity (JC-a) never vanishes if |cX|2^1. Hence, the determinant

of L is equal to zero if and only if the vector J{ satisfies the equation

(2-9) ((JC-c5K)-«)=0.

We denote the set of vectors JC for which we have (2-9) by §>.

Clearly, @ is a finite set.

Thus we have the following proposition:

If o?C$@, we can determine the value of the coefficient vector pj^

of the formal transformation (2.2)^ so that the value of the n-vecotr

0 is zero.

2.3. Suppose JCe@. Then, the determinant of the matrix L

vanishes. We can assert that the rank of the matrix L with (JC-a)

= (JM-a) is equal to n — l.

Proof. Since |c5K]^>l, there exists at least one index j* such that

/7Zy*=7^0. Then, we can prove that the determinant of the (n — l^-by-

(72 — 1) matrix Z/y* which is obtained by removing the components

of the j"*th row and the j*™- column of the matrix L is equal to

L)*~*, i.e.

(II) detL,j* = mj*aj*(<3tt-a)n 2
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This determinant is non-zero and we have proved our assertion. Q.E.D,

The proof of the equality (II) will be given in the next section.

Moreover, if JC^&, as can be easily verified, we have

(2.10) JttL=0.

On the other hand, we can assume, without loss of generality, that

the vector OL is expressed by a direct sum of K column vectors <zco with

dimension n{ as follows:

with the property that two components of the vector a. are commensu-

rable if and only if both of them are components of the same <zco for

some i.

Then, there exist K non-zero complex constants r. and K. column

vectors //°;?/ with dimension nt such that

(2.11) o^r.V0

and the components of the vectors //° are all positive integers. More-

over, the constant 7-,- is uniquely determined under the condition that

the greatest common divisor of the components of the vector //° is

equal to 1 or //° = 1 according as we have ;z,->l or 77 ,- = 1.

Hence, the equation (2 . 9) becomes equivalent to K equations :

(2.9),

with

We divide the n-vector @j{ into K vectors as well as the n-vector a as

follows :

(2.12) 0.*
where n jc are certain complex constants.

Then, we can prove that we can determine the value of the coef-
ficient vector pj£ so that the n-vector 0j^ is of the form (2.12) if the

complex constants n jc we suitably chosen.
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Proof. It is enough to prove that we can choose the values of

the constants n j{ so that the conditions

rank L = rank (L, a. ̂  — j3 j^) = TZ — 1

are compatible. Since we have the relation (2 . 10) , these conditions are
equivalent to

By the definition of the vector pj^, this equation is written as

(2.13) ( 3A • ajc) - S rit J{ (c5H, • ,««) = 0.

However, since at least one of the quantities (c_% • //°) is positive, the
condition (2.13) can be certainly realized by a suitable choice of the

constants n j{- Q.E.D.

Thus, by applying successively formal transformations of the form

( Z=U1
Jrln («0 2 P ir Ui^ ,

| e# i=i Jt

(2.14)

lLN_i — UN + 1,, (UN) S ^Pj£ 2^jv°^?
| \JC\=N

y

(?tj 0"=1?2, • • • ) are ^-dimensional column vectors) we have the follow-
ing proposition:

Proposition 2* 1. We can determine the values of the coefficient

vectors pj^ of a formal transformation of the form

(2.15) z-

50 ^/za^ the equation formally derived from the equation (2.1) by the

formal transformation (2.15) takes the form

(R) xu' = u<ftlm(u)(a

= «^£ (!.(«)+
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Here @ is the totality of the vectors M such that ((<${— Jtt) -at) =0

and $g£ are n- dimensional column constant vectors defined by the

formula (2 . 12) , and if 0^¥^Q we have

(2.16) (GX-JK) - j9#)=0 for any

@ is a finite set, and the equation (2.16) is an immediate

consequence of the equations (2.9),-, (2.12) and (2.11).

3. Proof of Theorem A0 1.

A combined formal transformation of two formal transformations

(1.16) and (2.15) can be obviously written in the form (f) appearing

in Theorem A. 1 in Introduction. By virtue of the Proposition 1. 1 and

Proposition 2.1, we have the Theorem A. 1.

Therefore, for the complete proof of the Theorem A. 1, it remains

only to prove the identities (I) and (II) appearing in Section 2:

(I)

(II) det Lj* = mf af* (JSi • *) n~\

3. 1. We consider the following determinant:

— m^cx.l "• •••

Since £)(JK, «0 =det(61,-ac5K), it is obvious by (2.8) that

detL = D(3tt,a) with b=(JC-a).

We shall prove that

(3.1) D(^,a)=^1(6-(JK-a)).

The formula (I) results immediately from (3.1).

Proof. Adding the components of ths 2"d, • • • , nth columns respec-

tively to the components of the 1st column, we have
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b-

b-\

= b

oLn —:

However, we see that the first determinant is equal to

where

(^K1) T = (<^2? • • •, oQ with a] = OLJ — a-t,

This can be easily verified by substructing the components of the 1s

row from the components of esrery other row and by expanding the

resulting determinant with respect to the components of the T1 column.

On the other hand, the last determinant can be easily calculated as

follows: By adding the components of the 1st row multiplied by — <#,-

to the components of the fh row for every j, the resulting determinant

is reduced to a determinant of the upper triangular form and is equal

to (-l)i^l^^1.

Thus, we have the recurrence formula

where

Similarly, we can derive the following relations:

2, o? ) - \ Jlii \ a\ bn~\
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where
<3M.k=(mM9—9m3,

WY= (tfU »., ̂ ) with

Since, by definition of aj, we have

«ri=a{^-«I:J=«r'-oI:J

it follows then that

)). Q.E.D.

3* 2* We can assume without loss of generality that m^O. Since

• <z) = (c^f • oj) , the matrix LI is written as

where

«3/i=0«2, ••• ,w.) J (^*)T-fe? • • - , a j l , ) .

This matrix has a form similar to the original matrix L except that

the size of the matrix LI is n— 1 by 72 — 1. Hence, we see that the

determinant of LI is equal to jD(c5Ki, «*) with b=(^M,-oL), Therefore,
the formula (3, 1) shows us that

detla=

This proves the formula (II).

Chapter IL Integration of the simplified equation

4. Equations equivalent to the equation (R).

We introduce an auxiliary variable

(4.1) fi> = «*».

Then, by a direct calculation, we can derive from the equation (R)

the following equations:
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f

(4.2)

Therefore, we see that £/i£ differential equation (R) z's equivalent to

a system of the equations (4. 1) and (4. 2) .

On the other hand, we can prove the following proposition:

Proposition 40 1. Let x(w) and u($u) be tlie holomorphic solution
of the equations (4.2) such that X(£UQ^=XQ and u^uj°^)=ii°. Then, tve

have the identity u(w)^=zv if and only if the relation (z/°)^ — u>°

holds.

Proof. A simple calculation shows us that the expression z/(£>)^

— w is a solution of the linear differential w 7^ = Y. However, the
duo

solution of this equation is identically zero or never vanishes, which

proves our proposition.

5= Parametric representation of solution,

5S 1, Let [7= U(x, Xv, z/°) be the holomorhic solution of the equa-

tion (R) satisfying the initial condition U= IIQ at x = XQ .

Then, we can assert that:

Proposition 5, 1. The function U^x.x^if^^-^1 is independent

of x for every JCe@.

Proof . Since U is a solution of the equation (R) , by an elementary
calculation we have

By the definition of the set @, we have ( ( JC — JK) • a) = 0. On the

other hand, the formula (2. 12) implies that

( ( JC - JK) - ̂  = ± 0rz- M ( ( JC, - JK,) • //<') - 0.

The last equality results immediately from the equation (2.9),- and the

relation (2. 11). Q.E.D.
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Owing to this proposition, the ^-vector at* denned by

(5.1) «* = S P#U(x,X0,tf)<X-<W

does not depend on x. Therefore, we see? by virtue of the Proposition

4=1, that the solution u=U(x,Xv9ii
r) is equivalent to the solutions

x = £(w), u=U(jw) of the equations

(R')
du _~ I

\

such that X(U)Q}=XQ and U(w°)=u° with

(5.2) wo=(w°).3K.

As we have already seen, the relation (5. 2) implies that

(5.3) w=U(

Since the coefficient matrix of the second equation of (R7) is of

the diagonal form, we can integrate (R') by quadratures as follows:

^u,) = *(!+, £"..5Lr ' <*P(-

(5.4)

Here, the constant c and the n-dimensional column vector C must be

so chosen that x (ze>°) = XQ and t/(w°) = u°,

5» 2. If we want to express U as a function of .r, we must eliminate

w from the relations (5.4).

To do this, it is convenient to use a certain transcendental function

introduced by M. Hukuhara [1, 4]. Following Hukuhara, we put

(5.5) x=



On the study of a singular point of Briot-Bouquet type 327

Then, the first equation of (R') is transformed into

~ w '
By integrating this, we have

(5.7) X+c1 = W r-log(W r+l).

Let W=£>(X+<;i) be defined implicitly by (5.7) and consider the
branch of £(X) such that §(X) — X— logX vanishes at X=°o. Then,

the general solution U of the equation (R) can be -written as

(5.8)

58 3o Let

(5.9) Z)(c) = {w:

(5.10) Z)*(c)={w:

where

(5.11) ^=

50 being an arbitrarily fixed sufficiently small positive constant.

It should be noticed that, when *w tends to 0 along a segment in

the domain Z)(c)? the function x(w) defined by the first relation of

(5. 4) decreases monotonously in module and tends exponentially to 0.

Then, the nature of the function x = x(w} and of its inverse func-
tion is clarified by the following theorem:

Theorem 56 1. Let XQ and ZVQ be arbitrary points in the complex

x-plane and in the domain D*(c) respectively. We choose a value of

the constant c so that the first equation of (5. 4) is satisfied at X = XQ

and cw = w°.

Then, if zu tends to 0 along a curve F*oeD*(r) (vvhich starts
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from iv = zv° and approaches zu = Q from the interior of the domain

Z)(c)), the point x = x(ui) describes a spiral- shaped curve F,0? turning

around the origin in the complex x-plane, and approaches x = Q.

The converse is also true.

6. Estimation of the growth of the general solution of the
equation (R) near the origin # = Q.

We consider a domain

(6.1) ®(c0)^{w: ©,<argzc;<®2, 0<

where @i and @2 are the same as those appearing in (A. 8) in Introduc-

tion and

cotA(r) dr,

with
m ci ~v (' T R -J- Q ̂  ^ ̂ >IIldA. ^t t/_|- i .oUr), "Oy ?

(6.2) A(r)- ' w

The point <:0£Z0° is evidently on the boundary of 3)(c0).

By the definition of 0_, 0+, ®! and ©2, the function A(r) satisfies

the inequalities 50<^A (r) <^TT —• fl0 for @3^r^@2. Hence, the function

<^(<p, c) is bounded with respect to both variables. Therefore, the domain

®(c0) is contained in the domain ®(c") defined by (A. 7) in Introduc-

tion for the suitably chosen positive constants c and c". The converse

is also true.

By virtue of the assumption v) in Introduction, we can assume,

without loss of generality, that

//-* r>\ OL ^- 7T c\ 5,(6.3; arg-y-^-—y ^-^--6dQ

for the same dQ as before. Then, we can assert that we have

£>fe) c®(c0) CD*fe), (c1<r0<c2),

where the domains D(c) and Z)*(c) ar^ defined by (5. 9) <2^^ (5. 10).
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Proof. We see by definition of 0_, 0+, ®i and ®2 that

(X + n - 250) ~ ®2 = -- + max arg

-2Jo =--- max arg
2

.e.

and similarly that: 0_-7T + 2ff0<01<0_ + 2ff0 . Q.E.D.

Let (XQ, w°) be an arbitrary point in the domain

(6.4) lo

and define the function £7(.r, x^ i^ as a solution of the equation (R)

such that U=uQ at X = XQ. The solution u=U(x,x0yu
Q*) is equivalent

to the solutions x — x(w) , u=U(ui) of the equations (R') such that

x(w^) =XQ, U(ufr)=if with w°= (w°)^. These solutions are expressed

by the formula (5.4). Thus, we have the identities

(6. 5) U(w*)M=W9 U(x"1(x^^U(x}x0)u^.

Moreover, we can prove the following theorem:

Theorem 6* 1. There exists •, z";z ^/z^ domain 3)(c0), ^ curve F*0,

-which starts from UJ = ZVQ and approaches zu = Q along a segment in

the sector #^ + 2£0<iargw<j9+ — 250, ^wc/i £/i<2£ tf^ /xat;e ^/i^ inequalities

(6 6) **|:e(w)|
^ } ds

ds ^

(6.8) -j

on the path F*o, -where s is the length of the curve F*0 measured

from the origin to the point w.

This theorem shows us that, as w tends to 0 from W = WQ, both

\x(w) | and ||C7(w)|| decrease monotonously. Hence, we have the in-

equalities
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)K|[«"!l for

Therefore, it follows from (6. 5) that

(6.9) U(w)|<ao, I|E7(w)|I<ft0, £7(^)^e®(<;0) for

Clearly, the path F*0 belongs to the class of paths that appeared

in Theorem 5. 1. Let F*0 be a curve in the complex x-plane obtained

by mapping the curve F*0 by the first relation of (5.4), where the

constant c should be determined so that w = iv° is mapped into

X = XQ. Then, we see that FXQ is a spiral-shaped path which starts

from X = XQ and approaches x=Q, turning around the origin in the

complex x-plane.

By virtue of the inequalities (6.9) and the identities (6.5), we

have the following theorem:

Theorem 6* 2. When x moves on the path FXQ , the values of x

and [/(.r, .TO, w°) always remain in the domain (6.4).

Proof . It is sufficient to observe that the correspondence between

the points on these two curves Fzf0 and FXQ is one to one.

Kemarko The domain of the point u satisfying the inequalities

(6. 4) is in the product space of the Riemann surfaces of logu

= (log z* i , - - - , log &O-

7o Proof of Theorem 6, 1.

7o 1. Let (r, 0) and (/o, <p) be the polar coordinates of the point w*

and the variable point w on the path F*0 and let A(r) be the same

as before.

The curve F*0 is denned as follows:

If 6+ — 2dQ<L6<®», the path F*0 consists of a curvilinear part F':

(7. 1) p =

and of a rectilinear part F" ':
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If 0- + 2<?0<i0<;0+ — 2<50, the path F*0 consists of only a rectilinear

part r":

If ®i<C0<I0_ + 2£o, the path F*o consists of a curvilinear part F':

S ?
cot A (r) dr9 0<1<?<X + 2dQB

and of a rectilinear part F":

- exp
J

It is clear that the path F*0 thus denned is contained in the do-

main ®(c0).

After a simple calculation we have, by (R')>

(7 o>) 1 <^[j: | =p / _ 1 _ d<w\
^ ' J \x\ ds \(^-X(w5C/))w2) ds),

(7 4)
^ ^ w;

where

U= Lf (w.0 , ^ - ^ (w) , X(w9u} = a +
^e(S

Xj(w,ti) being the /h component of the n-vector

7, 2B Tfe rectilinear part T" . Since s = p= \w\ on this part, we

get dvu/ds = ei9. Hence, we have the equality (6=8), and the relations

(7. 3) and (7. 4) are reduced to

, „ d\x\ 1 p / e* L_
' \x\ ds

and

(7-4)"

respectively, where

Y(w, «) =X(w, «) -« =
On the other hand, we observe that
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i) By definition of 0_ and 0+, the inequality #_ + 250^<p^0+ — 230

implies that [ cp + arg (JM, • PL) \ ̂ ~^~ ~ 2&i.

ii) Since ] ze> | and j| U\\ axe assumed to be sufficiently small, we

can suppose without loss of generality that

Sl-J £->> -f , \t-JYl ' JL \TJO', (_y )) -^ -L

U- ^y 1 +

(7 ft\ / -i , i A'^? v ) }l i _L l*-^' ^ ^^> ^ )) } \1.
V ' - U / I-1"!" _. / l ± ~ r /- Q^ _A / 2'

Therefore, we can derive from (7.3)" and (7.4)" the following

inequalities :

1 d\\U\\ Ik

which proves the inequalities (6. 6) and (6.7).

7, 3. T/2£ curvilinear part rf. Here, (0 is a function of p given by

(7.1) or (7.2) according as we have 6+-2dQ<Q or 0<^ + 2<V Hence,

if we notice that the function A(r) defined by (6. 2) satisfies the in-

equality §o<^A (r) <^7r — d0 for ©i^r^§2, we have

and

"" ^sinAW^

according as we have 6+ — 2dQ<L(p<LO or 6<L(p<Ld^ + 2dQ. Therefore,

which proves the equality (6.8).

To prove the inequalities (6.6) and (6.7), we consider first the

following case:

J. Case when 6+ — 2dQ<:0.
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The inequalities (7. 3) and (7. 4) imply respectively that

( y i d\x\^ i P /u-6) ixi^r-P
2

and

However, by means of the inequalities (7.5), (7.6) and (7.7), it is

sufficient, for the proof of the inequalities (6.6) and (6.7), to show

that, for the function A(<p) already defined by (6.2), the inequalities

(7.8)

(7.9)

are simultaneously satisfied for 6+ — 2d

By definition of A(cp) we notice that

Substituting <p — 6+ + 2dQ for A(^) in (7.8) and (7.9),

we have

By the formula (5.11), these inequalities are written as

respectively.

We see at once that the first inequality is automatically satisfied.
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On the other hand, we can easily verify that the second inequality is

satisfied in the interval

(7. 10) — min(argo:)^^^7r — max (arg oO — 4<50( = ®2).

By virtue of (5.11) and (6.3), we have the inequality

- min (arg a) <*-%- ~ arg (<jK • *) - odQ<d+ - 3dQ.
LJ

From this we see that the interval (7. 10) contains the interval

Thus we have proved that the inequalities (6. 6) and (6. 7) are

simultaneously satisfied in the interval #+ — d0<^<[(92.

Substituting dQ for A(<p) in the inequalities (7.8) and (7.9), they

are reduced to

The second inequality is automatically satisfied, because of the in-

equality (6.3). The first inequality is satisfied in the interval

-- \- - arg (c5K • ai) + 3^^ -f- - arg (JK • *) ~ 30.

By definition of 0_ and 6+, the first and the last expressions in the above

inequality can be written as 0_ + 3flo and 8+ — 3Q.

Thus we have proved that the inequalities (6.6) and (6.7) are

simultaneously satisfied in the interval 6+ — 2dQ<^(p<L0+ — dp.

This completes the proof for the case w^hen G+ — 2dQ<,6.

II. The proof for the case when #<J_-r250 can be carried out in

quite a similar way. Q.E.D.

79 40 As can be easily seen from the proof of Theorem 6.1, we

have at once the following theorem:

Theorem 1. 1. Let Uj(w) be the fh component of the n-vector

function U(w). Then, on the path F*0 ?£'£ have the inequality
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(7 ii) d\Uj(^\ >
- / > - L - L ^ —

which, in vector ial form, can be zvritten

(7 12}v « • J-^y j 0 I ^ or/ N I , ia^ 2 I i^^rt • oO I I te; |

Proof. Since the coefficient matrix appearing in the equation (R)

in Section 5, is of the diagonal form. The proof of this theorem is

•exactly the same as that of Theorem 6.1.

Chapter III. Main Theorem (Proof of Theorem A. 3).

8. Preliminaries.

8. 1. In Chapter I, we have proved that there exists the formal

transformation (f) :

( f ) y-u+lH (u) Pco) (u) + 2]PW («) xk

by which the equation (A) with (A. 2) (i.e. the equation (1.1)) is

formally transformed into the equation (R) :

(R) x

Here, the ;z-vectors Pw(ii) (£^0) are formal power series of u:

(A. 10)*
JC

The formal transformation (f) can be obtained by combining the

two formal transformations (1.16) (in Proposition 1.1) and (2.15)

(in Proposition 2.1). Therefore, we see at once that the power series

u + In(u) P^(u) with (A. 10)° coincides formally with the power series

u 4- 1« (u)mpj{U<K appearing in (2.15). Moreoveover, after applying the
<Ji

formal transformation (1 . 16) to the equation (1.1), the expression

y^iln(f^(y^)y, which is the term independent of x in the right-hand

member of (1.1), rests invariable (See the equation (1 . 17) in Propo-

sition 1.1). Therefore, the power series

(8.1) v n Ji
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is a formal solution of the equation

(8.2) xv' = vMln(fW(v))v,

provided that U is a solution of the equation (R).

From this it follows readily that we have the vectorial inequality

(8. 3)
with p= C7+ !>(£/)

for || U\\<ib", where b" is a small positive number and BN is a certain

positive constant.

8- 2c Let F(p) be the n-by-n matrix denned by the formula (1 . 4)

with z=p. Then, by (1.5) we have the vectorial equality

(8. 4)

where F(p) is an n-by-n matrix function holomorphic and bounded in

p for \\p\\<^b. From this we see that there exists a positive constant

Aj such that

(8.5) \\F(p)\\<A,\lp\l

and

because of the identity la((py)~1(py = l.

80 S«, Let XQ and u° be arbitrary values such that

where the positive constants air, b'n and CN will be defined later and the

domain S(c^) is defined by (6.1) with CQ = C'N. We define the function

U(x, XQ, w°) as the holomorphic solution of the equation (R) such that

U=u° at X=XQ. Then, we have a formal solution of the form

(F) y
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9. Auxiliary theorem.

9.1. Put

(9.1) PN(x,u)^U+ln(u) S2 PVU-X + I]* P($XkU<K.
1JC|=1 k+\J(\=l

Observe that the n-vector PN(x,u) is a polynomial in x and u without

constant terms.

Let us make a transformation of the form

(9.2) y = z + P'(x9 C7), U=U(x,x0,u°).

Then, the differential equation satisfied by z is written as

(9.3) xz> =g(x,U,z),

where

(9. 4) g(x, u, z} =f(x,z+PN(x, «))

-x-j-PN(x,u~) -~PN(x, u} .xu'.
OX OU

Here, the expression xu' must be replaced by the expression appearing

in the right-hand member of the equation (R).

Hence, we can assume, without loss of generality, that the n -vector

g(x, u, z) is a function holomorphic and bounded in (x, u, z) for

(9.5) x\<a*9 |,'M||<&O, lkll<*i

for suitably chosen positive constants aQ, bQ and b-±.

The equation (9 . 3) admits a formal solution of the form

From this fact we can verify that the n-vector g(x, u, z) satisfies the

vectorial inequalities

(9.6)

(9.7)

for (x,u,z) and (x,tc,z~) in the domain (9.5), provided that the n-

vectors z and z satisfy the vectorial inequalities
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(9.8) <*>,<*> <K(\x\l + <u», (100).

Here, A is a suitably chosen positive constant independent of

(x,u,z,N), -while BN may depend on N. E(it) is an n-by-n matrix
satisfying the vectorial inequality

(9.9) E(u)

where E is an n-by-n constant matrix whose components are non-

negative numbers.

Proof . Since the ^-vector g(x,it,z^) is given by (9.4), the terms

depending on z appearing in the vector (g(x,u,z)y does not exceed,

in vectorial inequality,

|* | !„)<*> with y = PN(Q,u^ (A2>0)

under the condition (9.8), if x\ and \\u\\ are small. Here, the n-by-

n matrix ^(3;) is defined by (1.4). However, since <P^(0, u)y<LA*(u)

(A3>0), we see, by virtue of the identity (8.4) with <p> = As<M>, that

there exists an n-by-n matrix E(u) satisfying the vectorial inequalities
(9.6), (9.7) and (9.9).

The last expression appearing in the vectorial inequality (9.6) is

an immediate consequence of the vectorial inequality (8.3). Q . E . D .

The condition (9 . 8) will be naturally satisfied because we are ask-

ing the existence of a solution admitting the asymptotic expansion (F#) .

9. 2» In order to prove Theorem A. 3, it is sufficient to prove

the following theorem:

Theorem 9» 1. (Auxiliary theorem) . The equation (9.3) admits

one and only one solution z = @N(x, LO, where the n-vector (&H(x,u)

is a function holomorphic and bounded in (x, 11) for

(9. 10)* \x\<a^ \\u\\<Jb'^

and satisfying there the vectorial inequality

Here, KN is a certain positive constant such that
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(9. 12) K*(W)N+ (a*) (^)^+ (W)

In fact, by using this theorem Theorem, A. 3 can be proved in a
following way: SN(x, t/) = 0"(.r, U) JrPN(x, U) is a solution of the
equation (1.1). Then, we can assert that, for any N'>N, the iden-

tity SN'(x, it) =SN(x, if) holds if Or, z/) belongs to the common part

of the domains (9.10)^' and (9. 10) lV. Indeed, since the expression
z= S®\x, U} — P^Cr, U} is obviously a solution of the equation (9.3)

satisfying the condition <z^ = O ( ( \x\N+ \x\ \\ U\\N^ 1+ || L^XC/)),
provided that (x, C7) is in the common part of these two domains. How-
ever, such a solution must be equal Lo $N(x, £7), which proves our as-
sertion.

Both sides of the identity SNr(xy ic)=SN(x, iC) are hoiomorphic func-
tions of x and u. Therefore, by the analytical continuation, this identity

must be satisfied for (X,IL) in the union of the domains (9. WjN' and

(9.10)*.

Let S(x, it) = SN(x, it}. Then, we can assert that the :i-vector
function S(x, u) is defined in the domain

\x\<a", \u\\<b",
with

a" = SUp <ZN, 6" = SUp

So, for the proof of Theorem A. 3, it is sufficient to prove that
the n-vector S(x,u) admits the asymptotic expansion (g), i.e. satisfies
the inequality (A. 20) in Introduction.

Let Nr>N. Then, we have

,w)-tt-l..(fO 2] PK™uJ<- S PxkwKy
\JC\<N'-I

The norm of the vector appearing in the right-hand member does not
exceed the expression KN'(\x\N'~I+ IN!"'"1) provided that \x\ + IMI<1.
On the other hand, there exists a positive constant C such that
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Therefore, we see that the expression appearing in the left-hand member

of (A. 20) does not exceed the expression

This proves the inequality (A. 20).

Therefore, for the proof of Theorem A. 3, it is sufficient to

prove Theorem 9.1.

10. Proof of Theorem 9.1 (the Auxiliary theorem) .

Let g = {(p(xyu')} be the family of the n- vectors <p(x,ii) which are

functions holomorphic and bounded in (x,u) for the domain (9.10)^

and satisfy there the vectorial inequality

do. D* <<P(X,U»^KN{(\X N+ \x\\ u\\N^i+ \\u\r\uy} .
Let GCO, #°) be arbitrary values in the domain (9. 10)# and define the

7z-vector !p(x,ii) by the formula

p^o ,7—
(10. 2) lp (x*, «") = \ g(x, U,v (x, C7) ) -^ ,

JO X

where the integration should be taken along the path FXQ which has been

already defined in Section 6. Then, the mapping £ is defined as follows:

£ _
(10.3) <p (x, «) — ><p (x, 11) .

The family g is not empty since {0} eg and g is convex, closed

and normal. On the other hand, by virtue of Theorem 6.2, as x is on

the path FXQ the values of x and U(x,xQ,u°*) remain in the domain

(9. 10) # if the initial values XQ and u° belong to the same domain.

Moreover, as we shall show later, the integral (10. 2) converges uni-

formly with respect to u° for each XQ. This assures us that the mapping

£ has a well-defined meaning.

Our proof of the auxiliary theorem is based on the existence of a

fixed point of this mapping (See, for example, M. Hukuhara [3] ) .

We shall first prove the following two propositions:

Proposition 10. 1. The mapping Z transforms g into itself.
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Thib propoLiiion is equivalent to the following three assertions:

(a) The integral (10. 2) is convergent.

(b) We have the vectorial inequality

(10.4)
(c) The n-vector ~<p(x, ti) is a function holomorphic and bounded

in ( x ^ u ) for the domain (9.10)^.

Proposition 10. 2. Z is a continuous mapping of g with respect

to the topology of uniform convergence.

This results immediately from the following assertion:

(d) If the sequence {<pm(x,u}} tends to 0 'with respect to the
topology of g? then the corresponding sequence §pn(x,ii)} also tends
to 0.

Suppose that these two propositions have been established. Then, by

means of a fixed point theorem, it is concluded that there exists a fixed
point of the mapping S, namely, a member <p(x, «)EEg such that

<p(x,ui)=!p(xji). We denote it by @N(x,tt).
Then, we can prove the following:

Proposition 10.3. The n-vector @N(x,U^) is a solution of the
equation (9. 3) .

For the proof of this proposition, it is sufficient to show that:
(e) We have the identity

(10. 5)

where if- is a function x± defined be i?= Ufa, XQ, ?/°), and

(10. 6) G(x, 11) = g(x, u, cp Or, u) ) - .

Our final proposition is stated as follows:

Proposition 10.4. The solution of the equation (9.3) satisfying
the condition

(10.7) *

is unique.
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This proposition results from the following assertion:

(f ) The quantity K defined by

(10.7) K=max sup{ 1 0, (*, it) I (

is equal to 0, 'where $(x, U) is the difference of tzvo solutions satis-

fying the same conditions.

11. Proof of the assertions (a) — (f).

11.1. The assertion (a). If we substitute the expression appear-

ing in the right-hand member of (10. 1)# for z, then the vectorial in-

equality (9. 6) is reduced to

(11. 1) <g<#,«,pGr,w))>^£Oc,tt),

where the n-vector Q(x, u) is given by

(11.2) 3(x,u}=\x\N{(AKN x\+BN)l + AKNE(u)l)

+ \x\\\ii\r\tAKx\x\ +BN)l+AKN<u)+AKNE(ii}l}

We change the integration variable from x to w= U^ by the first

relation of (R') in Section 5. Then, we have the vectorial inequality

(11- 3)

where

(11. 4)

Here, £(w) and U(ui) are the same as those appearing in Section 5.

As we have already seen in Sections 6 and 7, w tends to 0 along

the path F*0 as x- tends to 0 along the path FXQ, and the part of the

path F*0, which is sufficiently near w = Q, consists of the segment that

was denoted by r".

As can be easily seen from the formula (5.4), we have
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and the function x(w} tends exponentially to 0 as w approaches 0 along

the segment r"'.
Since, by (9.9), we have

~ ~ I CM.\
(11.6) l!£(C/(^))ll^C1||t7(^)il1 ', Q>0,

the norm of the vector S(x(w), f/(w)) does not exceed the expression

C2(\x(w}\N + x\ (w)| || U(w^)\\N'1 + |I t/(w;)ir) (C2>0). Therefore, by virtue
of the condition (11.5), we see that, if N is large enough to satisfy

the inequality

(11.7) N\\E

the integral in (11. 3) and, consequently , the integral (10. 2) 75 con-

vergent.

11.2. The assertion (b). We can assume, without loss of gener-

ality, that

(11.8) \X(w, UM ) | ^-

for U(ui) in the domain (9. 10)#.

Let s and s0 be the length of -the curve F*o measured from the

origin to the points w and iv° respectively. Then, we have

for ?£'£

(11.9)

ds
for TX'^F^o. Therefore, by (11.3), we have the vectorial inequality

Stt-a) \ Jo

To obtain the inequality (10.4), it is sufficient to prove that the
vectorial inequality

(11.10) 2 ^
W

/5 satisfied for every 5(0^5^50) or, what is the same thing, that we
have the vectorial inequality

(11.10)'
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Now we shall show that the vectorial inequality (11.10)' is satisfied

for the domain (9.10)#.

Owing to the Theorem 6.1 and Theorem 7.1, we have the in-

equalities

d ( \ ~ r ^—T- t \x(w)

(11- ID

c i! UM r x &(«,) » ^

Therefore, for the proof of the vectorial inequality (11.10)', we

have only to get the vectorial inequality:

(11. 12) ±S(£, U)^KN{(Nsm3a- \x N + smda- \x\\\U\\N~1')l

if we notice that w^=U(w^*3M. However, since the ^z-vector Q(x,u)

is defined by (11.2) and we have the inequality (11.6), the vectorial

inequality (11.12) results from the following three inequalities:

(11.13) 4{AKN(\x

(11.14) 4{A^(|a:

(11. 15) 4(AKNG2 + BN^KNN\\a\\f sm8Q (by w=

The last inequality is obtained by the fact that there exists a positive

constant C2 such that

because of the vectorial inequalities (8.6) and (9.9). The inequality

(11.13) is automatically satisfied if the inequality (11.14) is satisfied.

We take first the quantities 1/N, d^ and &# so small that

ni _,
(II . Ib )



On the study of a singular point of Briot-Bouquet type 345

and next KN sufficiently large so that the inequalities (11.13), (11.14)

and (11.15) are satisfied for the values of x(w) and U(w) in the

domain (9.10)^. This is evidently possible. Moreover, for the positive
constant KN thus determined, by taking, if necessary, the values of a^

and b'$ much smaller, the inequality (9.12) also is satisfied.

11.3. The assertion (c). The inequality (10.4) shows us that
the integral (10.2) is uniformly convergent with respect to u° for each
XQ. Therefore, if we could prove that, for any Xi sufficiently near to
XQ> the relation

(11.17) \
JPajo

^dx
9 x

holds, the assertion (c) would follow from the Lemma 1 in Section 25
in M. Iwano [1] .

Here, the last integration should be taken along the segment join-
ing x0 with Xi, and the curve F,15 is an image of the curve F*i by the
transformation defined by the first relation of (5.4), where c must be
so chosen that X(ZVQ} =XQ. Of course,

We notice that the point iv on the curve F*,- (z' = 0, 1) is on the segment

denoted by F/' (z = 0, 1) and is located in the sector

arg w <0+ - 28Q

if \w is sufficiently small.

Let ?,-GO (z" = 0, 1) be the points of intersection of a sufficiently small
circle \w \ = p with the paths F*,- (i = Q, 1) . Then, the function max \x(w) \

for 7^ef0(|o)fi((o) tends exponentially to zero with p and we have

max !| [7(^)11 = 0 ' l o (asp->0).

Therefore, as can be easily seen from the proof of the assertion (a), it
is concluded that:
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(11.18)

Here, the integration must be taken along the circle \w\=p.

Let xQ(p)xi(p) be the image of the curve fo(p)fi(p) such that

xi(p)^rxi(i = Q,l') by the same transformation as before. Then, the

relation (11.18) is equivalent to the fact that

(11.19) dx
x

as

As p tends to 0, the points .rf-(p) 0 = 0, 1) tend to the origin. Hence,

the relation (11.19) proves the identity (11.17).

11.4. The assertion (d). Since the topology of % is denned by

uniform convergence, as can be easily seen from the proof of the vec-

torial inequality (10.4), this assertion is almost obvious.

11. 5. The assertion (e). Since, by definition, we have

(See (10.6)).

By virtue of the assertion (c), we can apply the formula of differenti-

ation under the sign y Therefore, we find that:

, 1 7 ) [ , 1 , , i , l 9 Q . ,
dU \ dx, ^ du1 Ox,

However, as is well known, U(xQ, Xi, ul) is an integral of the equation
(R) for an arbitrary constant XQ. Hence, the expression in the braces

{ } vanishes identically, which proves the relation (10.5).

11.6o The assertion (£). Let <l>(x, (7) be the difference of two

solutions satisfying the same conditions. Then, by virtue of the vec-

torial inequality (9.7), we have

ds9 A Ps

(11.20) <0CroX)>^ |r;:f .,
(un-oL) Jo
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Suppose KX). The definition of K implies that

(11.21) <<!>(£, U»<K{(\x\N + x\\\U\rin+\\U\r\U>}.

Substituting the expression appearing in the right-hand member of

(11.21) for 0Cr, LO in the vectorial inequality (11.20), as we have

already proved, the integrand of the resulting expression does not

exceed, in vectorial inequality, the expression

Integrating the vectorial expression above with respect to 5 from 0 to

50, we have the vectorial inequality

„ \N , I l l U y O i i ^ - ^ - jXQ\ -\-\XQ\\\U\\ )L

_,_ 4AKC, IIUOIIN-I<U 0>

^ N\\a\\'sm30

because of the inequalities (11.11). However, by the inequalities

(11.16), the above inequality implies that:

,x)>^~{(kor+kai!i«r"-oi+i!«T^o>}.

From this it follows that 2K<^K, which contradicts our hypothesis.

Hence, we must have J^=0.

Chapter IV. Proof of Theorem Ae 2.

12. The differential equations which determine the ^-vectors

P(k\u) (k^ff).

Let U be the same as that in Section 8. As we have already

proved, the formal power series

(F*) 3— [/+l«(f7)P(0)(t/)+S P^CIO**,k=i

which is obtained by replacing u by U in the power series (f) appear-
ing in Theorem A.I, is a formal solution of the equation (1.1).
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By differentiating both sides of the formal solution (F*) term by
term, we obtain formally

(12. 1)

with identities

where xUf must be replaced by the expression in the right-hand mem-
ber of the simplified equation (R) with u=U. Hence, x(Pw (£/))' can
be regarded as functions of U alone.

Substituting the formal solution (F*) for y appearing in the left-
hand side of (12 . 1) , the equation (12 . 1) can be reduced to a formal
identity between formal power series of x whose coefficients are also

formal power series of U. Hence, comparing the coefficients of the
terms xk(k = Q, !,•••) of this formal identity, we can find differential

equations satisfied by the n- vector functions PW(U~) (£ = 0,1,"0-
By a simple calculation, we see that these differential equations

are given by the formula (A. 14) or (A. 17)* in Introduction according

as we have £=0 or k^I. More precisely, the n-vector Rw(u) ap-
pearing in the equation (A. 17)* is expressed by the sum of the n- vector
fw(u-\-\n(ii)P^(iL}^ and a linear form of the n-vectors

GO *

0) or f">(z)

Moreover, these differential equations possess formal solutions of

the form

(12.2*)*
cX

which is obtained by replacing u by U in the power series (A. 10)* in

Introduction.
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13. Determination of the n-vector function Pw(u).

13. 1. We consider the differential equation (A. 14) and its formal

solution (12. 2) °. Observe that the expression appearing in the right-

hand member of (12 . 2) is developable in a uniformly convergent pow-

er series of P whose coefficients are functions developable in uniformly

convergent power series of the ?z-vector U. Hence, the equation

(A. 14) can be written as

(13.1) xP'=U^h(U,P),

where h(u,p) is an n-dimensional column vector function holomorphic

and bounded in (ii,p) for

NK&o, }\p\\<d,.
As we have already seen, this equation admits the formal solution

(12.2)°:

(13.2) -

We shall prove that the power series (13.2) is uniformly conver-

gent for \\U\\<bo and represents a solution of the equation (13.1).

Instead of proving the uniform convergence of the formal solution

(13.2) directly, we will prove the uniform convergence of the power

series

(13.2*) P

Here, V= VCr, XQ, z;°) is the holomorphic solution of the differential

equation

(13.3)

with

satisfying the initial condition V=vQ at x = x0, where XQ and v* are

arbitrary values such that
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Then, we can prove the following proposition:

Proposition 13.1. The formal power series (13.2*) is a formal
solution of the differential equation

(13.1*) x(JH-XW)P' = h(V9P).

Conversely, let P=g(V) be the actual solution of the equation

(13.1*). Then, the n-vector £"(£/) is a solution of the equation (13.1).

Proof. Let g(U} be the n-vector expressed by the formal power

series (13.2). Then, since g(U} satisfies formally the equation (13.1),

we have the formal identity

with

which, by virtue of the equation (R) , implies that :

U=

From this, we see that the n-vector g(u) satisfies formally the partial

differential equation

(13.4) £

Owing to this equation, it is readily seen, by a direct calculation, that

the n-vector g"(V) is a formal solution of the equation (13.1*).

Suppose that the n-vector g(V) is the actual solution of the equa-

tion (13. 1*). Then, a short calculation shows us that the ;z-vector g(v)

must satisfy the partial differential equation (13.4) with u = v. This

fact means that the ?z-vector g(U} is an actual solution of the equation

(13.1). Q.E.D.

13= 2, In order to prove the uniform convergence of the formal

solution (13.2*), we apply a transformation of the form

(13.5) P
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to the equation (13.1*), where

(13.6) PV(»EEE £ P™V<X.
\JC\<N °*

Noticing that the quantity (c5K-<z) appearing in the expression (c5>/-X(T>))

is non-zero, the transformed differential equation, can be written as

(13.7) xq' = h(V,q).

Here, h(v,q) is an n-dirnensional column vector function holcmorphic

and bounded in (v, q) for

(13.8)

and satisfying there the inequalities

(13.9)

(13.10)

if (v,q) belongs to the domain (13.8). A is a positive constant inde-

pendent of (v, q, AT) , while BN may depend on N. Moreover, the

equation (13. 7) admits a formal solution of the form

q- X

13. 3. Let LXQ be the segment joining the point XQ with the origin

and s be the length of this segment measured from the origin to the

point x.

Then, we have the following proposition:

Proposition 13. 2. We have the inequality

n o -, -, N d\\ V\\^ M"

Proof. We have the relation

1 dx 1
7 - , i f°r x^LXo.x as \x\

Therefore,
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x

if we notice that V is a solution of the equation (13. 3) . We can
choose the value of bo so that the expression in the blacket is not less

than 1/2 in module and its argument is not greater than 8Q in module

for |[ l/|j<C&o'. Hence, the inequality (6. 3) yields the inequality (13. 11).

Q.E. D.

We can prove the following proposition:

Proposition 138 3. The differential equation (13.7) admits one

and only one solution q=@N(V), -where the n-vector @N(v) is a func-

tion holomorphic and bounded in v for ^v\\<bfN and satisfying there

the inequality

(13.12) ||<r(zOil2^IWr,

KN being a certain positive constant.

Proof* Let %= (<p(v)} be the family of the n-vectors <p(v), which

are functions holomorphic and bounded in v for \\v\\<b'x and satisfying

there the inequality

(13.13), \\<p(v}\\^KN\\v\\».

Then, the mapping £ is defined as follows:

where

(13.14)
X

Here, v° is an arbitrary value such that |(t;0![<^. The fact that the n--
vector ^(-y0) does not depend on x0 can be easily verified by changing

the integration variable from x to Vi by the relation

-X( V)) VI= (^i+S^V^) Vi,
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where the letters with the subindex 1 signify the first entries of the
corresponding ^-vectors.

For the proof of the Proposition 13. 3, it is sufficient to prove six
assertions corresponding to the assertions (a) — (f) in Section 10. We
consider the following correspondence:

(1) The integral (13. 14) to the integral (10. 2) ;

(2) The path LXQ to the path r,0;

(3) The inequality (13.13)^ to the veclorial inequality (10. 1)^;

(4) Proposition 13.2 to Theorems 6.1 and 7.1;

(5) The inequalities (13.9), (13.10) to the vectorial inequalities

(9.6), (9.7).

Then, the proof of these six assertions is almost exactly the same as or
rather simpler than that of the original assertions, because, in this case,
we can replace the symbol < > appearing in Sections 9 — 11 by the
norm || [|. For example, the proof of the corresponding assertion (b) :

(13.15) ![^°)!I^4^T

can be carried out as follows: By virtue of (13.9) and (13.13)^, we

have

- 0= 1*1),

which, owing to the inequality (13.11), implies that

Therefore, in order to obtain the inequality (13. 15), it suffices that we
have

(13.16)

We first take N so large that

and next KN large enough to have the inequality (13.16).
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13. 4e By virtue of the Proposition 13. 3, we see that

p-v(y)+^(y)
is a solution of the equation (13.1*) and is independent of N. There-

fore, if we denote this expression by /S(F), the ^-vector S(V) admits

the asymptotic expansion (13.2*) as V tends to 0 in the domain |H(

<C&o' with bo = sup bo. However, since the point v=Q is an inner point

of the domain in which the solution S(V) is defined, the function S(v)

is holomorphic at z; = 0. Hence, it is concluded, by virtue of Cauchy's

theorem, that the asymptotic expansion (13.2*) is uniformly convergent

for \\V\\<J}Q . Therefore, owing to the Proposition 13.1, the power

series (13.2) also converges for \\U\\<iba and represents a solution of

the equation (13.1) (i.e. the equation (A. 14)). We define the n-

vector Pco)(eO by S(u).

14. Determination of the ^-vectors PCW(M).

Since the method to determine the functions Pw(u) for k^2 is

quite the same as that for the ?z-vector Pcl)(w), we discuss the case for

k=~L only.

14. 1. As we have just seen, the vector function P(O:I(Z^) is ex-

pressible as uniformly convergent power series of u for \\u\\ <b $. Hence,

the equation (A.17J1 appearing in Introduction can be written as

(14.1) xP'=-P^F(U^P+R(U},

where the n-by-n matrix F(u) and the n-vector R(u) are functions

holomorphic and bounded in u for \\u\\<brQ and, especially,

Moreover, this equation admits a formal solution of the form

(14.2) P

Let x = £(w*), u= U(jju) be the holomorphic solution of the differ-

ential equations (R') in Section 5, i. e.

(RO
duo

with
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X(u)=a+ S PtfuM

satisfying the initial condition x (?x>0) = XQ, U(wQ)=uQ.

Here, XQ and u° are arbitrary values such that

and the quantity zu° is defined by

w°=(M°)c5l/,

where the domain ®(c") is denned by (6. 1) with CQ = CQ. Then, as we

have already seen, we have the identities

U(w^=w9 t/(*, *0, u^ = U(jT\x)}.

We can assert that:

Propositicn 14. 1. The formal power series

(14.2*)
JC

is a formal solution of the differential equation

(14.1*)
aw

Conversely ', the solution g(JJ(w)) of the equation (14.1*) becomes

a solution of the equation (14.1) if ^ve replace U(ui) by U(x, XQ, u°^ .

The proof of this proposition is almost exactly the same as that of

the Proposition 13. 1.

14.2. We can prove the following assertion:

The differential equation (14. 1*) possesses a solution P= S(U(yu))

-which admits the asymptotic expansion (14.2*) as U(w} tends to 0

in the domain

(14.3) il

In order to prove this assertion, we make a transformation of the

form

(14.4)

where
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PN(ti)= S F%u<x.
\JC\<N

If we notice that (cSK-X(w)) = (tSU-ct) +O(u), the transformed equation

can be written as

with

cv ^-i- ' tW "'

where ^(w) is an n -dimensional column vector function holomorphic

and bounded in u for |[w|[<£i'.

Since this equation admits a formal solution

S

we can prove that the inequalities

(14.6) UF^OKA, |[/?i(tt)KS,!i«ir
are satisfied for ||w|[<C^o'. Here, A is independent of N and ^, while

BN may depend on N.

It should be noticed that, since Fi(0)=0, the quantity A can be

taken as small as we want.

We apply a further transformation of the form

(14.7) p = q exp^(

Then, we have the equation

(14.8)

14. 3e Let F*o be the same as that appearing in Theorem 6. 1.

Then, we can prove the following:

Proposition 14. 2. Let s be the length of this curve measured

from the origin to the point w. Then, we have the inequality

on the path F*0.
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Proof. Since

l 1

dw (c5K • OL)

the differential equation satisfied by the function exp( —-r-^—r— ) co-
{uYl - OL) zv

incides with that for the function x (w) if we put there OL* = 0. Hence,

as we have already seen in Theorem 6. 1, we have

1 .__ 1
Ne

Q.E.D.

Using this inequality, we can establish the following proposition:

Proposition 14.3. The differential equation (14.8) admits

one and only one solution q=QN(JJ(w}}, 'where the n-vector Q)N(if) is

a function holomorphic and bounded in u for

(14.10)* li«!KW, «^e®(^)

and satisfying there the inequality

(i4.il) ||0*(K)H^:4«|[* <?-•*"<•>, (W=«JK),
-K^v being a certain positive constant.

Proof. For the proof of this proposition, let $= (<p(u)} be the

family of the n-vectors <p(u), which are functions holomorphic and

bounded in u for the domain (14. 10) ̂  and satisfying there the inequality

(14.12)* \\v(u)\\<KN\\u\\N exp(-Rev4

We define the n-vector v(u) by the formula

(14.13) W)

where UQ is an arbitrary point in the domain (14.10)^ and
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Then, the mapping Z is denned as follows:

£ __
<p(u) — >v(u).

The proof of the Proposition 14. 3 is almost exactly the same as

that of the Theorem 9. 1, which was given in Sections 9—11, except

for the proof of the inequality

(14 . 14) ||p(a°) ||̂ M«°|| V118*"3.

Therefore, we discuss the inequality (14. 14) only.

By the inequalities (14. 12)^ and (14.6), we have

l\U(wyl\
Ne^^ w

where 50 is the length of the curve F*o.

By definition of the curve F*0 in Section 7, if s is sufficiently small,

we have s= zu and [[ U(w) \\ is a bounded function whose nature is

clarified by the relation (11.5), while the function exp ( — Re^df (w) )

tends exponentially to zero with 5. From this we see that the integral

appearing in the right-hand member of the above inequality and, con-

sequently, the integral (14. 13) is uniformly convergent,

On the other hand, by using the inequality (14.9), we have im-

mediately the inequality

sn o

Therefore, to obtain the inequality (14.14), it is sufficient to show that

we have

(14.15) 2\(<9H'a) (AKv+BiJ^KNsmdo.

However, as we have already remarked, we can assume, without loss of

generality, that

Then, by taking KN sufficiently large, we have the inequality (14. 15).

14. 4, By virtue of the Proposition 14. 3, we see that



On the study of a singular point of Briot-Bouquet type 359

is a solution of the equation (14.1*) and is independent of N. We

denote this expression by S(U(w}}. Then, then-vector S(U(w)} ad-

mits the asymptotic expansion (14.2*) as U(w) tends to 0 in the do-

main (14.3) with br
0
f = supbN and c^ = supc^.

Owing to the Proposition 14. 1 the ?z-vector P(1)(w) defined by S(u)

is a solution of our problem.

14.5. The determination of the n-vectors Pcw(w) for k^2 can be

carried out in quite a similar way. The only difference between the

case for k^2 and the case for k=l is as follows: For k^2, the n- vector

Rw (u) appearing in (A . 17) k in Introduction depends actually on the

w-vector P^(u). Hence, the vector function corresponding to the n-

vector RI(IL) appearing in (14. 5) admits an expansion not convergent

but asymptotic in powers of u for the domain (14.3).
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