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Hukuhara's problem for equations
of evolution

By

Setuzo YOSIDA*

§ Introduction.

In the former work [12] we have investigated boundary value

problem formulated with Hukuhara's data for parabolic system. Now

in this paper, we shall treat initial value problem formulated with

Hukuhara's data, or shortly, Hukuhara's problem for equations of evolu-

tion.

In §1 we shall consider a system of equations of evolution

(0. 1)

and find a solution u(t, x) = 'ui(t, x) } of it defined for

u\t, *)

(uN(t, x) J
and satisfying

(0.2) «/(*„*) =?,(*), O

for a properly chosen constant BQ.

We shall apply Fourier transformation g* with respect to the

variables x=(x-L,Xto~*,xm) to the system (0.1) and transform the pro-

blem into a Hukuhara's problem for ordinary differential equations,

which can be solved under a suitable assumption.

In §2 we shall investigate a system of special type, which can be

treated under a weaker assumption than the former one.

In §3 we shall treat Hukuhara's problem for convolution equations,

which can be solved by the same method as in the preceding sections.

* Univ. of Tokyo and Research Inst. Math. Sci., Kyoto Univ., Received July. 29,
1966.
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In the last section we shall consider Hukuhara's problem for a

semi-separate symmetric hyperbolic system. This is a system of dif-

ferential equations of which the principal part consists of separate sym-

metric hyperbolic systems. Partial differential equations of "semi-

separate type" have been investigated by several authors. See for ex-

ample T. Kusano [4], [5] and references in them. K. Ako [1] called

them "semi-decomposable type".

We shall prove existence, uniqueness and stability of solution of

such a system.

The author wishes to express his hearty thanks to Prof. M. Huku-

hara and Prof. K. Yosida for their helpful advice and incessant en-

couragement.

§1. Hiikuliara's problem for general equations
of evolution*

10 10 We use following notations; bold letters stand for vectors;

u= u-i i, b(t, x) =< bi(t, #) ', 0 = | 0 etc. x= (xi, x»,--,xm*),

\b*(t,x') 0
I : , :

•**(*,*) ' 6

\-ffmxm, a = t f i + tf2 ----- 1- »

k = (ki , k2 , "- kn) , k'jS are nonnegati ve integers. | k \ =ki + k%-i ----- h km ,

dt = d/dt, dj = d/dXj, Dj=-idj, B/c = Dk
1
1D¥--D^. t, xj9 aj are real

variables. u}(t, x), bj(t, x), <PJ(X) etc. are in general complex valued

functions.

Consider the following equations;

(i. i) 0,u=;s

in which Ak(f)*s are NxN matrices. b(t, x) is an 'A^-dimensional

vector. We shall solve Hukuhara's problem for this system and find

as solution u(t,x), defined for 0<^<ITo and satisfying the initial condi-

tion with Hukuhara's data

(1.2) «/*,,*)=^(*), 0
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or in vector form

(1.20 u(*, *)U = ?00-

We apply to u(t, x) Fourier transformation $x with respect to

the variable x formally and obtain

(1.3) v(t, <j) =j§xu(t, *0 = \exp( — iox)u(t, x)dx,

(1.4) dtv(t, 0) =^Ah(t)o
kv(t9 *) + &(*, a),

(1. 5) v,(ti9 <J) = 5,00 , 7 = 1, 2, -, N,

or

(1.5') K*,<OI*=K<0.
in which we used the notations b(f, a') =$xb(t, x), ip (ff) = §*? (^) •

We assume;

A) i) 77z<? elements alcjt(tys of the matrices Ak(tys are defined and

continuous for O^^^T0? satisfy \ akji (f) \ <^o TX^/^/Z. 56??;z^ constant O.Q.

ii) T/i^ components bj(t3xys of the vector b(t,x) are defined and in-

tegrable in x for fixed t, 'which zve denote by the notation

bj(t, x) ^Ll
x. The Fourier transforms bj(t,o') are continuous

-with respect to t and satisfy the inequality \bj(t, a') \ =$Q(G^ -with a

function /30(<0 ^Ll with compact support', ]90(cj)=0/or \0\>XQwith

a constant XQ. iii) The components (p^x^s of the vector q>(x) belong

to Ll
x. <i>j(0ys have compact supports; £y(cF)=0/br \G\^>XQ.

1.2. Since (1.4) is a system of ordinary differential equations includ-

ing the parameters a, we consider the reduced equation of it;

(1.6) fct>(*, a) = S A*(*>X*,<0.

Let v^(t, a) j=l,2,~-,N be its fundamental system of solutions satis-

fying

(1.7) f o
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or in matrix form

(1.7') F(0,ff)=£, where

V(t, «r) = (*«(*, «r), «»(*, «r), -, »w(*, ff)).

One particular solution v®*(t, ff) of the original system (1.4) is given

by the formula

(1.8) v«»(t9 *)

We notice that from the assumption A) ii) we have i?(o;)(£, (7)=0 for

We try to find a solution »(£, a) of (1.4) (1.5) in the form

(*, a) =»m(*, ff)

(1'9) for

0(£,a)=0 for |

The condition (1.5) for this v(t,a) becomes

(1.10) (K^f)U)c(f f ) = ?((T)-i;co3feff)U

in which we used the notation

(1.11)
""•,«)

1. So We shall give a lower bound of the absolute value of the

Hukuhara's determinant det(y|#).

Consider any matrix C= (cjk) jik=1,2,..^,N whose elements cjk satisfy

\Cjk~ 8jk\<Le, j, k=l, 2, • • • , N, djk are Kroiiecker's symbols, e is a small

positive constant. We can easily give a lower bound of | det C j as

follows ;

(1.12) ld

An elementary calculation gives

(1.13) /(s)^/(«o)>— = -- for
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where EO can be taken as

(1.14) Eo

To estimate the elements t^-0 (£* , er) of the matrix V(t,a*), we
define for any fixed j9

(1.15) w*(t,o)=vP(t,o)-d», k = l,2,-,N,

or in vector form

(1.150 w(t,^=v^(t,^-du\

From (1.6) and (1.7) we have

(1 . 16) 8,u?(*, *) = ^Ak^ak(w(t} a) + da)),
\h\£P

(1.17) U7 (0, a) =0.

Since w(t, a) is an TV-dimensional complex valued vector, it is
equivalent to a 2iV-dimensional real valued vector, and we can apply

the comparison theorem of ordinary differential equations to it. We
compare wk(t, a) with the solution z(f) of

(1 . 18) -^r-*(0
at

(1.19) *(0)=0

and have

(1.20) !fifl-»«|

for O^^To.

Let 50 be a constant determined by the equation

(1.21)

From (1.13) and (1.20) we have

(1.22) |det( V(*, a) U) i^l/4 for
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which assures us the existence of the inverse matrix (V(£, ff)

1.4. Now (1.10) can be solved with respect to c(0) and we have

A x ^v0 for a >XQ.

This completes the construction of v(t, a) defined by (1.9), and we

have a solution of (1.4) and (1.5). We apply inverse Fourier trans-

formation gff1 to v(f, (?) and have a solution of our Hukuhara's problem

(1.1) and (1.2);

(1. 24) u(t, *) =%?v(t, a)=-^

Indeed, we have assumed in A) ii) that the absolute values of b3(t, a)'s

are bounded by some function of a independently of t. As is seen

easily from the very way of construction of v(t, #) the same property

is bequethed to dtVj(t, ff)'s so that we can change the order of deriva-

tion and integration in differentiating the expression (1. 24) with res-

pect to t.

To sum up;

Theorem L 1. Under the assumption A), (1.1) has a solution

u(t,x) defined for 0<t<LTQ, which satisfies (1.2) for 0<tj<B0y

j= I,2,°-,N with a properly chosen constant B0>0.

1. 50 We shall state some remarks on stability and uniqueness of the

solution constructed above.

i) Under the assumption A), v(t, d) is the unique solution of (1.4)

and (1.5), which means the uniqueness of u(t,x) in the class of solu-

tion to be obtained by the above procedure. That is to say, the solu-

tion u(t,x) obtained above is the unique solution of our problem (1.1)

and (1.2) in the class of functions satisfying

with some

= Li,
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\dtVj(t, a) !<t>o(0) with some t;0(<0 eL*.

li) Let £;'°, 7 = 1, 2, • • • ,7V be converge to £,- as M-»°O. Corresponding

to each crew £$'°, j=l92,--N we have V|H(«) , c°°, v(l°, uc'° etc. It can

be easily seen that we have successively V(t, ff) | #(»)—* V(£, ff) 1 #, c^Cff)

->e(ey), i?c>0(£, a)-»i;(£, 0) MC'°(£, x)->u(t, x) uniformly as ?z-»°o. This

means the stability of the solution u(t,x) given by (1.24) zt^Y/i /~£S-

/>ec£ ^o ^/2^ va?~iation of tj.

iii) Let ^'0(x), j=l,2,'~,N be such functions that the Fourier trans-

forms of them converge to $j (<j) in L^ ;

ffi(a}-*q>j(a} in Li as 7z->oo.

Then we have successively

v™(f,a)-*v(t,o) in Li, M°°(^ *)->tt(^, «) in L1,,

which means the stability of u (z^5 x) with respect to the variation of

<p(jx) expressed in terms of its Fourier transform p(<0-

§2e A special case-

28 1. The assumption A) ii) iii) can be weakened to some extent for

differential equations of special type. Consider equations of the follow-

ing type

1 9tU! (t, x) = u2 (t, x) + b^ (t, x) ,

\ dtu2 (t, x) = ̂ ak (0 Dkui (t, x) + b2 (t, re) .

We shall solve Hukuhara's problem for this system, -and find a solu-

tion of it, defined for 0<j;<^TQ and satisfying the initial condition

with Hukuhara's data

(2.2) «,(*,,*)= ?>(*), j = l,2.

We assume ;

B) i) ak(tys are defined for 0<J<LTQ, are continuous, bounded, and

satisfy

(2.3) *0(<02^dfoa)s:Sa*(*>*^0 f°r
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with some constant XQ and some continuous function <#o

Without any restriction of generality ', we can assume that <x'o(0) —

O(|(7|^2) as |a|->oo.

ii) bj(t,xys are defined for Q<j<^T0, belong to Li. &_,-(£, ff)'s, the

Fourier transforms with respect to x of bj(t,oys are continuous

with respect to the variable t, and satisfy | £,-(£, <0 i<j90(<0 with a

function j90(<0 possessing the properties /30(<0 ( \o |3/>/2+ 1) ̂ L\ and

(2.4) ft(a)=O(exp(-(T0 + e)a-0(cj))) with e>0

for |ff|-»oo.

iii) <p3(xys belong to Li. VjWs satisfy \<PJ(O} !<I<p0(<j) with a func-

tion ^O(CF) possessing the properties <^0(^) ( |a K + l) ^LJ. anJ

(2.5) ^(^)-O(exp(-(To + e /)^0(a))) w^A e'>0

/or |ff | ->oo.

2.2. Fourier transformation applied to (2.1) and (2.2) gives

, a) =^(^, a) +^a a),

9^, (t, o)=a (t, a) ̂  (t, a) + 2 (z^3 <j) ,

(2.7) ^(^,^)=^(a), 7 = 1,2.

As we have seen in §1, there is a solution v(t,a} of (2.6) defined

for 0<;><;Tc and \0\<LX0, satisfying (2.7) for 0<Jy<LB0 with a pro-

perly chosen BQ. We shall investigate (2.6) and (2.7) when \o\>XQ.

Let vu:>(f, (?), j = l, 2 be a fundamental system of solution of the

reduced equations

satisfying the initial conditions

It is easily seen that the components v^(t,o), j=l,2 of the

vector i7(1)(^, a) satisfy ^(^ a) ̂ 1 and are monotone increasing as
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t increases. Exact form of the solution i;C2)(£, <0 expressed by vf:>(t,0')

can be obtained by the method of depression of the order;

(29)

The Wronskianof these solutions V(t, a) = Oa)(£, a), v™(t, a)) can

be calculated easily;

det VX*, cr) s= const. = det V(0, a) = 1.

As for the Hukuhara's determinant, we have

(2.10) d

=1.
2o 30 To obtain an estimation of vw(t,o'), we consider equations

(211) S 5 ) < = S ) * *
(^ f f ) ; with a parameter 5>0,

together with initial conditions

(2. 11) and (2. 12) have the unique solution

|«40

\wP (t, a ) = (1 + aa (ff) + 5) exp ( (a* (ff) + 5) t) ,
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for which we have

(2. 14) v?>(Q, <0<«;/>(0, a), j = l, 2,

(2.15) M°(*,<0<8.w5S)(*,a) as long as wP(*, <*)<«;}»(*, <0

From these relations we can easily deduce

(2.16) vp(t9o)<wP(t,o) for t^Q, j=\

and as the limit of d-^0 we have

,((j))exp(a!o(0)0,
(2.17)

which, together with (2. 9), gives

t, a) =

(2.18)
t, «0 =

20 4o We take up a particular solution i)^(t,®} of the inhomogeneous

equations (2. 6) given by the formula

(2.19) rf»(f,ff)

in which we used the notations

Since each column vector wu^(t,s, 0^,j = l,2 of the matrix PR/, 5, a)

CF^a))"1, 0^5^^To satisfies the equations (2.8) together

with the initial condition w™(s, s, a) = f Q j or w(2)(s, 5, (?) = ( ^ \ it

can be expressed as a linear combination of fundamental solutions.
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From (2.17) and (2.18) we know that the absolute values of the ele-

ments of V(t, u) (V(s, a))"1, Q<sS<t<LTo do not exceed 7-(exp(>0(a)0)•

The coefficient 7 = 7(^,^0(0)) can be taken so as to be monotone in-

creasing with respect to t and satisfy

(2.20) r(*,tfo)=OG*o), as ^0->oo.

From (2.19) and (2.20) we have

(2.21) l^(^^)l^rftWexp(«o((F)0, for

Especially we have

(2.22) |^(^,a)|^J3or'ft(a)exp(ao(iF)l9o), for O

with r / = =rG3o,<*oOO).

2. 5, We shall find a solution v(t,a) of (2.6) and (2.7) for a >XC

in the form of

(2.23) v (t, 0) = «/0) (t, 0) + V(t, a) c (a), € (0) = |

From (2.7) we have

(2.24) »0,<0 * = t?co)(*,0) ff+VX*,<OUc(0)=p(0).

As we have seen in 2.2, det (V(£, 0) 1/0=^0 and we can solve (2.24)

with respect to c (0) ;

The elements of the matrix (V(£, 0) U)""1 can be estimated by
help of (2.10), (2.17) and (2.18), and we have from (2.25)

in which /' and r"' depend on both T0 and #0(0), and r" = O(<20),
r" = O(a%) as ^o-*00- Since we have estimated all the quantities ap-

pearing in the second member of (2.23), we have at last

(2. 27) Vj (t, 0) | <lrI7/30 (0) (exp (^0 (0) T0) + exp (<^0 (0) (250 + T0) )}

+ rv(po (0) exp (^o (0) (-B0 + TO) ),

in which 7IV and rv depend on both T0 and o:0(0), rIV = O{ofy, rF = O(ao)
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as ^o~~^°°.

For any value of the constant jB0(;<[To) taken so small as to satisfy

we can find a positive constant e0 for which we have

(2.29) |t>X*,*)l^roexp(-eoo:0(cO), for |a|>X0,

with some constant 7-0 depending on T0 and «o(<0 and ro=O(^o) as

<z0-»oo. We have seen already in 2.2 that a solution v(t,o) of (2.6)

and (2.7) exists for \@\<LXQ. We have thus accomplished the con-

struction of w(t,^ for any value of the parameter.

From (2.27) (2.29) and the assumptions B) ii) iii), we know

that Vj(t,0ys belong to Li. We have a solution u(t,x) of (2.1) and

(2.2) by inverse Fourier transformation;

(2. 30) u(t, *) = g;X*, a) -—I

To sum up;

Theorem 20 L Under the assumption B), (2.1) 7ias a solution

u(t,x) defined for 0<J<zTQ, 'which satisfies (2.2) for Q<Ltj<LBQ ,

j'^1,25 ze;^/z a properly chosen constant BQ.

2o 60 The remarks on uniqueness and stability of solution stated in

1. 5, remain still valid with an evident alteration that the assumption

A) should be replaced by the assumption B) in this case. Also the

condition "#cf(cy)-»£yOO in Li as /z-^oo" stated there, becomes

in Li as ;?->ooJ? in this case.

§3, Convolution equations,,

30 1. Hukuhara's problem for convolution equations can be treated in

the same manner as in the preceding sections. Consider the following

convolution equations

(3. 1) Qtu(t, x) =A(t, x)*u(t, x)+b(t, x),
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in which A(t,x) means an NxN matrix and the symbol * means

convolution with respect to the variables x= GT-L, x2, • • - , #„). We shall

solve Hukuhara's problem for (3. 1), and find a solution of it defined

for 0<jf<i7o and satisfying the initial condition with Hukuhara's data

(3.2) uj(t,,x')=vj(x),j=l,2,-,N,

or in vector form

(3.2') B(^a)U = ?»(*).

Fourier transformation with respect to x, applied to (3. 1) and

(3.2') gives

(3. 3) dtv (t, ff) = A (t, <0 1> (*, u) + 6 (t, ff) ,

(3.4) «(*,<j)U = f ( f f ) .

We assume

C) i) The elements a,ji(t,x)'s of the matrix A(t,x) are defined for

0<^<iTo? belong to Ux. Their Fourier transforms dji(i,@}'s are con-

tinuous with respect to t and belong to L\7 and satisfy d j t ( t , s) |<^0

for 0</<;To with a constant <z0>0.

ii) The components bj(t,%ys of the i°ecior b(t,x) are defined for

O^^^To, belong to LI-. Their Fouris';' ti ansfcrui^ bj(t,Gys es'c con-

tinuous with respect to i a:id satisfy \ b j ( t , G ) ^j5c(ff) tc'/fA a func-

tion &00 belonging toLl.

ill) The comp07ie:its ^(^)'^ of the rector p(jc) belong to L\. Their

Fourier transforms fyj(®ys belong to L^.

30 20 Consider the reduced equations of (3. 3) ;

(3.5) dtv(t,o)

From the assumption C) i) we know that we can treat (3. 5) in the

same manner as (1. 6) in §1, but without any restriction on the value

of a. There is a fundamental system of solutions V(t, a) = (ra)(£, CF),

v™(t, ff),---,i;CJV)(£5cO) which satisfies

(3.6) det(y(£, a) H)^l/2 for
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with a sufficiently small constant BQ.

A particular solution t?(0)(£, a) of the equations (3.3) is given in

the form

(3.7) t7c«(^a) = V r(^,a)l

which is bounded and belongs to Ll
a.

We shall find a solution v(t,a) of (3.3) and (3.4) expressed in

the form

(3.8) v(t9a)=v™

From (3. 4) we have

(3.9) c(«r) =

which, substituted in (3.8), gives the desired solution v(f,o*) belong-

ing to Ll
ff. Inverse Fourier transformation applied to v(t,o) gives a

solution u(t,x) of our Hukuhara's problem (3.1) and (3.2);

(3. 10) u (t9 *) = g"i 17 (t, a) =-

To sum up;

Theorem 3.1. Under the assumption C), (3.1) has a solution

u(t,x) defined for 0<l£<ITo, -which satisfies (3.2) for 0^/<J30 w^A

a properly chosen constant BQX).

The remarks on uniqueness and stability of solution stated in the

preceding sections, remain still valid in this case.

3. 3. The assumption C) i) can be weakened to some extent for con-

volution equations of special type. Analogous circumstances have oc-

cured for differential equations (1. 1) and (2. 1) in the preceding sec-

tions.

Consider convolution equations of the following type;

t, x) =uz(t9 x) +bi(t, x)
1 3tu2 (t9x)=a (*, x) *ui (t, x) + b. (t, x).
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We shall find a solution u(t,x) of (3. 11) defined for 0<l£<ITo, satisfy-

ing the condition

(3. 12) ui(ti,x)=<Pi(x}, j=l,2.

Fourier transformation with respect to x applied to (3. 11) and

(3. 12) gives

(3. is) j8;̂ ;̂ Î ;̂ 1 '̂̂  B)
/"Q "1 A ~\ „, /y. /9~\ A (ff\ * 1 O

or in vector form

(3. 14') t7(*,«0 U = pOO-

We assume:

D) i) The function a(t,x) is defined for 0^£<ITo, belongs to Ll
x.

Its Fourier transform a(t,o} is continuous with respect to t, belongs

to Ll
a, and satisfies

/Q -i r-\ /—^ 2~~~~-> A f + *~~\ ~~~~->C\ -f ! *, I ~-~^ V(^o. lOj ^ov^y ^=&(t, G)^\), JOT | (7]^>Ao,

ze;^/x a constant XoS^O aw^ (2 continuous function ^0(ej), ^;zrf

(3.16) &i^\d(t, ff) |, /b?~ |g|^Xo,

'with a constant CX.-L.

ii) T/?£ components bj(t,xys of the vector b(t,x) are defined for

0<Lt<LT0, belong to Lx. Their Fourier transforms bj(t,(sys are con-

tinuous with respect to t and satisfy \b{(t, (?) |<^(30((T) with a func-

tion /3000 possessing the properties (^0(^)3+l)0o(^) !

iii) T/z^ components ^j(^)55 q/" ^/ie vector pO*0 belong to Ux. The

Fourier transforms ^-(a)?5 satisfy \ £/((j) |^^o(ff) wzY/z a function

<pQ (a) possessing the properties (aQ (a)2 +1) <p0 (^) ^ Z/i- <2/7 J <£P (a) =

O(exp (-(To + eO^oW)) with e>0 for |a|->oo.

30 4, Under the assumption D), (3.13) and (3. 14) can be treated in

the same manner as in §2. There is a solution i?(£, a) of (3.13) de-
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fined for 0<l£<^To and satisfying (3. 14) for 0<Ltj<^BQ with a properly

chosen constant J30>*0. Inverse Fourier transformation g~i applied to

t?(£>*0 gives a solution u ( f , x ) of (3.11) satisfying (3.12).

The remarks on uniqueness and stability of solution remain still

valid in this case with some obvious changes similar to the one given

in 2.6 of §2.

§40 Semi-separate hyperbolic equations.

First we quote from Nagumo [8] well known results concerning

Cauchy problem for symmetric hyperbolic equations. Consider sym-

metric hyperbolic system

(4. 1) ®u(t, x) =dtu(t, a) +S Ai(t, x)dtu(t, x)+B(t, x)u(t, x)
1=1

=/(*,*),

together with a usual initial condition

(4.2) i* (0, *)=?(*).

The matrices At(t,x)'s are symmetric; Ai(t,x) = (aljk(t, #))y>*=i,2, . . . . t f ,

&ijk (t,x)= alkj (t, x) , R(t, x) is not necessarily so ;

(4.1) is taken in generalized sense, that is to say, a solution u(t,x)

is such a vector function that it belongs to L(tiJC) on a domain ® in

(t, x) space and satisfies

(u, d)*w) = (/,

for all

in which ^* means the adjoint operator of 0.

We shall make use of the following theorems (Nagumo loc cit.

pp. 70-71).

Theorem I. Let the elements of the matrices Aj(t9x)9 QiAj(t,x),
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(i = 0, 1, • • • , m\ 8Q = d/dt^ and B(t,x) be bounded continuous functions

defined on ( f , x ) -space En+l, Let the components fj(t,x)*s of the vector

f(t,x) belong to L2
CfJJC) on E+1, and let the components <pj(x) of the

vector <p(jx) belong to L?x on x-space En. {Here after uoe prefer to

say shortly "f(t,x) belongs to L\t,X)", "pOO belongs to Ux" etcJ)

For any fixed value T0X), there is a generalized solution u(f, x)

of (4. 1) defined for 0<^£<ITo, satisfying (4.2) as an element of L?x.

For fixed t the components of u(t,x) and (Du(t,x) belong to L2
X.

Under this additional condition, solution of (4. 1) and (4. 2) is de-

termined uniquely for 0<J<LTQ, x^En.

Theorem II. (Energy integral inquality} The solution u(t,x)

of (4. 1) and (4. 2) given in Theorem I satisfies

(4. 3) ||

in which the constant cTo depends on T0, and cjQ~>l as

In the above formulation we used the notations

4. 1. Consider the following equations

(4. 4) dtuj(t, x)+^Ajt(f9 x)dtuj(t9 x) JrBJ(t, x)uj(t, x)

or in concise form

in which we used the notations

' Ui

UN f*\ JJNj

*? > f= f? , // =

, ujNi I ( fN )

Aji(t,xys are symmetric N j X N j matrices, Bj(tyx)'s are N j X N j matri-

ces, Cjk(t, %ys are NjXNk matrices.

We shall set up Hukuhara's problem for the equations (4. 4) and
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find out a solution in generalized sense, defined for Q<*t<*TQ, satisfy-
ing the condition

(4-5) wy(*y,*)=?>y(*) in Li, j=l,2,»;N,

that is, every component of the vector uj belong to Ux and equal to

the corresponding component of the vector q>j as an element of L*.

(4. 5) is written in the consice form

(4.50 n\~ = $ in Li,

in which we used the notations

><*)
I

PiNi (.X)

We assume;

E) i) The elements of the matrices Ajk(t, xYs, 0/Aj*(£, #)'s 1 =

0,1,2, • • • , m, Bj(t, x)'s and Cjk(t,x)'s are bounded continuous functions

of (£,#)• Moreover, the elements cjkht(t, *)'s of the matrices Cjk(t, x)7s

satisfy \cJ-khi(t,x'j\^CQ with such a constant CQ that it satisfies

(4.6)

ii) fi(t,xy$ belong to LJti,) in £*+1. p/Ws belong to Li in £".
f O l

4.2. We put M( and define {il00^, *)}T=i inductively

l O J
as solutions of the following Hukuhara's problem

(4.7) 5uc-rl)=/-Cttc"),

(4.8) uc"+1)|5=9, n=l,2,-.

(4. 7) and (4. 8) can be separated into A7 Cauchy problems with res-

pect to u(rl\ j=l,2,-~, N. From theorem I we know that u™(t,x)

exists and is unique for O<^<!TQ with any T0>0, TZ=!, 2 , - - - .

From theorem II we have

(4. 9)
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Using the notations K\\2 = l\\u%\\s, !|?>II2 = :S!!?>;1 2 etc., we have
i-i j-i

(4. 10) iluS!P+|[«™||(o.r,)^c;o(||?»|[2

with Cr0 = max ciTa .
i

For general value of n we have

(4. ii) 0(uc"+i3-aw) = -c(uci°- »<-»),
(4.12) (Sc"+"-iw)|5 = 0.

Application of Theorem II to u$"+1) — ity"' gives

(4. is) ii«r»(o -«r co IP + iiuri5-«5"

and

(4. 14) \\u^-u^f+ |i^"+«-M«||^o,T0,
AT

( M ) ( « - l ) [ f 2
^•2-iCjTQ 2-iCoJ-V k\\Uk Uk 11(0. TO)

y=i &=^y

<c'T,cl(N-l~) (max JV?) ||H«-UC-»||?O.T,,.
y

Since we can let cjTQ-*l as T0->0, we can take

(4. 15) c;;^c;oc
2
0(iV-l) (max 7V?)<1,

y

for sufficiently small TO, and we have inductively

(4. 16) i!ac"+1)-s00ii?o,r,)^c;';i!^iif0,ro)^c;oC;'0"(li?>l[
(4. 17) ||u^1)-u^||^<;r';|[ii

From (4. 16) and (4. 17) we have convergence in Z/(/,x) of uf",^) and

convergence in L| for fixed t of M^,*), and from (4. 7) also conver-

gence in L?x for fixed t of ^§('°(£, #). Hence we have a solution M(^, x)

of (4.7) and (4.8) defined as the limit of uw(t,x) as n— >oo for
with sufficiently small

To sum up,
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Theorem 4. 1. Under the assumption E) there is a generalized

solution u(t,x) of (4.4) defined for 0<Lt<LTQ with a properly chosen

T0>0 and satisfying (4.5) for 0<tj<TQ.

4.3e The solution u(t,x) obtained above is unique and stable with

respect to the variation of £/s and p/s.

Indeed, let &(£,#) and v ( f , x ) be two solutions of (4.4) and (4.5)

given for 0<l£<ITo with a constant T0 satisfying (4. 15) under the as-

sumption E) . By the same argument as the one used to derive (4. 14) ,

we have

(4. 18) ||5(0 -500 IP+ l|a-»||?o.r.)<c;;i|u-5||?0.io),

which gives u(f,x)=v(t,x) in Z^iJC) or uniqueness of solution for

0<i£<;To, since we have CTO<! by (4.15).

Stability of solution 'with respect to the variation of y(x) is

obtained similarly. Let u(t,x) and v(t,x) be the solutions of (4.4)

and (4.5) corresponding to the data <p(x) and ^(^) respectively, de-

fined for 0<l£<;To with a constant T0 satisfying (4. 15) under the as-

sumption E) . After the manner of (4. 18) we have

(4. 19) \\u(f) -v(f) f+ (l-O \\m-v\\,Q,TQ,<Cr0^-^\\\

which gives the convergence of v(t,x} to u(t,x) in both L?x and L\t,X)

as ^(^) converges to p(rc) in L|.

To investigate stability of solution -with respect to the variation

of tj's, let u ( f , x ) and t(t,x) be the solutions of (4.4) defined for

0<^<^T0 and satisfying

(4.20) »/(*/,*)=?>/*)
or

(4.20') ^(5y,*)=?yC*),

with \ t j - S j <^3, j=l,2,-',N, respectively, under the assumption E).

We assume in addition, E;) The components <pik(x) of the vector

<p(x) have derivatives in generalized sense belong ing to L2
X;

From ((4.200 and E') we have



Hukuhara s problem for equations of evolution 381

(4. 21) 0,(«/- <?j)

(4.22) 17/5,, *)-p, 00=0.

Since |[t7||(3,T|0 is finite, we can apply Theorem II to Vj(t,x)—q>j(x)

for tj — d^t^tj + d and obtain

(4. 23) Ik/0 -p,

with a constant £5, which remains bounded as 5—^0. From (4.23) we

have Vj(tj,x)-*pj(x)=uj(tj9x) in L2
X as Sj-*tj, j=l,2,--,N7 from

which it follows v(t,x)-*u(t,x) in L^,x) as we have seen already.

It is well known that starting from the energy integral inequality

(4. 3) , one can deal with genuine solution of Cauchy problem and

Cauchy problem for semilinear system. But it is immediately seen

that an energy integral inequality for the system (4. 4) can be given

in the same form as (4. 3), using the simple method by which we have

derived (4.14) from (4.13). Therefore it seems to be unnecessary

to state here the same results for Hukuhara's problem as the well

known ones for Cauchy problem concerning semilinear system or

gunune solution.
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