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A remark on Piron's paper

By

Ichiro AMEMIYA* and Huzihiro ARAKI

Abstract.

The following statement (Piron's Theorem 22) is proved: The

lattice Z/(V) of all subspaces of a prehilbert space V is orthomodular

if and only if V is complete (i. e. a Hilbert space).

§1. Introduction.

In an attempt to formulate the postulate of quantum theory, Piron

[1] has studied an irreducible complete orthomodular OAC-lattice.

(Piron's irreducible system of propositions. See §2 for a definition.)

He has shown that any such lattice of dimension larger than 3 can be
realized as a lattice Z/(V) of subspaces of a vector space V in the fol-

lowing manner:

Let K be a field with an involutive antiautomorphism * and V be

a vector space over the field K equipped with a definite hermitian

form i(x,y*). For any subset S of V, SL denotes the set of all x such

that f(.r, 30=0 for all y£=S. We shall call S a subspace of V if
(SL^L = S. [If K is the field of complex numbers and V is a Hilbert

space, this definition of a subspace coincides with that of a closed

linear subset.] Then, Z/(V) is the lattice of all subspaces of V with

the join, meet and orthocomplementation defined by

•si A &= sin &, (1.2)
s-̂ s1. (i.s)

The whole space V and the trivial subspace 0 are 1 and 0 in this lat-
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tice.

Piron's theorem has been sharpened in the following way [2] :

L(y) is always an irreducible complete OAC-lattice. (See §2 for a

definition.) Conversely, any irreducible complete OAC-lattice of more

than 3 dimensions is isomorphic to an L(V) for some field K with an

involution * and some vector space V over K with a definite hermitian

form /. However the necessary and sufficient condition for {K, *, V, f)

such that Z/(V) is orthomodular is not known.

If K is the field of complex numbers, V is a prehilbert space

with a positive definite inner product f(.r,3/). Piron states in his

Theorem 22 that Z/(V) for a complex field K is orthomodular if and

only if V is complete (i. e. it is a Hilbert space). Unfortunately his

proof is incomplete. In this note, we shall give a complete proof of

Piron's Theorem 22.

§2. Preliminaries.

An orthocomplemented lattice L is called an OAC-lattice if

(A) L is relatively atomic, namely a<b implies the existence of

an atom p such that p^Jb holds and p<La does not hold where p is an

atom if c<p implies c = Q.

(C) L has the covering property, namely if a is an arbitrary ele-

ment of L and p is an atom, then there is no element b such that

a<b<a\Jp.

A lattice L is said to be complete if a family of elements Sa in

L always has a 1. u. b V«*Sa and a g. 1. b A <*Sa •

A lattice L is said to be irreducible if it is never isomorphic to a

direct product LI X L2 of two nontrivial lattices.

An orthocomplemented lattice is said to be orthomodular [3] if

a<J) implies b = a\J (b f\a1). (There are many other equivalent con-

ditions.)

A mapping f from Vx V into K is called a definite hermitian

form if

), (2. 1)
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), (2-2)
f(.r,;c)=0 implies :r = 0. (2.3)

We consider the case where K is the complex field and V is a

prehilbert space with the inner product f.
We need the following lemma which holds for a general K.

Lemma. Any finite demensional linear subset S of V is a sub-
space.

Proof. Let S be generated by n independent vectors Qr-Q«.
Suppose Q is an arbitrary vector in (51)1- We can write

where c{ £= K and Q' £E V can be made orthogonal to all Qf . Since
1 and Q,-eS? Q' also belongs to (S1)1. At the same time

L, by construction. Since 51n(51)i = 0 for any 5, Q' must be 0

and we have

Corollary. A subspace p is an atom of Z/(V) if and only if it

is one dimensional.

§3o Main theorem and proof.

Theorem. Let V be a prehilbert space. L(VO is orthomodular

if and only if V is complete.

Proof. The "if" part is obvious and we concentrate on the proof

of "only if" part.

Assume that Z/(V) is orthomodular.

Step 1. V=S+SL for any subspace S: Take an atom^> not con-

tained in S and SL. We first show that q= (S\J p) f\SL and r =

(SL\/p)/\S are atoms. By orthomodularity for the pair S and p\J S,

p\J S=q\J S, which excludes the possibility q = 0. If q>a, we have

a\J S<^p\l S which implies a\J S=S or a\J S=p\f S due to covering
property. The former and a<^SL implies a = 0. The latter implies

a = SL[\ (a\/ S} =q due to a<.SL and the orthomodularity. In the same
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manner, r is also an atom. For these two atoms, we have

q\Jr^p (3.1)

due to the orthomodularity. By the Lemma in §2, a vector P in p is

a linear combination of vectors in q<LSL and

Step 2. Let H be the f-completion of V. If HI is a closed

linear subset of H with finite dimensional Hi ( J_ taken in H) , then

VHHi is dense in Hi: Let gi--gtt be a basis of /# and let ei~-en be

elements in V such that, when, considered as dual elements of Hi,

span the dual of HI. Let q^Hi and gm e y such that ]imqm = q. Then
M

let c? be the solution of f(gv, qm} =^c?t(gj, £,), j=I--n. Since i(q, gj)
1=1

= 0, lim cf = 0 and hence

satisfies lim qm — q.

Step 3o If P, Q^H and PJ_Q, there exists sequence {z*,} , fe2} ,

both in V such that (1) Ui\_vm, iii\_Q, P_]_vm for all n and w, (2)

Mi->jP, r,->Q.

To construct e^« and -L'« by mathematical induction, first choose

e«>0 such that eM->0. Start from z/o^^o^O. Assume that um and 7ywl

for m<n has been constructed in such a way that the condition (1)

is satisfied for /, ?n<n, u»^V, vm^V, \\um — P\\<sm and \\vm — Qft<em

for all ?n<^?i. We then want to construct un and vn both in V such

that (1) is satisfied for I, m<n, \\un-P\\<e9 and \\vn-Q\\<*n. This

is easily achieved due to Step 2. Take the linear space spanned by

Vi~'VH-i, Q as HI and find un in FRHi such that \\UH — P\\<en. Then

take the linear space spanned by UI~-UH, P as Hi and find vn in

such that | vn — Q \ <Ce« .

Step 4, For any P^H, there exists R^V such that

Use R' in F with f(P,#')^0 to construct J? = f(P, P)R/i(P, R f ^ .

Now we are ready for the proof of Theorem. Take P and Q =

P — P from Step 4. Construct {z/J and {VH} of Step 3. Let S be
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}1 ( I taken in V) and E be the projection on the closure of

S in H. Since vHJi_S, we have QJ_5. Since un^S, P belongs to the

closure of S in H. Thus R = Q + P, R£^V, QJ_S, PJLS1 (J_ of SL

taken in V) and hence P=ER.

On the other hand. Step 1 implieb R = u + v, u^S, v^S'1. Hence

we must have u = ER = P and Pe V. This proves V=H.
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