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Summary

The purpose of the present paper is to discuss the properties of

the Gaussian measure and the Lapiacian operator in infinite dimensions

as limits of finite dimensional analogues. In the limit of n->w, the

uniform measure on the ^-dimensional sphere, the spherical Lapiacian

operator, and Gegenbauer polynomials (spherical harmonics) tend re-

spectively to an infinite dimensional Gaussian measure, the infinite

dimensional Lapiacian operator, and Hermite polynomials. We also

discuss the addition formula and integral representation formula of

Hermite polynomials in this limit procedure.

Introduction

In the previous paper [6], one of the authors discussed the infinite

dimensional Gaussian measure on the dual space of a nuclear space,

for instance, on the space G$'), regarding it as a limit measure of

finite dimensional Gaussian measures. It can be also regarded as a

limit measure of uniform measures on spheres, as was shown by Hida-

Nomoto [3] : their measure is defined on the projective limit space &

of the n-dimensional sphere Qn, but it is equivalent to our measure

on (cSO, since there exists a measure-preserving one-to-one mapping

from Q into (£')•

These two different interpretations reflect the fact that the infinite

dimensional Gaussian measure is ergodic with respect to translations

like the finite dimensional ones, and also ergodic with respect to
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rotations like the uniform measures on spheres.

Next we shall discuss the Laplacian operator. The Laplacian
operator An on Qn generates all rotationally invariant, symmetric
operators on Z,JCft,,dfito). On the other hand, the infinite dimensional
Laplacian operator Ac defined in [7] also generates all rotationally
invariant operators on L2(Sf

yjuc). (c.f. §1). Hence, a question arises:

does An tend to Ac in some sense? In this paper we shall answer it,

namely we shall show that An/n tends to Ac as n-^w.

P. Levy defined the infinite dimensional Laplacian operator in [5]
as the limit operator of An/n. Therefore Levy's definition turns out
to be just the same as ours given in [7].

This fact implies the convergency of the eigen values and the
eigen functions of An to those of Ac. Therefore Gegenbauer poly-
nomials tend to Hermite polynomials. This has been known as a
formula concerning special functions, for instance see [1]. However,
we get here a new interpretation of this formula: finite dimensional
spherical harmonics tend to infinite dimensional ones.

Similar new interpretations are possible also for the addition
formula and the integral representation formula concerning Hermite
polynomials. Especially, we shall show that the density function of
the integral representation of the ^-dimensional zonal spherical function
converges to that of the integral representation of Hermite polynomial
in the sense of D(Sr

s /jc). The latter representation is equivalent
with the Gauss transform.

Our standpoint will make clear some aspects of Hermite poly-

nomials as infinite dimensional eigen functions.

We should also remark that the addition formula played an im-
portant role in S. Kakutani's discussions on Brownian motions [4].

In this paper, after preliminary discussions in §1, we shall show
rather intuitively in §2 and more exactly in §3 that the projective
limi tof the uniform measures on spheres is just the infinite dimensional
Gaussian measure. In §4, we shall establish the relation between finite
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dimensional and infinite dimensional Laplacian operators, and then
investigate how this relation reflects on their eigen functions; for

zonal ones in §5 and more generally in §6= In this point of view,

we interprete the integral representation formula in §7 and the addition

formula in §8.

We would like to thank Prof. H. Yosizawa of Kyoto University

and Prof. N. Ikeda of Osaka University for their suggestions of various
useful ideas.

§1. Preliminaries (For details, see [6] and [7]).

Let L be a real nuclear space, and H be its completion by a
continuous Hilbertian norm |[ |U» Then, we have a relation;

where H* and L* are the dual spaces of H and L respectively.

Now, define a function %(<?) on L as follows

(1)

It satisfies the conditions of positive definiteness, continuity in the
norm |( \\H, and %(0)=1. So, by the theorem of Bochner-Minlos,
%(<?) is the characteristic function of a probability measure JUG on L*\

(2)

Here, < T, £> means the value at f of the linear functional T. //c is

defined on the 6- algebra 33 (L*) which is generated by the family of

all Borel cylinder sets of L*. We call juc a Gaussian measure with

variance c2.

Definition 1. An unitary operator u on H is called a rotation

of L, if it satisfies]

i) u maps L onto L,

ii) u is homeomorphic on L.
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The whole of rotations of L forms a group, which we call the

rotation group of L and denote it with O(L). Identifying u with

u~1*, O(L) is regarded as a transformation group on Z,*.

Then, Gaussian measure /JLC is O-invariant, i.e. p.c is invariant

under any rotation of L. Moreover, it is O-ergodic, namely it can not

be decomposed into the sum of two measures which are O-invariant

and singular with each other.

Let L2(L*, &} be the Hilbert space of all square integrable func-
tions on L* with respect to a Gaussian measure juc . Denote its inner
product and its norm by ( , )c and j| ||c respectively.

Let ?i, • • • , & » be a finite orthonormal system (F.O.N.S.) of L in

the norm (I ||a. We define the subspace SI^...^ of U(L* , /*c) as follows:

where -&- = ( * VexpT— —£xl\, and (<S)a. is the whole of
dx \Y2n c I L 2c2 *-i .1

rapidly decreasing C°°-functions on R" as defined by L. Schwartz.

Put §1= U Sl^-j., then obviously SI is dense in L\L*,tic).
all F.O.N.S.

Let <%...§„ be the mapping which maps /«T, &>, • • • , <T, fra» to

Definition 2. TA0 infinite dimensional Laplacian operator AG

is an operator defined on §1 #s follows. If F(T) e§l?1...^B, then

(3)

Since ^[ z — — -^-— — ) fs rotationally invariant, the definition
i=l \ C/^i C (/#,- /

o^ depend on the representation of F(T).

Ac can be written symbolically as;
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c - lim Jw -

where An is the usual ^-dimensional Laplacian operator on l?(Rn, dnx),
n

rl = ̂ xl and / is the identity operator.

For an example of a nuclear space, we have the space (<5), the
whole of rapidly decreasing C"-functions on the real line. (cS) is
nuclear because its topology is defined by countable Hilbertian norms;

In the above discussions, considering the case that L=(<S) and

H=L2(R1), we see that we can define a Gaussian weasure /JLC on OS')*
and the infinite dimensional Laplacian operator Ac on L2(Sf,jmc).

§2. A limit property of uniform measures on spheres

Let Pn be the uniform probability measure on an ^-dimensional

sphere Qn of radius i/n + lc and center at the origin.

Qn : xl + xl+ — +xl+1= (n + l}c\

For this Pn, consider the joint distribution Pn,m (nS>ni) of (xl9 X2,

-•, Xm), namely for EdRm,

Proposition 1.

C4)
M->oo

where p.G,m is the m-dimensional Gaussian measure with variance

c2. The convergence is uniform for all Borel subsets E of Rm.

Proof Decompose Rn+1 into the sum R^ + Rl~m+\ where

RI = {(Xi,Xs, ~',Xm,0, • - • , 0)},

and Rl-r"l^= {(o, --,o, xm+i, xm+2, • • • , xn+J} .

Let ^;= (#!, Jic2, • • • , ^n+i) be a point on J2ra, then the distance be-
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tween x and R™ is i/(^ + l)£2 — (x\-\ hri) , while the angle d

between the normal of Qn at x and the space Rl~m+l is given by

cos 6

Hence, clearly Pn,m is given by

f .
x^"dxm for

0 for

where ^m is the normalization constant. Putting &w,

as £i,TO, we have

/ -r2 4- . . -4- T2

(5) dPnfm=kr
nym (I-* y .7"**

\ (n + ]Jc

where r+ means Max (r, 0) . From this, we see that

-+*2*1

2c2 J°

It is easily seen that the convergence is uniform with respect to
(#1, •••, Xm)- This proves the proposition 1.

§3. The projective limit space Q

In order to make the situation in Proposition 1 clearer, we shall

construct the projective limit space & of Qn, and show that the limit
measure P of Pn is isomorphic with an infinite dimensional Gaussian

measure juc defined in §1.

First, for any m<n, we shall define a projection fn,m from Qn

onto J2m as follows;

fn,m maps (0™= (x[n\ • • • , tfJSO

where
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(6) ^ (ft) 2

Then, fn, m is a measurable mapping defined almost everywhere on Qn.
(The exceptional set is {o>Cn) e £ra | xf = • • • = x%li = 0}).

(Remark-, If we use the polar coordinates, /w,m is defined as a map-

ping which maps

(0i, "•, 6m, • • • , 0n) on J2W to (0i, -•, dm) on $m.

This expression was used in [3]).

The projection fn,m satisfies the following conditions;

0 fl,n=fl,m°fm,n

ii) Pm(A)=Pn(f-

for m<n and a Borel subset A of J2TO.

Therefore, according to a theorem due to Bochner, we can construct
the projective limit probability space (Q, $8, P). It satisfies the follow-

ing properties:

PI) QCLl\.Qn
n = l

P2) fm=fm,nQfn fOT Wl<M.

Here, fn is the restriction of nn on Q, where nn is the projection

from lLQn onto tin.n=i

P3) 93 is generated by Uf^&n), where $3n is the whole of

Borel subsets of Qn.

P4) P(f-\A^=Pn(A) for A&^n.

Since the coordinate #(/° (l^^w-t-1) is a function on Qn, it can

be regarded as a function on J2. We denote this function by JOM)(a)),

then for any w^ti,

(7) /„(») - W°(a>), -, JfSiCo);) ea*.
Jf^^ft?) is a measurable fucntion on Q because of PS).
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Lemma 1.

i) \ XI":>(o))dP(o)') =0, Vny
J£

ii)

for m<M, where r is Gamma function.

Proof From P4), we have

x™dPn(af»>) =0

Similarly, using P2) also, we see that

dp

W + l

Substituting (5), we get

m + l Jo o

n — m\ fm + l n — m

The relation (5) is expressed as a formula concerning with P as
follows.
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For any ri^m, and for any Borel subset E of Rm, we have

(8)

Lemma 2. W°(aO; » = i, i-fl, i + 2, ...... } forms a Cauchy

sequence in L?(fi, P).

Proof From the previous lemma, we get

\ 2 / \ 2 /

\ 2 \ 2
0 as n,m~> w,

because we have asymptotically

, 1

From lemma 2, X(
t
n} converges to a function X{ in L2(j2, P).

Then, Xi(oi) is denned for almost all w.

Evidently,

rl(fl,)dP(a,)=0 and

Next, we shall imbed ^ into the space L*, the dual space of a

nuclear space L. (c. f. §1).

Since L is nuclear, there exist a complete orthonormal system {ft}

of L in the norm |] \\H and a square summable sequence {fa} such

that the norm:

(9)
ti

is continuous in the topology of L.

Then, we see that for P-almost all
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is defined and continuous on L. Because

where #(a)) = l/XUf^Gw)2 is finite for P-almost all CD.

Consider the mapping 2F : o;ej2-»TweZ,*. ^ zs one-to-one except

on a suitable null-set of ti, because if Tu(?) = To/(f) for any f, we

have Xk(a)) = Xk(a)r} for any A. This implies (o = cof, since for P-almost

all a), we get from (6)

cXi

thus for any m we have fm(<*>)=fm(<or)>

Next, we shall discuss the measurability. From P3), the proba-

bility measure P is defined on the smallest ^-algebra S3 which makes

all X\n\cD) measurable. From (11), this is equivalent to say $S is

the smallest <r-algebra which makes all X^co) measurable. Therefore,

the image W (S3) is the smallest c;-algebra which makes all < T, $ >

measurable regarding f as a linear functional on L*. In other words,

¥(9B) is the smallest ^-algebra which makes all Borel cylinder sets

of L* measurable. This means that 2F(33) is equal to S(L*) defined

in §1.

Finally, we shall show that the measure P on Q is mapped to

a Gaussian measure jutc on L*. Because of (8), we get

(12) Pt^K^W,...,^^)

- - e x p
n c

____ Lr 2 l+x* \dXl
2c2 J

So that if f = S <**£*, we have from (10)
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Since the characteristic function of a measure on L* must be conti-

nuous on L, we have for any

(13)

This means that P is mapped to p.c, because of one-to-one corres-

pondence between measures and characteristic functions. So far, we

have proved:

Proposition 2. The projective limit space (J2, 93, P) is isomor-

phic with (Z,*, 93(L*), Ate).

Namely, there exists a measure-preserving one-to-one mapping

from a suitable subset tt of J2 onto a suitable subset L* of L*

where P(2»)= jUc(L*)=l.

Remark L* is a vector space, while & is not.

§4. Laplacian operators

In this section, we shall prove that the Laplacian operator on Qn

tends to the infinite dimensional Laplacian operator on L*.

On L2(Rn+1, dn+lx), the Laplacian operator is defined by Jw+1 =

r. Using polar coordinates, it is expressed as follows;S1=1

n/n /f 3* . n 9(14) Jw~n+i dr2 ' r dr r2 ~n'

Here An is the Laplacian operator on the unit sphere;

£)2

(15) 4 = 4-

- ml ^ ^~-""80w ' sinX ^

In order to show that the operator JK/(^ + l)c2 tends to AG in

some sense, we shall first give a rough discussion, and later formulate

it in an exacter way.

We shall operate zf«/(n+l)c2 and Ac on a function

). We have
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Here, we substitute

®L^^®L 82 /_^n xtx, 92/
8r f=i r dxt' dr* ,.£i r2 9«,-8^

then we get

(n

thus in the limit of n->oo, we see that the right side converges to

Now, we shall give an exacter expression, regarding both An and

Ac as operators on L3(L*, #c).
For a fixed C. O. N. S. {<?*} of L, the projective limit space J2 is

imbedded into Z,* as shown in §3. For this {?*}, we consider the
space §1 .̂..̂ , following the definition in §1, and denote it by SIn. The

union §Lo=LJ2L is a subspace of SI defined in §1. 3L is also dense«=i
in D(L*, fjk).

On the other hand, consider an n-dimensional ball Bn of radius

•]/n + lc and center at origin.

Then, the Hilbert space L*(Bn, /*„,„), where the measure Pn,n is defined
by (5), is isomorphic with L\@*,2P^), where 2Pn is the uniform
probability measure on the hemisphere &%•

l^ = (n

L2(tin,2Pn) is a subspace of L*(Qn,P^) which consists of all such
functions that satisfy
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So, the Laplacian An is defined on Z,2(£,T, 2POT), hence on U(Br,,

Pn,B) also.

Define the mapping Qn from Lz(Rn
s #.,„) into U(Bn, Pw,w) as

follows;

QM maps any polynomial on J?OT to its restriction on Bn.

Since a polynomial on Bn is uniquely extended on Rn, Qn is one-

to-one on the set **$„ of all polynomials of ^-variables. Remark that

^n is dense in L\Rn, juc,^ and Qn^n is dense in L2(£„, PB,«)-

Now, define an operator Jw on ^3W as follows;

We shall express An as a differential operator on R71.

On the hemisphere £,t:

•2, ^w+1>0,

^i, "',^n can be regarded as coordinates. Namely, Xi,-~,xn are inde-

pendent variables on Q*, and xn+l=y/(n+l)c2 — x\ xl is a func-

tion of them. Using such coordinates, we have.

(17) Jn=

This expression is obtained in the following way: In the operator

An+i we change variables from (x^ -~,xn, xn+i) to (<*i, • • • , a», r), where
^2 n d

r=yxl-\ l-xl+i and al = xi/r, then subtract -7^^ + ^— from it,
dr2 r dr

and finally put r = Vn -\-lc.

So, for jfe$pw we have

(18) Z/(^ -.., *„) = (

_^ 82/ _n^,T 8/
i y=i ' ^ 0Jr • 0JC • f^i ' dX •

Thus An is continuous in the topology of OS)*-. Namely, for a sequence
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{fk} cSft., if /*(#i, • • - , #w) y-J*-(xl9 ••• ,#„) tends to 0 in the topology

of (£)*„, then C ^ / 0 - tends also to 0 in (£)*.. Therefore, Jw

can be extended continuously on 2IW.

Consider the mapping %...$„ from 3L into L2(Rn,j^C)n) following

the definition in §1, and denote it by <Dn. Furthermore, put An = 0ZlQ

An°®n. An is an operator on 3IW. Namely, for F(T) =/«T, f i>, • • • ,

where \X. = /T g,-> means that after the calculation of the right hand

side we replace x{ by <T, f,->.

Since 2IwZ)SIm for n>m, An is defined also on §lm. So that on

the space SLo^USIm, we can consider symbolically the limit of

Now, we want to prove;

Proposition 3.

(20) Iim7 — ̂ Y^-^J, strongly on 3L.
«-*oo ^

Namely, for any

(20) ; lim ^ ,F=ACF in L2(L*? ̂ ).

Proof Since §ITO can be regarded as a subspace of

it is sufficient to show that

in m , ^ m -
If the function / does not depend on xm+1 • • • , #„ , the sum in the
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right hand side of (18) is sufficient to take from 1 to m. Therefore,

dividing the both hand sides of (18) by (^ + l)c2, and taking the
limit of »-»oo, the wanted relation (21) is easily obtained.

Moreover, it is clear that in (20)', we can take the limit not

only in the norm of Z,2(L*, /*c), but also in pointwise way as functions

on L*. Indeed (20)' holds in any meaning of the limit, provided that

it makes the space 3L a topological vector space.

§5. Zonal spherical functions

From the result of §4, we can expect that spherical functions on

Qn tend to Hermite polynomials which are eigen functions of Ae. In

this section, we shall assure this for zonal spherical functions.

On Qn, eigen functions of An are called spherical functions.

Especially, a spherical function dependent only on Xi is called zonal.

It is given by Gegenbauer polynomial as explained below.

From (18), An is written on ^ as follows;

(22) JM = {(

Its eigen values are — l(l + n — 1), 7 = 0, 1, 2, • • • , and the corresponding
eigen functions are

(23) f

Here, Cf(#) is Gegenbauer polynomial. It is defined as the solution
of

(24)

which satisfies Cf (1) = (2p + / - 1) ! // ! (2p - 1) ! .

On the other hand, Ac is written on ^ as follows;

(25) 4.1*
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Its eigen values are — //£2, / = 0, 1, 2, • • • , and the corresponding eigen
functions are

(26) /.GO -«

Here, H,(x~) is Hermite polynomial. It is denned as the solution
of

(27)

whose coefficient of ^(^the highest degree) is 2'.

Therefore, on ^ the result in §4 means that

d d2/, x\ \ <P __ nxi
\ (» + l)cV<teJ (» + l

strongly on ^.

Corresponding to this, the eigen values Ahn=— , ^ a tend to

^=— — — , and the eigen functions //,»(^0 also converge to //CO

except the normalization constants.

The latter result is easily verified by comparing the coefficients

in the polynomial //(#0 whih those in //,n(#i). But, we can regard

it as a direct result of the fact - - Ty""""*2'"

More exactly speaking, let ^l9t be the set of all polynomials of
one variable with degrees at most /. $P1?/ is an (/ 4- 1) -dimensional

vector space. Both the operators An and Ac keep -ft,/ invariant, so
that they are represented as matrices on ^i,/.

Lemma 3. If a kx k-matrix A has k different eigen values,

and if kxk-matrices An tend to A, then for sufficiently large n.

An also has k different eigen values. Moreover, eigen values and

eigen vectors of An tend to those of A respectively,

Proof is omitted.
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Since Ac has 7 + 1 different eigen values on ?&,/, we have the

following proposition. The ratio of the normalization constants is

determined by comparing the coefficients of x1.

Proposition 4.

(28)
l/2

Our new interpretation of this formula is that n-dimensional

zonal spherical functions tend to infinite dimensional ones.

§6. Spherical functions of many variables.,

In this section, generalizing the result in §5, we shall establish

the relation between finite dimensional and infinite dimensional sphe-

rical functions which are not necessarily zonal.

As we have discussed in [7], the infinite dimensional Laplacian

operator Ac on L2(L*?/«C) has eigen values — 7/c2, 7 = 0, 1, 2, • • • . For

the fixed C. O. N. S. {gk} of L, the eigen space £>/ is spanned by

(29) F/4 „...„... (T) s

where Ii + I2~i t-7*H—=1, Consequently, except for 7 = 0, each eigen

value — l/c2 has infinite multiplicity.

In order to resolve this multiplicity, let us consider the partial

Laplacians A{
C

R\ Let R be a finite dimensional subspace of L, and

suppose that some elements of a C.O.N.S. {£*} of L, say &, fa, • • • , fv,

form a C.O.N.S. of J?.

Then, for F(T) eSIfl|2...^, (n>v), we put

(so) //;

Jf} is defined consistently by (30), independent from the choice of

a C.O.N.S. {£,} provided that its first v members form a C.O.N.S. of

R.

Now, we shall consider the fixed C.O.N.S. {£*} of L. We shall
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denote A^ instead of A(
C

R\ when the subspace R is spanned by ?!,

Then, it is evident that

(31) A»Ftl „...,.... ( T) = - ^ i + « + - " j p l i ,,...„

Therefore, F/1/2...^...(T) is a simultaneous eigen function of the family

of operators A?\ v=0, 1,2, • • - . (We put ^0)=JC). Furthermore, each

simultaneous eigen value is simple.

Namely, for any decreasing sequence {/U} of non-negative integers

which tend to zero;

(32) /JoS^iS^S^ ---- *0, each Av is an integer,

there exists the unique simultaneous eigen function of A^ whose eigen

value is —Xv/c*. It is given by F/1/2.../fe...(T) where Av = lv+1 + lv+i-i — ,

or lk = Ak-i— Ak.

Next, we shall consider the partial Laplacians on spheres. Usually,

they are expressed in terms of polar coordinates, but here we shall

adopt the coordinates used in §4.

Namely, we regard Xi, • • • ,#„ as independent variables on J2*, and

x\ xl as a function of them. Then, using

this coordinates the partial Laplacians on the hemisphere Qn is defined

by:

(33) 2'°

Remark that Ji0) = i.

It is well known that the simultaneous eigen function of A^

(v=0,1, • • • , n — 1) is given by a product of Gegenbauer polynomials.

Regarding Xi, • • - , #„ as independent variables on Q», it is written as

follows;
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(34) Fm,;i „...,. (Xl, ••-,xn)^n{(n + l')c*-xl ----- *U"/2

k = l

r\^-k^xk(_ _ Xk \

VOU-DC"-*? — *i_r/ '
where ^ = /*+1H ----- !-/„.

This function satisfies;

(35) Jly) rWi/1 „.../„ = -^a + ̂ -v-l)FWi/1 „...,„.

The set {Fn,/1/2.../s; /, = (), 1,2, •••} forms a C.O.S. of U(f£,2PJ.

In the same way as in §4, the operators A™ are defined on

U(Rn, jucyn). A(n} is also given by the right hand side of (33), so
that regarding YnJll2...in as a polynomial on Rn, it is a simultaneous

eigen function of A™. The operators A^ are also defined on L2(Z,*, ^c),
and their simultaneous eigen function Fn,ili2...ln(T^ is obtained by

substituting x{ = (T, § ,-) in the right hand side of (34) .

It is easily seen that on the space 3ITC defined in §4, the operator

tends strongly to A¥ as ^->°o. Corresponding to this

fact, the former's eigen value _ ~^"~ tends to t^e latter's

eigen value —Av/c
2.

The space ^pm,/, the whole of polynomials of m variables with

degrees at most /, becomes a vector space. Its dimension is dm,i =

Regarding ^3W?/ as a subspace of Sim, we see that on ^SWJ/ the set

of the partial Laplacians Af\ A{?\ • • • , A^'^ has ^/-different sets of
eigen values { — ̂ */c2; 0<v<m — 1} ;

So that, generalizing Lemma 3 in §5 to the case of simultaneous

eigen values, we can show that a suitable spherical function tends to

For ri^m>v, the operator A%} is defined on 5POT,/, and in the
limit of 72-^00 it tends strongly to A^. Therefore, we get the follow-
ing proposition. The ratio of the normalization constants is obtained
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00

by comparing the coefficients of II xl
k
k.

k=i

Proposition 5e

(36)

where 1 = 1^ + 1^ ----- h / n H — <°o8

Though this formula is obtained directly from Prop, 4, we

have its new interpretation; the simultaneous eigen function of

the partial Laplacians on the n-dimensional sphere tends to the

infinite dimensional one.

Remark In general, for a sequence of C.O.N.S. {Sf }} , even if

lim {?iw)} = <?* strongly for any k, the limit O.N.S. {?*} is not always
«-5»00

complete.

But in our case, a finite dimensional subspace ^3W,, is invariant

both under Jiv) and A?\ and U^m,/ is dense in L2(Z,*, ^). Therefore,
M,/ = l

from the completeness of the system {Yn,ilt2...iH} in L2(@2, 2PW)? we

(
oo / /• XT« £• \ \ )

UHlk( ^ ,2**' } ; /i + /a+-"<oo[ is
fe=i \ i/2c / >

complete in L2(L*,^C).

§7. Integral representation formula

For Gegenbauer polynomial, we have the following formula, (c.f.

[2] page 177)

(37) c?/2 ̂  =
We can obtain this formula in a natural way, if we express the right

side as an integral on the sphere Qn.

It is evident that if a\ = a\-\ ----- [-al, the polynomial //,ao-«,,(#i, "•>

Xn+i) = (a* %i —iai%2 ----- ian xn+i)
 l is homogeneous and harmonic on

Rn+1. Thus, regarding it as a function on £„, it is a spherical

harmonics with degree /. Namely, it satisfies
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4»//,.0-..= -/ (/ + »-!)//, .,,....„ .

This is also true for any linear combination of //,«„...,..
Let o/=(*I, ••• ,#i) be a point on Qn.l9 then being #fH

= nc2, the polynomial of Xi, --,xn defined as

(38) \ (i/wc*! - i*J #a ----- ix'n #«+i) l dm (<»')

is a spherical function on £n, where w(o/) is a measure on £n-i-

Especially if we consider the uniform measure Pw_i(o/) on J2n_i,
the integral (38) depends only on Xi because of rotationally invariance
of Pn_i, therefore the obtained polynomial becomes zonal. This must

«-!/ ^ \

be a constant multiple of C, 2 [-, 1 — ).
VT/W + IC/

(39) CT^f-/^^) - ( (Vncxi -ixiXi ----- ix'n *n+1) '
\ V W + l C / J-0**-!

Putting #i/T/n + lc = ̂  and replacing w — 1 by n, we have

From this, comparing the value at M = l, we get (37).
Thus the integral representation formula (37) takes a more natural

form by rewriting it into;

(39)' C
, (w + 1} ,

X

The right hand side is also written as an integral on Q as follows:

(39)"
(n

X
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Letting n->w in both sides of (39)' we shall obtain the integral
representation formula of Hermite polynomial. As we have shown

in §5,

- 7 = = - tends to ,
Vn+lc) \V2

On the other hand, the integrand of (39) " converges to (#1 — iX1(ct)')y

in Z,2(£, P). This comes from the fact that (^iw)(o)))* converges to
(X^o)))* in Z,2(J2, P) for any &. The latter is proved using a gene-

ralization of Lemma 1 in §3.

Lemma 1'.

r(j±k+m±l\r /' V—2 ) l \ 2

and jjrk = even. In the limit of n, m~^^>, the right hand

side tends to 1-3-5 — (j + k~l*)cj+k.

Proof of Lemma 1' is omitted.
By the isomorphism between Z,2(J2, P) and L2(L*, ^c), the function

XL (<a?) corresponds to <T, fx> therefore from (39)" we have

(40) 1

We obtain so called Gauss transform rewriting (40) into the form;

So far we have proved;

Proposition 6. The density of the integral representation of

the zonal spherical function on n-dimensional sphere tends to that

of Hermite Polynomial in the sense of L2(Z,*, //c).
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Remark Since a Gaussian measure is rotationally invariant, for
any ?eL such that ||f|| = l, we have;

(40)' 1
\cl c1

In other words

(40)" 1

§8. Addition formula

From (40)", if we put <? = ft cos 0 -f ft sin 0, we get

The integrand is written as

S ([ W0 sin<-*0< T- iS, f !>* < r- f S, ft)1-*
fe = 0\«/

Moreover the distributions of <5, ft) and <5, ft) are mutually inde-
pendent. Thus after the integration we get

1 1 1\(41) Hi (Xi cos 0 + ̂ 2 sin 0) = S U cos*0 sinl~k0Hk (x^ Ht-k (xj) .
k=Q\K/

This is the addition formula of Hermite polynomial. As we have
seen here, it is obtained very easily if we regard Hermite polynomial
as an infinite dimensional spherical function.

Putting

(41) is written as

H,(u + V,
*=o

This is the formula of S. Kakutani [4] which plays an essential role
in his paper.
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Similarly, from the relation;

I,

*,= S , * • ( - 1) " cos*-'+«0 sin'-+'-2i0.~

c

we shall have an addition formula of a product of Hermite polynomials.
Since it is too complicated, we present the case m = 2:

(42) Hi (Xi cos 0 + #2 sin o}Hk( — x± sin 6 + #2 cos 0)

where

Remark that this is not obtained directly from (41).
For Gegenbauer polynomial, we can not derive the addition for-

mula directly from its integral representation. However, it is seen
that the addition formula of Gegenbauer polynomial tends term by

term to that of Hermite polynomial. The meaning of this fact is
well understood if we regard the addition formula as a transformation
of an orthogonal base in L2(Z,*, #c).
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