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Let us start with the outline of the theory of the eigenfunction
expansion for the second order differential operator due to H. Weyl,
M. H. Stone, E. C. Titchmarsh and K. Kodaira. Consider a differential
expression with suitable boundary conditions

defined in an open interval (a, V) and take any linearly independent
system of solutions (SiOe, X), ss(x, X) of L(u)=Au such that each
s,-0r, <l) is extendable to an entire function of A for every #. Using
SxOe, -0 and st(jc, -0, we can construct a (2, 2) -matrix P(,J) = (
depending on /5 with is called the measure matrix. Writing

with

we obtain an isonorphism :

(0. 1) (£,(*, ft) ;^) =L2(dP(t))

where the corresponding /(#) and (0x0), 02(^)) and are obtained
from each other by

(0.2) /(*)= S
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(0. 3) 0, 00 - /(*) 5, (*, ^)rf* * = 1, 2.

It is easy to see that any linearly independent system of solutions

(ti(x, A), 4 (#, -0), each £•(#, >0 being extendable to an entire function

of A, is obtained by the transformation

ti (x, *) = ite/ » sj (x, X) i = l,2j=i

and vice versa, where each tf^OO is extendable to an entire function

of ^ and det(0f-/) never vanishes in the complex A-plane. 0,-(^) and

dpu(X) are transformed by each transformation as follows:

and

where (tf^OO) is the inverse matrix of (X-/00)-

Even if we take instead of 0,vOO, /, y = l, 2 measurable functions

AvO), *',;' = 1,2 with det (i,vW)=^0, the *,(*, <0, f = l, 2 obtained

above will form a linearly independent system of solutions of L(M) =^w
and we have the same isomorphism as above, though each £,-(#, A) is

not necessarily extendable to an entire function of A any more.

Let us call for the former transformation by (X-/00) analytic

and the latter one by (&/00) measurable. As is well-known, <f <;,•,• 00

turns out to be diagonal by a suitable measurable transformation, see

Dunford and Schwartz [3] XII, 5, while such a diagonalization is

not always possible by analytic transformations.

The aim of the present paper is to discuss the diagonalization

of the measure matrix by analytic transformations that will be called

the analytic diagonalization. If the measure matrix for L is analy-

tically diagonalizable we simply say that L is analytically diagona-

lizable.

In Section 1 we shall give a necessary and sufficient condition

for L to be analytically diagonalizable. In Section 2 we shall use

this to construct an example of L which is not analytically diagona-
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lizable and to see that the case of symmetric potentials is a typical
example which is analytically diagonalizable. In section 3 we shall
give some examples which can be obtained by purturbating symmetric
potentials and are still analytically diagonalizable.

We shall follow K. Kodaira [7] as to the notations.
I want to thank professor K. Ito for his interest given to this

work.

§ 1. A condition for the possibility of the analytic
diagonalization of L.

Given a differential expression:

(1. 1) 1 = -

defined in a (finite or infinite) interval (a, ft), where p(x), #00 are
real-valued functions defined in (a, ft), />(#) has continuous first
derivative, q(x~) is continuous and />(#)>() for #<#<Cft, let us con-
sider the differential equation

L(u) = lu,

where / means a complex parameter.
By a system of fundamental solutions we shall mean a system

of two solutions s^x, /), s2(#, 0 of the equation L(u)=lu having
the following four properties:

ii) sk(x, l)=sk(_x, /) k=L, 2 in the whole /-plane,
, iii) as a function of (x, /), sk(x, /) and (d/dx)sb(.x, /)

k=l, 2 are continuous.
iv) as a function of /, sk(x, /) and (d/dx}sk(.x, /) A = 1,2

are entire for every x,

where [s2, Si\ is a bracket



152 Yoshimi Saito

and the bar means the conjugate complex number.
For a system of fundamental solutions there exists a pair of

functions of / (/«(/),/»(/)) having the following properties:

i) /.(O =/.(/), /*(/)=/*(0 in the whole /-plane,
ii) /.(O =£/.(/) for Im/=£0,
iii) /«(/) and /&(/) are meromorphic in Im/=£0.

The functions /«(/) and /&(/) will be called characteristic functions.
With suitable boundary conditions at a and b, L is a self-adjoint

differential operator in L2((a, ft); dtf). Then, choosing a system of
characteristic functions (/«(/), /*(/)) and choosing a pair of boundary
conditions at # and i are equivalent to each other.

Define the characteristic matrix M(T) by

\J-' 3) 7. (0 -/. (0 \/. (/)+/.(/)
and the matrix P(-0 = (p.vW) by

(1. 4) POO = (f ^ f g) =lim lim
X^lV^y P22W/ 5^ + 0 £^ + 0

The measure matrix dP(Ji) is positive semi-definite and symmetric.
Let //"denote the Hilbert space L2((a, i) ; dx) where the norm of

u will be denoted by \\u\\. Next, we consider /^-measurable vector

functions 000 = (0i(^), 02(^)) and put

Then J?*= {0/||0|U<°°} constitutes a Hilbert space, and the transfor-
mation

S
b
si (x, A) u(x)dx i = l,2

proves to be a unitary transformation from H onto H*, whose in-
verse is given by
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Now we introduce a new definition:

Definition. A differential expression L in (1.1) will be analyti-
cally diagonalizable if there exists a system of fundamental solutions

(Si(#,/), sa(#,/)) and a system of characteristic functions (/«(/),
/&(/)) of (SiOt, /), sa(#,/)) such that the measure matrix defined by
(1. 4) is a diagonal matrix for any real number L

For the sake of simplicity we shall say that L is diagonalizable
when L is analytically diagonalizable.

For any y>>0 the characteristic matrix Jf (/) can be represented
as follows:

A~l

where jRCu) (/) is a (2. 2) -matrix function whose components are regular
on the complex plane with the slits 1<L — v and /^v.1} Let us assume
that POO is a diagonal matrix for any L Then we have

As the real number v is arbitrary, M12(/), M21(/) are regular functions
in the whole /-plane. Therefore it follows from (1. 3) that

is an entire function i.e. /a (/)//«(/) is a meromorphic function in
the whole /-plane and /* (/)//*(/) ̂  1 for any complex /.

Conversely, if /*(/)//«(/) is meromorphic in the whole /-plane and
/*(/)//.(/)=£!, then Mu(/) and M21(/) are regular. Hence we have

Thus we obtain

Lemma 1. 1. 7w order that L is diagonalizable it is necessary
and sufficient that exists a system of characteristic functions (fa,

[7]. p. 932, (2.15).
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fb) of (S-L, Sz) such that /i (/)//.(/) is meromorphic in the whole
l-plane and /»(/)//. (/)=£! for any complex I.
Let us consider two systems of fundamental solutions (s?, sj!) and
(Si, S2). Then there exists a (2, 2)-matrix function -4 (/) = (0,-, (/))
such that

ii) <z,v(/) i,j = l, 2 are entire function,
iii) det^4 (/) = 1 in the /-plane

and Si, 52 are related to 5?, s°2 by a unimodular transformation A(f)

c\ ^(L6)

where -4'(/) is the transposed matrix of -4(7). Denote by (/«,/&)
(or (/°, /J)) the system of characteristic functions of (5?, sS)) (or
(sj, sj)). Then (/a, /6) is related to (/°, /°) by a linear transformation

f.(f)=

/.(/)=
where we put

_ flu (/)/(/)+ Cn (1)

Using these facts we can restate the lemma 1.1 as follows:

Lemma 1. 2. In order that L is diagonalizable it is necessary
and sufficient that for any arbitrary system of characteristic
functions (fa, /&) there exists a (2, 2)-matrix function AQ(l} = (A/(0)
such that fb(l}=AQ(/)/*(/). Here AQ(l) satisfies the following
conditions:

' i ) Au(l) i, j = l,2 are meromorphic in the whole l-plane,

ii)
iii) if we put detA^(T)=f(T)9 then /(/)=£ 1 and A0(l)/

(!—/(/)) is regular in the whole l-plane 3

k iv) -4u(/)+-4»(0=/(0+l /°^ «»^ complex L
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If for an arbitrary (/«(/),/*(/)) there exists such AQ(T), then
we can choose a suitable system of characteristic functions (/! (/) ,

/!(/) such that

/2(/)//2(0 =/(/)•

As the proof is easy, we omit it.

§2. The Potential which is not diagonalizable

and the symmetric potential.

In this section and the next section we shall assume with no loss

of generality that />(#)=! and (0, ft) = (— °o, «0, and call q(x) in

(1. 1) the potential of L. Moreover we assume that L is of the limit

point type both at — oo and at +w, for L is always diagonalizable

if L is of the limit circle type either at — oo or at oo.

We divide the differential operator L into the following two

differential operators in [0, °o] :

- 1)

LI and L2 are regular at ^ = 0 and their spectra are simple.

Denote by (sj, sS) the system of fundamental solutions of L

satisfying the following conditions:

teiCO, /)=s{(0, /)=!
(2.2) < for all /.

)=5, (0,0=0

Any system of fundamental solutions satisfying (2. 2) will be called

the natural system of fundamental solutions. Denote by (/f, /£) the

system of characteristic functions of (sj, sS). Then we define the

system of fundamental solutions (s°lf s°) of LI by
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and the system of fundamental solutions (s{2), s£°) of L2 by

Denoting by /!(/) and /,(/) the characteristic functions at oo of
(sf, s^) and (5? \ S2

(1)) respectively, we clearly obtain

(2.3) IAW-/--W
U(0 —f..<f).

Let us assume that L is diagonalizable. Then there exists a
system of characteristic functions (/?«(/), /!(/)) such that /*//*»
is meromorphic. Therefore denoting by §1* (or SI^L) the set of real
numbers A such that /* (or /*«,) is not meromorphic at /?, we obtain

(2.4) S* = Sl!L.

As /* (or /*oo)is related to /L(or /°_oo) by a linear transformation
with the components regular in /, it follows from (2. 4) that

(2.5) 3C. = a°-c.

where §11 (or SI°_oc) is the set of real mumbers A such that /I (or /° „)
is not meromorphic at /?. From (2. 3) we also obtain

(2.6) Sl! = Sl2

where SIi (or S12) is the set of real numbers A such that /i (or/2) is
not meromorphic at ^. It well-known that the essential spectrum of
LI (or LZ) is independent of the special choice of its boundary con-
ditions.50 Therefore it follows from the spectral formula (1. 4) that
2Ii (or §12) is the essential spectrum of L± (or Z,2) - Using (2. 6) we
obtain

Theorem 2. 1. // L is of limit point type at both — oo and oo
and L is diagonalizable, then the essential spectrum of L± and L2

in (2. 1) coincide with each other.

By virtue of the theorem 2. 1 we can construct a differential

2) [3j. p. 1394.
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expression L which is not diagonalizable. Take for example a function
<?(#) continuous on [0, oo) and that for a real number &=£0|0>(X) — k\

is summable in (0, oo) and <p(0)=0. If we put

we obtain3)

Hence 3li=£2l2, so that L is not diagonalizable.
Next, let us consider the case that the potential q (#) is symmetric

i.e. q(x)=q( — x). In this case we have

which shows that L is diagonalizable by the natural system of funda-
mental solutions.

Conversely, let us assume that L is diagonalizable by a natural

system of fundamental solution (s°, s5). Taking (/loo, /L) as above
and denoting with rfP°0) = (dp,°jCO) the measure matrix defined by

(/-co, /I), we obtain

(2. 7)

where

n:, /)=

r (Y 7") =
' 2 ^ - ' ' 1 /-n / - _ . . x .. IN r /-n /• J\ ^ro

-C^ 0 [/°-CO -/
_.(*, /) [/!.(/)-/I(/) 1 -1

From (2. 7) we obtain

3) [9]. p. 115-119.
4) [7]. p. 931, (2.12).
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f°°l / 7M<
\ | Wo, (X, /) I '

fK — — Jo

\
J — C

<0

and /l(/)//ioo(/) is meromorphic, so that

/°-(/)//°-.(/)= const.

On the other hand we have

in general, where £ is a real number.53 Therefore we obtain

or

In addition to this fact, the characteristic function /i(/) (or /«(/))
uniquely determines the potential #iOO (or #200).6) Hence in this
case we have

#iOO=ftOO i.e. #00 =#(-*)-

Theorem 2, 2, // Z, is diagonalizable by the natural system
of fundamental solutions, then q(x) is symmetric i.e. q(x) =#( — #).

§3. Examples of L which Is diagonalizable.

From the result of Section 2 we know the following: If the
potential #(#) is not symmetric at infinity, for example the limits of
#00 exist and

lim # 00 ^ litn # 00 ,
T-^CQ t-5>— 00

L is not diagonalizable. The symmetric potential q(x)=q( — %} is a
typical potential which makes L diagonalizable.

These fact will suggest the following question: In case the
potential #00 of L is obtained by suitable perturbation of a sym-

5) [1]. p. 2855 [6]. p. 338, [9]. p. 119.
6) [1]. Lemma 1.
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metric potential, is L diagonalizable ? we cannot give a complete
answer to this question, but we shall discuss some examples which
might suggest the solution more or less.

Let us consider two potentials #(#) and #o(#) in (— °°, +00).
We put

Let (sj, sj) (or (#,#!)) denote the natural system of fundamental
solutions of L (or L0) and (/-«, /L) (or (^°_^ ^L)) the system of
characteristic functions of (sj, 5°) (or (£J, £°))- Now we impose the
following assumption: There exist two positive constants k and e
such that

\q(x) — #oOO exp k(x + \ \q(y)\dy)1+

and

are summable in (0, oo).

Under this assumption, we easily see by the general theory of
ordinary differential equations that there exist two (2, 2) -matrix
functions ^4_oo(/) and A^f) satisfying (1.5) such that

Therefore putting A(0 = AL»(r> A^l) , (g^ AQgl^ is a system
of characteristic functions of L. Let us assume further that
qQ (#) =qQ( — x). Putting

we see that ( — g, AQg) is a system of characteristic functions of L.
In order to show that L is diagonalizable, it is sufficient to show that
there exist a (2, 2) -matrix function A(T) satisfying (1.5) such that

7) [2]. §2, §3. [9]. p. 115-119.
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is meromorphic and never takes the value 1. Putting

C(/)\ -*W r(/)
~

\
/'

r*(0\
«*(/)J'

we have

f*_
J °°~~~

f* - ̂

Theorem 30 1. (1) // f /tire gjczsf ^o positive numbers k and

e such that ]#00 exp{^[^i1+£} /s summable in (—00, °o), I/ s's
diagonalizable.

(2) // ^/z^r^ ^A:ZS? ^wo positive mumbers k and e s^£/z ^^
|?(jc) +xz\exp{k\x\^6} is summable in ( — 00,00), L 15 diagonaliz-

able.

CoroIIary0 // # (jc) A^5 ̂  compact support, L is diagonalizable.

The case (1) occurs when g'oW^O and the case (2) occurs

when qQ(x) = — x*. Clearly L has double spectra in both cases. First

we prove the case (1). If qQ(x^=Qy g(T) = — ii/~T. In order that

/*//-oo is meromorphic, it is necessary that

(3.1) Im(/i//;.)=0,

for any real ^ that belongs to the essential sepectrum of L. Let

(a(V c(fi\
\ft(0 d(T>)

be a (2, 2) -matrix function satisfying (1.5). Then we have

Hence it follows from (3. 1) that for X in [0,
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i/T{r*a*+**£*# - (~i/T) {&+*&} = 0,

i. e. for any complex /

(3.2) r*(/)«*(/)+«*(/)P*(/)/ +

Conversely if (3.2) is satisfied, we have

*l* __ fl + 70

i.e. /*//-~ is meromorphic. Therefore, determining the A(T) so that
it satisfies (3.2) and cud — (95=1, we have

f Stf+0L
\a=1fK

(<\ Q"N\^O. O^

n ,0(3.4)

where
[

L (/) = C (/) Z) (/) + ̂ 4 (/) 5 (/) /

which depend only on the potential
Now let j9(/) and 5(/) be two arbitrary entire functions satisfying

and d&=d(J). Then «(/) and r(7) determined by (3.3)
are meromorphic functions satisfying «(/)=«(!) and r(F)—r(F)

(3. 5) /:(/)//?. (0=^1
except for real / such that /<IO. But we must choose suitable entire
functions 0(7) and 5(7) to satisfy (1.5) and (3.5) in the whole
/-plane. Clearly the real number <*<IO such that /£GO=/-ooGO is an
eigenvalue of L. In this case ^ = 0 is not an acumrnulating point of
eigenvalues An n = l, 2, ••• which lie in ( — oo, 0). Hence we can
determine 0(7) and 5(7) as follows: Let{^}n=1,2--- (0>^1>^2---) the
eigenvalues in (— oo, 0) of L and {^nK=i,2'" (0<C /Ji ^i/£2|^"0 the
root of the equation
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+ /AX/) 2 + 4L (/2) - 2 A(/) Af (/) /} = 0

which do not belong to {>?„}. Determine an entire function #(/)such
that

1

' o

ii)
,iii)

and /3(/)=l
Then it

8 (.in

8 (fit,

8(T)

is

. = 1.2..-)!
O' + Afe^O

=WJ,

clear that

and fl(0+*V~;U~ has a simple root at

CO *(/))

satisfies (1. 5) and (f*™, /*) satisfies (3.5) in the whole /-plane.
In the case (2) that qu(.x) = —x*, the essential spectrum of L0

is the whole real axis, so that the situation is much easier than the

case (1) ; it is sufficient to put 0=0 and 5=1.
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