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A two points connection problem between two sets of fundamen-
tal solutions for a system of ordinary differential equations tdXj
dt = (AJrtB)X is studied under the assumptions that the eigenvalues
Xfe (&=1, 2, • • - , # ) of the diagonal matrix B satisfy Xy— \k > \\k\ >0,
and that the matrix A has a pair of congruent eigenvalues. Con-
nection coefficients are calculated by convergent series and error
terms are reduced to be asymptotically zero.

1. Introduction* In a preceding paper we have studied the rela-
tion between two fundamental sets of solutions of a system of n
linear ordinary differential equations of the form,

(1.1)
dt

under the conditions that no two eigenvalues of the n by n constant
matrix A are congruent modulo 1, and that the n by n constant
diagonal matrix B has no pair of eigenvalues with coincident
arguments.

One set of solutions has convergent power series expansion at
the origin, expressed by

(1. 2) Xj(t} = fj j G/m)r (j = 1, 2, ..-, n)
m=o

where p// = l, 2, • • - , « ) are eigenvalues of the matrix A. The other
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set consists of those solutions which are expressed asymptotically,
in a certain sectorial neighborhood of the infinity, by the following
formal solutions :

(1. 3) X*(f)~~xk(f) 2 H\s)t-
S=0

with the scalar function xk(t) (k=I,2, • • • , » ) defined by

(1.4) xk(t] = exp (\kt)t
akk

where akk is the k-ih diagonal element of A and \k is that of B.
The chief object of the present investigation is to extend our

study to the case where A has a pair of congruent eigenvalues,
and accordingly convergent expressions involve a logarithmic func-
tion. For the sake of definiteness, we write this pair (px, p2), and
we assume that P2 — Pi = m0 is a positive integer. We, also, assume
that none of the quantities akk—pj(j,k=l,2,—,ri) is a non-
negative integer.

To make the discussions simpler, and at the same time to
prepare for the more complicated situations in the cases of irregular
singularities of higher rank, we make the following assumption on
the eigenvalues X1? X2, • • • , \n of B:

(1.5) |\y-Xj>|X,|>0 (/=M?)

We shall briefly refer this condition as the pentagonal condition,
because a polygon formed in complex X-plane with vertices Xiy X2,
•~9\H is at most pentagonal for (1.5) to be satisfied. This is easily
seen if one draws an ortho-hexagon with center at the origin and
labels the six vertices xlf • • • , X6. The significance of the pentagonal
condition lies in the fact that no procedure of analytic continuation
is necessary in the calculation of connection coefficients. (See the
final section.)

Naturally, our theory is in a very close connection with the
canonicalization of more general systems of the form

(1.6) r
dt r=*

We refer the reader to the survey article by H.L, Turrittin, [5].
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Essentially, the method employed here is the one in our preced-
ing paper [2], But the treatment is aimed to be applicable to the
case of higher rank singularity, consequently we used no results
from the preceding paper. Moreover we made a small progress in
eliminating the error term 0(th) which appeared in our connection
formula in the preceding paper.

We usually denote vector valued variables by capital Italics,
and scalars by small Italics. "/" to denote the identity matrix is
suppressed when it is multiplied by a scalar, e.g., (X — B) should
be read (\I—B).

2* Single inhomogeneous equations

Proposition 2.1. // r(f) is holomorphic and tlr(t) is bounded for a
real number I such that 3t(a + /)>0, in

(2.1) ®* = it; \t\ >£0>0, argt t\< —n—>i\\ J \ I I - o «- 2 /j

— {t; arg t \ >TT, 3W< — 110 }

where 77 is an arbitrarily small positive real number, then a solution
of

(2.2) t
at

bounded in (2.1), has the form

(2.3) XO = 0(r o
in ®*.

Proof. We prove the proposition only for t with non-negative
argument, the remaining case will be proved similarly.

Let us consider a path Pff, depending on a positive parameter
t', which consists of the following three parts:

(i) straight line T=— t' + i^ (
(ii) semi-circle r=/'exp (i(n — //,))

4-t

(iii) positive real axis T = — ^
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The positive orientation of the path is taken in the increasing sense
of //,. Obviously, for any t in ®* with non-negative argument, there
is exactly one /' for which t lies on /V, if we define :

= \t (0<arg/<7r)

Consider the general solution of the equation (2. 1) obtained by
quadrature.

y(t) = ^r-

We will first prove the boundedness of

in ®* when the integration is carried out along the path Pt>. Then
we must necessarily have c = 0 in the general solution in order that
y(f) is bounded in ®*. Thus we have

S °° / / \a>i-/
e'-T (-) rV(

* \T /

and the proof will follow from the boundedness of the integral which
we are going to show.

We observe from the figure the following estimates shown in
the table below for the three quantities in the first column on the
path of integration0

arg^-0

a;

sin 77

dr
T

(ii)

sin T]

(iii)

r n 1
~sin?7 jut.

(ii)

-i

(iii) (iii)

K

I*
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From the above table we observe that can always be
• T

majorized by a constant and that \e*~r\ can always be majosized
by 1, when ^<TT. Therefore the boundedness of the integral on
the part (i) and (ii) is evident, and the whole integral will be bound-
ed if it is bounded on the part (iii) of Pt'. Now we have for
arg t>?r.

Kf
__ _ „ — ~ ^ z l \ ' \ K ~ ' U l L < .

IL J2 1 +

and for

JCiiD J* Jjb

This completes the proof.

Definition 2.1. Xj(f) (.7 = 1,2) are holomorphic solutions at the
origin of

dt

dt

where a is not a non-negative integer. We shall write these solu-
tions as

(2.5) xj(t}
m

Proposition 2- 2. We have

(2. 6)
T (m— a + l)

(2.7) &(m) = *(-^-*(M-
r(m — a + 1)

where ^r(z) is the di-gamma function defined by

(2.8) Mz) = - {logr(*)}.
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Proofo ty(z) satisfies the difference equation

(2.9) ^(*+l)-.K*) = -l
z

With the help of (2. 9) one can verify the proposition easily by direct
substitution of (2. 5) into (2. 4).

Proposition 2. 3. Given any positive integer a, and t in 3)*, we have

(2. io) *,(*) = e*t*

and

(2. 11) x2(f) = ̂ (-ayr

Proof. First suppose that 3ta<0. Solving (2. 4) by quadrature.
we immediately see that, in order that Xj(f) be holomorphic at the
origin, they must be of the form

r(-a)o \T/ T r(-a)Jo \T/ T

- i (>T/nvT _ i r wn'rfr
r(-a)J* \r/ T ~ r(-«)J. Uy T

/A

= - g*/" log
r( — a)J< \T / \T / T

where we used the definition (2. 8) of ^(2) in the form

^(^) = -f iogr(*) = -L-Af^-v-WTrf^ r(£)92vo

Consider the integrals on the right, when integrated by parts once.

t \T/ T t t
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T t

It is clear that if we repeat the partial integrations, we will arrive
at the expressions

/ i . , . 1\= polynomial in —
\ tl

I I f 0 0 / / Yrt+ff//~.
ninear form in AJ ^'"^f— ) —

T

in which all the integrals are bounded in ®*, if we take a- suf-
ficiently large. Motivated by these facts, we set

Then jvy(^) (.;" = 1, 2) are bounded solutions of equations

t =

at

Now we can apply the proposition 2.1., if 3ta + er>0, to have

When 5Ra-ho-<0, take a suiBiciently large o-7 such that
and we have

This completes the proof for
To prove the proposition for arbitrary a, we use the following
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notations to clarify the dependence of Xj(f) (j = 1, 2) on the parmeter a,

m> a} =
gz(m, a) = *(-«)-- *(»»-« + 1)

They satisfy the recurrence relations

tf, a-fl) = +te1(f, a)
1 ( cuj

x2(t, a)

We can deduce the asymptotic expansions (2. 10) and (2. 11) for a + 1
from those for a as follows :

Our proposition is proved by repeating this process.

Definition 2.2. x](t) (j, k=I, 2, •••, n) are holomorphic solutions
at t=Q of

(2. 12)
7 = 2,3, -..,

at

where none of the numbers akk—pj (j, k=l, 2, -*,ri) is a non-negative
integer, and p2—p1 = m0 is a positive integer.

We whall write those solutions in the form
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(2.13) x](t} = Hlg}(m}r
m=o

A special attention is called upon the use of p2, instead of p19 in
the definition of *{(f) (A=l,2, -,»).

Proposition 2. 4. TA0 coefficients g](m) are given by

~\ m

(2. 14) £}(m) = Afe - — 0' = 2, 3, ..-, it)

- akk + 1)
~

Proof. Trivial.

Proposition 2. 5. For t in ®A, defined by

(2. 16) ®* = {t ; \kt

z^e have for j = 2,3, --^n, k=l,2,---,n

(2. 17) 2 gkj(m+s)tm = \/**-pyj?*(/)rp

?«=0

and for j = \> k=l, 2, ••• ,«,

(2. 18) s

Proof. For ./ = !, we have
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= XJ|>(P»-«**+*)-log Xj/
- M[>(P2 - a Aft + s) - ^(fc -

r(s-l+p1-aM+l)

«**)- log

This proves (2. 18), and (2. 17) can be proved similarly^

3. Difference systems. In case two eigenvalues px and p2 of the
matrix A satisfy P2 — Pi = mQJ for a positive integer m0, there is a
fundamental set of solutions of the following form :

(3. 1) Xtf) = (XJjt)) log t + f i j G
»z=0

(3. 2) JTX*) = 'P' 2 GX^)r (; =1= 1)
w=0

Proposition 3.1. Tfe coefficient vectors Gj(m) (j = 2, 3, ••-,«) satisfy

(3. 3) (p, + m - ^)G,-(m) - flG/iw - 1)

with the initial condition

(3.4) (Pj-A)Gj(0) = 0

and the vector G^m) satisfies

(3. 5) fa + m - AX^fif ) - JSG^w - 1) - G2(m - m0)

n;rtA /Ae initial condition

(3.6) (P1-^1)G1(0) = 0.

Prof. Obvious from direct computations.

Proposition 3. 2. With the pentagonal condition upon the eigen-vrlues
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of By coefficient vectors Hk(s) of the formal solutions (1. 3) satisfy

(3. 7) (akk-s- A)Hk(s) = (B-\h)H
k<

with the initial condition

(3. 8) (B - X*).ff*(0) = 0. (Jfe=1, 2, -, n)

Proof. Obvious from direct computations.

Definition 3.1. Define formal power series in a complex variable 6 by

(; = 2,3, -..,»,

(3.9)
= 1, 2,

Proposition 3. 3. WtYA We pentagonal condition on B, F*(£, m) ( j =t= 1)
converge uniformly on the closed unit disk \ € \ ̂  1 of the complex 6-
plane, and F](1,m) (j =2, 3, •••,«, &=1, 2, ••-,«.) satisfy (3.3).

Proof. We will show first that jP*(£, m) are solutions of

(3. 10) \£-^(\k-B-)}dF^£'m^ = (pf+m-A)FK6, m)
l X^ ) aS

From the proposition 2. 4, we have formally,

On the other hand, we can use (3.7) and (3. 8) to have

c dF}(6, m} _

j(£, m)

$(£, m)
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We have (3.10) formally by eliminating F*(£, m— 1).

Each system (3. 10), for fixed j, k, has n regular singular points

in the finite £-plane, namely those at ^^ — *- (/=!, 2, ••- ,«), and it
^k

is easy to see that F](8y m) is the solution which corresponds to the
characteristic exponent ps-\-m — akk at 6 = 0. Hence the formal power
series in £ converges uniformly on the closed disk with center at
the origin and with radius less than any of the absolute values of

— — — l- (z=f=&). But thanks to our pentagonal condition all of them
~^k

exceed 1. This, also, justifies the formal termwise differentiations
above in deriving (3. 10)

Let us substitute £ = 1 in F*(G,m\ and we have

- A)Ft
j(lt m) - BF](l,m - 1)

= X, £ H\s)g}(m - 1 4- s) - (X, - 5) S Hh(s + l)g](m 4- s)

Here the convergence of the series such as sH^g^m-^s} is

guaranteed by the convergence of the corresponding power series
in £, say, the derivative of F*(e,ni) at £ = 1. This completes the
proof.

Corollary,, F*(l, 0) (.7 = 2, 3, • • - , « = 1, 2, m, ri) are values at £=1 of
the solution F](8y 0) of the systems,

(3. 11) e - (X, -B) = (Pi-A)F](6, 0)
I \k ) dS

which correspond to the characteristic exponents Pj—akk at £ = 0,
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Proposition 3.4. F*(£, m) (k=l,2, • • • ,«) are solutions of the follow-
ing inhomogeneous systems of differential equations,

(3.12)

And the formal series converge uniformly on the closed unit of B-plane.

Proof. By proposition 2. 4, and by proposition 3. 2., following
two relations are derived formally :

d£

d£

Elimination of Ff(f,w-l) yields (3.12).
The homogeneous part of (3. 12) has only n singular points at

£= Xfe~x*' (z = l,2, — ,«), as well as the function — FJ(£, m) for
Xfe 6

some fixed k. Now, owing to the pentagonal condition, the configura-
tion of those singular points other than zero assures the convergence
of the formal series.

Proposition 3.5. F*(l, m) (k=l, 2, • • - , n) satisfy

(3. 13) (p2 + »i-^)F{(l, w) - fiF{(l, w-l)-FS(l, m) .

Proof . (p2 + m- A)Fi(l, m) - BF{(I, m-1)

= f] {(
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k
1(m-l} = -F|(l, m)

5 = 0

Definition 3. 2. For a positive integer cr, define vector valued func-
tions P], a(w) (j = 2, 3, • • • , n, k=l, 2, • • • , n) of a complex variable w by

(3. 14) FJ(l,w) = ^H\s)g](
s=0

or equivalently, by

(3. 15) P] _ Jj0) = * f
^J(«'+o')'='r

Proposition 3. 6. // h0 is defind by,

(3. 16) h, = Max f Ajfte(py-aM) ; 1 ̂  ; ^ w, 1 ̂  yfe ̂  «
v ^

P] p ^(fi;) «rg vectors all of whose components are holomorphic and
bounded in the right half-plane

(3.17) ^w ^h0-o-

Proof. It is convenient to introduce a function q] ^(w, w0, s)
(o-<s) defined by

Applying AbeFs transformation to (3. 15), we have

= P}i(r (o;0) + -— - 2 ^>a<«;, «;„, j>) f]
• - -
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For the sake of definiteness, let us take

«. = !(4

then for all w in the half-plane (3.17) and for sufficiently large
value of s, we have

L. , _!_
T

since for these w we have

3j — akk\ ^$le(w + s+pj — akk) ^ s—o-+ —

This shows that ][]#* ff(^, woy s) are absolutely convergent and their
s^a-

sums are uniformly bounded in (3. 17). While gj(w0+p)Pk
Jt<r(w0)

(p=<r + l, •••) , being remainders of absolutely convergent power
series F*(G, WQ) at certain point inside the circle of convergence,
they are naturally bounded. Thus our proposition is proved by
following the well known reasoning of Abel.

Proposition 3.7. For a fixed value of j (;' = 2, 3, ••• ,») the set
{F*(l, m)', k=l,2,—,n} constitutes an independent set of solutions of
(3. 3) for all non-negative integral values of m.

Proof. By the preceding proposition, for w such that
^A0— 1, we have

w
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or we may write simply

(3. 18) F}(1, m) ̂  H\o)gk
3(m)

for large positive m. We use these asymptotic expressions to cal-
culate the Casorati-determinant :

* det

Since the vectors Hk(G) (k=l, 2, • • - , ri) are eigenvectors of the matrix
B corresponding to n different eigenvalues respectively, the Casorati-
determinant C(w) can not be zero in the distant portion of the
positive real axis. On the other hand, reference to the system (3. 3)
which is satisfied by F*(l, w) (k=l, 2, • •• , ri) shows

det(pj + w-A)C(w) = detB-C(w-l)

This proves our proposition because we can deduce C(w — 1)4=0
from C(«;)=J=0, as long as det (pj + w — A)3=Q. And det (p^ + w— A) = Q
for integral w, only when j = 2 and w=—mQ.

Proposition 3. 8. There are sets of scalar constants { T } ; k = 1, 2, • • • , ri}
(7 = 2,3, • • - ,«) such that

(3.17) G,(m) = gTJF}(l,m)

are the solutions of the systems (3. 3) with the initial conditions (3. 4)
respectively.

We shall call these sets {T}\ k=l,2,~-,n} (j=2, 3, —,«) the
sets of S-multipliers for respective solutions Gj(m). They are
determined by the systems of equations

(3.20) CXO) = 2T}FJ(1,0).*=i

What is most important here is the fact that F*(l> 0) (j=2, 3, • • • , » ;
£=1,2, ••- ,») are all expressed in terms of convergent series,, It
we drop the pentagonal condition, they are, in general, divergent
expressions, and some modifications of the theory are necessary.
One of such modifications was carried out in our preceding paper,
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Proposition 3, 9. With the help of S-multiplies for G2(m\ the vector

(3. 21) Gf(f») = ± TJFJ(1, f»-ffi0)
£=i

satisfies the difference system (3. 5).

Proof. Since the vectors F*(l, w) satisfy (3. 13), we have

for each &. Multiplying T£ to each of these systems, and summing
them up on the set of indices fe=l, 2, • • • ,« , we have (3.5)

Proposition 3,10. There is a set of constants T* ; £=1, 2, • • • j W

(3. 22) G^m) - Gf (w)+ 2 T}F5(1, m-m0)
*=i

/5 /^^ solution of (3. 5) t^^YA £/z£ initial condition (3. 6).
determined by

(3. 23) G^) - Gf(w0) + ± T{F J(l, 0)
*=i

Proof. Since the system (3. 5) is inhomogeneous, a general solu-
tion is obtained by adding a general solution of the homogeneous
part to a special solution. And we know that Gf(m) is a special
solution of (3. 5) by the preceding proposition. Solvability of the
system (3. 23) is assured by the independence of the set {FJ(1, m) ;

4. Asymptotic expansions of Xj(t)(j=2, 3, • • • , w.)

Proposition 4. 1. (E.M. Wright) // <p(w) is holomorphic and bounded
in the right half-plane

(4. 1) 5Rew ^ h' > 0

and

(4.2) h' >^-
£

then we have
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(4.3) fj

<aw 2 tends to infinity in the sector

(4.4)

Proposition 4. 2. // &0 , defined by (3. 16), z's positive, and

a > h =

we have

(4. 5) f] g](m^<r)
m=Q

- 2
/=!

m //?^ sector

(4.6)
£

Proof. We decompose the sum in the left side of (4. 5) as
follows.

We observe, with the help of proposition 3. 6., that each component
of P] ̂ (w — d} is holomorphic and bounded in the right half -plane

^ hQ > 0 .

The condition (4. 2) of the foregoing proposition is now replaced by
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and is automatically satisfied by the definition (3.16) of A0. Now
we apply proposition 4. 1 to each component of

to have present proposition.

Corollary. If ha is not positive, take any arbitrarily small positive
real hf and we have

(4. 5)* S gk
}(m + a)P"} XwOr = 0(«V/'**-pO

Proof. Since P}ia.(w—tr) is holomorphic and bounded in

and

we have the corollary.

Although the case A0<0 may happen according to the form of
the matrix A, we only treat the case /z0>0 to avoid complicated
statements in the following.

Proposition 4. 3. In the sector ®^ defined by (2. 16), we have

(4. 7) f] F}(1, w)r - X/^-p^Vr^-py{ 2 Hk(s)t

y = 2, 3, • • - , w, fe= 1,2, • • • , « .

Proof. By definition 3.2., we have

s=Q »z=0
) 2 ^j(»« +*)<"+ S ̂ K
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Applying proposition 2. 5, to the first term, we have

E Hk(s} fj g](m+s)tm= 2 Hk(s]

-2 E

Adding (4. 5), we have

We have the proposition because of the definition 3.2. for w=—l:

Theorem 4.1. For j = 2, 3, •••, w, we have

(4. 8) Xj(t) = g

in the sector

(4. 9) 3> =
A=l

Proof. By proposition 3.9., we multiply JpyT* to (4.7) for
each &, and sum over &= 1,2, •• - ,« , to have

= S"
*=1

Applying the proposition 3. 9. again to the second term of the above
expression, we have
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-/)rj = 22

because of the initial condition (3. 4) for Gj(m).

Corollary o //, in the sector S, there is at least one index k, for
which 5Re(XAif) is non-negative, then we have

(4. 10) Xj(t) s* S T$\k
akk-pJxk(t)

&=i

Remark. The exact meaning of these asymptotic relations can be
seen from the exact expressions in theorem 4. 1., namely, if there
is some k, for which SReX*f^>0 holds, then

the summation is taken only over those values of k for which
SReXfcf^O. If there is no such fe, then we must write

Xj(t) « 0

But even in this case, the right-hand side is asymptotically zero
only in comparison with negative powers of t, but not with
exponentially decreasing (subdominant) solutions.

However, for the sake of simplicity, we shall use the conven-
tional notation

including such subdominant solutions with the phrase "in the sense
of this remark".

Theorem 4. 2. (Continuations to different sectors.) If we denote by
the sector

(4.11) ®k={f, \ke
z*» <= 3)*}

we have

(4. 12) Xj(t) ^ ± x
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n

where Tj(j = 2,3, ~-,n, k = 1,2, 8 - - , ^ ) are defined by

I T] = Tj (k = 1,2, —,£)
I *Y — 0^i^kk~ i I* \t? — /)-i—1 /) i o ... 'Mj^ •*• f — ^ J JL j \K — LJ \^ X. // i^ £j) > **/ *

Asymptotic relations are valid in the sense of the above remark.

Proof. We just changed the arguments of \k's by 2n for
k=p+l,p+2, —,n.

5. Asymptotic expansion X^

Proposition 5.1. For k=l,2, ~*,n, series

(5.D

absolutely convergent and unfformly bounded in the right half-
plane (3.17).

Proof. The (p—o-4-l)-th terms of (5.1) are of the form

1 1

which are less than

in absolute value, because we have

by the definition (3.16) of
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Proposition 5. 2. // we define P{j(T(w) by

(5.2) F{(l,ii;) - l^H\s}gl(w + s} + g*2(w + *-l}.P{ff(w)
s=0

or equivalently by

(5. 3) P{ , £w) = — — - - S #*(*)* J(i0 + s)

then PIJ(T(W} (k=l, 2, ••- ,«) are uniformly bounded in the right half-
plane (3'. 17).

Proof. We have

where ^k(w) are defined by

t/r*(M;) - ^(p2

We decompose these series as follows.

-

The second summation of the last sentence is easily seen to be
absolutely convergent because of the foregoing proposition and the
uniform boundedness of PJ.^W in the right half -plane (3. 17) for
cr<p. And we see, at the same time, that each component of the
expression is less than

-^
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in absolute value. To complete the proof, we have only to use the
the estimate of di-gamma function

Proposition 5. 3« We have for k=l,2,

(5. 4)

i« (4.6) ^fVA obviously contains ®fe.

Proof o As in the proof of the proposition 4. 2., we transform
the summation into the form

o--/z

1=1

We observe that each component of \^l'Pi>(T(w — cr) is uniformly
bounded in 3l£w^h0 by the preceding proposition, and that the
condition (4. 2) of the proposition 4. 1. is satisfied by the assump-
tion that m0 is a positive integer. Indeed, we have

h0 = Max --

Thus we can apply the proposition 4. 1. to the first term to obtain

This proves our proposition.

Proposition 5. 4e For ^ in ®
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(5. 5) 2 Fi(l> m)*™

-«**)-iogx^}2^

for k=l,2, -~,n.

Proof. By proposition 2. 5., we have

(5.6) 2_

2 —***) — lOg

Z_J 4-J *

(T-l

5=0

Using the definition (5.2) of P{tJ(w) for w=—l, we have

= 2
/ = ! s = Q /=!

We use this identity, and add (5. 4) to both sides of (5. 6) to have
(5.5).

Corollary. We have in ®fe, for k=l,2, -',n,

(5. 7) f] F{(1, m~m0)r = \/**-p

m=0

- log

m ^A^ sense of the remark of the last section.

Proof.
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+ 2 Fi(i,-/-«o)r'-i;F}(i,
l-l-"a 1-1

« X/»-p»l>(p,-fl»)- log XjfleVF**-'! 2 Hk(s)t
s=0

+ 2 Ff(i, -/-or<- f] F}(i,»io-0'-'
;-i-»0 i-i-*0

Proposition 5.5. For t in f\ 3)^=3), z#0 have
*=i

(5. 8) /'i 2 dM*" « S X/*»-pCT{+ TS{*(fc-«tt)- log X

of the remark of the last section.

Proof. By proposition 3. 11., and by definition (3. 21) of Gf(m)9

we have

We first compute the contributions from FI(1, m—m0) (k=l, 2, •-, »)
as follows.

^Pl 2 FJ(1, m-m,}tm = fi "2FS(1, m~

7=1

Then we use the preceding corollary to obtain the desired expres-
sion, since

l, nio-/) = G^-/) = 0
*=1 *=1

for positive integral value of /.

n

Theorem 5.2. In the sector ©=

(5. 9) TO « 2 X/*»
* = 1

of the remark of the last section.
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Proof. We are looking for the asymptotic expresion for

x,(t) = x2(t) log t+t*i£ G^iior
m=Q

when X2(t} has the form

X2(t) ^ 2 X/**-p2TiX*(0 (f e ®)

by the corollary to the theorem 4. 1.. Our theorem is proved by
the use of (5. 8)

6. System of rank 2. Let us consider a system with an irregular
singular point of rank 2 :

(6.1) t4£ = (At+t^ + PAJX

There exists a fundamental set of solutions with convergent

expression :

(6.2) XJ(t) = tfJ±Gf(m)r
m=Q

where coefficients are determined from

(6. 3) (pj + m)Gj(m) = A0Gj(m) + A.G^m - 1) + A2Gj(m - 2)

and

(6.4) (p,

Of course, piy • • • , p w are eigenvalues of A0, and we assume no pair
of them is congruent modulo integer.

Another set of formal solutions are determined in the form

(6. 5) Xk(t} - x\t] f] Hk(s} rs

S=Q

by

(6. 6) x"(t) = exp

and

(6. 7) (X«- A?)H
k(S+2) + (^k- A,)Hk(s+V + (*,~ An)H»(s) = sH*(s)



126 Kenjiro Okubo

where we assumed ^42 = diag (Xx, • • - , XM) and these eigenvalues satisfy
the pentagonal condition.

We define x](t} to be the holomorphic solution at the origin of

(6. 8) t ̂  = (<rk ~ PJ + ̂  + \kf)x
kj + c] (c]; constant)

at

If we write

then g](m) satisfy

(6.10) (PJ + m)g](m) = akg](m) + vkg](m -1) 4- \kg](m - 2)

Then it can be proved easily that the formal power series in 8.

(6.11) F*(6, m) — ff*-*r*k ]T] Hk(s)g](m + s)es

satisfy the difference differential systems

(6.12) ed_(F*(8> m^ } = (° f**£\(Fk'(G> *b }
de\F](e,m-l}) \0 0 /\FJ(£, iw-1)/

+ (\ke
2 0 \/FJ(f,w-2)\

and

0

Moreover F*(l> w) formally satisfy (6. 3)
To prove that F*(l, m) have any analytical meaning, we have

to eliminate FJ(£,w-2) and FJ(f,w-3) from the systems (6.12)
and (6. 13), and have to prove the convergence at £ = l of the formal
solutions (6. 11) of the differential systems involving only F](£, ni)
and F*(£, m — 1), which will be written as

(6.14) ed_[F](B,m} \ JF](8,m} \
^ } de\F](e,m-l}/ ^ '\F(E,m-l)l

Subtracting (6. 12) from (6. 13), we have
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(6.15) /X^ + CXfc-^y ^ 0 \/Fp,m) \

0

The determinant of the matrix on the left is clearly

(6. 16) D(£) =

The only possible singularities of the system (6. 14) are those
values of 6 for which D(6) = Q, namely,

(6.17) *=0,

The character of the singular point 8 = 0 is determined by M. Iwano
to be a regular singular point. Thus the formal solutions (6. 11)
are convergent in the closed unit disk where none but 8 = 0 is
singular, and especially they are convergent at 8=1 thanks to our
pentagonal condition.

This is not characteristic only for the singularities of rank one
and two. Because the form of J9(£) for the system

at

is

D(S) = [det

for an eigenvalue X& of the diagonal matrix Aq,
It is needless to remark that once the convergence of F*(l, m)

is established, the corresponding connection problem for the dif-
ference system (6. 3) is completely solved in convergent form. The
remaining task is, then, to study the asymptotic behavior of the
series of the form

for bounded <p(m\
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The details of this section will be given in our subsequent
study. A comparison of our method with the reduction of rank
introduced by H.L. Turrittin is interesting in this direction.
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