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On the uniqueness in Cauchy’s problem
for elliptic equations

By

Kazunari HAYASHIDA

1. Tt is well known that the uniqueness in Cauchy problem holds for
the second order elliptic equation ([1], [4], etc.). On the other hand
Mergelyan [9] showed in 1956 that the harmonic function vanishes
identically if the Cauthy data tends rapidly to zero at a point along
the initial surface. This fact has been extended immediately for the
second order elliptic epuation by Landis [7] and Lavrentév [8]. In
this note we shall try to extend their results to more general elliptic
equations.

Let I be a smooth Cauchy initial surface in a N dimensional
space RY and 2 be a domain such that the boundary of £ contains I'.
And we consider an elliptic operator L of order m defined in £.
Then we shall say that the strong Cauchy uniqueness property holds
for L and I, if any solution « satisfying two following conditions
vanishes identically in £:

(i) ueC"(Q) and Lu=0 in 2.
(ii) At a point P, in the interior of I', the Cauchy data of « tends
to zero along I' in such a way that

a1 LD exp(— P B))

0xf -+ 0xy”

(P—P, Per) la|<m—1,

where § is a positive number depending only on L and T

First we consider the case where L is of second order (m=1)

(1. 2) L:a,‘J

9 0
ax,@x,- +b’ ax; +C’
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in which a,;€C*(2) and 4;, c=C'(2). In this case Landis and
Lavrentév proved our strong Cauchy uniqueness property. In particular,
the latter showed that the exponent & in (1.1) can be taken as an
arbitrary number larger than 2, if I is a portion of a spherical sur-
face. Their method could be said to give an explicit estimate expres-
sing a relation between the solution and the Cauchy data. This rela-
tion is called “well behaved” in the sense of F. John [6].

Now does the strong Cauchy uniqueness property hold for higher
order elliptic equations? We can show this property if the dimension
N=2 and if the elliptic operator has distinct characteristic roots. This
is an extension of a result of Carleman [4]. In particular, for the
second order elliptic operator in (1.2) the regularity assumptions on

the coefficients can be relaxed in such a way
a;,ECl(fz), b and ceL=(Q),

where the dimension N=2 and L=(2) means a class of bounded
measurable functions in £. The method used in this note consists in
establishing an energy integral estimates containing an adequate weight
function.

From now on we consider in the 2 dimensional space with the
coordinate (x,y) and with the metric norm (= (x?+y9)"). Let I
be a smooth curve containing the origin in its interior and let 2 be a
domain whose boundary contains I. First we treat the solutions

uy(p=1,---,m) of the elliptic system

% | Sha, (2, 9)
6.23 g=1

O0u,
0y

) 300 (2 ), =0,

where a,,€C(2), b,,L=(2) and u,=C'(2). We assume that all

characteristic roots of 1, of the determinant

(1-4> lap.q”—zgﬁ.ai =0

are distinct in £ and all imaginary parts of 2, are not zero in 2.

This system was considered by Carleman [4].

Theorem 1. There is a positive number & such that if the solu-
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tions u, of (1.3) satisfies

wy=c(exp(—r®)) (G—0) p=1,-,m

along Ty then ©u=0 in 2, where & depends only on {a,. and T.

Next we consider the single elliptic equation of order m

(1. 5) LllEZ a;,——ﬂ.—

itizm = 0x'0y’
In the same manner we assume that the characteristic rcots of L are
distinct in 2 and a;;G+ j=im) are in C'(2). and the other coefficients
are in L=(2).

Theorem 2. Let u be a soluzion of (1.5) in 2 and let u be in
Cm(2). Ther ihere is positive number § depending only on L and
r. And if u satisfies

0y

ox'0y’

=o(exp(—r ™)) G—0) (+j<m—1

along I', then u=0 in Q. In particular when m=2 and the coef-
Sicients of the piincipal part of L are real, the niwmber & can be
taken as an arbitrary number larger than 1 under the assumption
that T' is a circular arc.

The proof of these theorems will be given in the last section.
The author wishes to express his heartly thanks to Prof. S. Mizohata

for his kind suggestions and encouragement.

2. First we prepare a mean value property for solutions of the elliptic

equation. We consider in »<{R,(<1) the first order elliptic equation
(2 1) LZtEl¢x+/1(x,y)uy:f(xsy)r

where #, 2&C" in »<XR, and the imaginary part of 1 is not zero in
r=Ro. We put M(R) =max (1,12],2],14]) and m (R) =max (1, «], | f1).
r< r<R
And we denote the origin simply by 0. Then we have
Lemma 1. When 2(0)=: and 1<p<<2, the solution of (2.1)

satisfies
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(2.2) [2(0) | <CR"*m (R)*""*M(R)

(. urazar)ene(§§1rrazay)-ev},

where C is a constant independent of u, X and R.

Proof. From now on we denote by C,,C,,:- the constants in-
dependent of u, 2 and R.
We take the C™ function ¢(r):

1 in 7<R/2
() =
0 in =R

and [¢.], ¢ <CR™

Set v=¢u. Then we see

(2.3) Lv=L¢-u+of
and
(2.4) v.+iv,= Lv+ (A(0) — D) v,.

Since v has compact carrier, we have from (2.4)

25 u(0)=—t SS Lo+ (;S?Z)y DY grdy,

And we see by (2.3)

(2.6) ISS Lv dxdy}ng(R 1M(R)SX 2l rdy

sk X+
+{) A E e

By Green’s formula we get

2(0) —2 ff e
Sgrék x+1y vsdzdy PSR Z+1Y dzdy

i(2(0) —2)
I

Hence we have

@.7

S L{&% vydzdy 1—S—C3M o) SSng—[Z—;I— dxdy.

Combining (2.5), (2.6) and (2.7), we obtain
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@8  1u@|<CRM@P| Ljul+17Ddzds.

Applying Hélder’s inequality we see

Y iy L

(1)) () aso)”

where -—;—-i——(l]—:l. Since 1<{p<<2, 2<<q and |u|<m(R), it holds

.t it et i o)

That is,

(2.9 SS’SRI_jfL dxdyg_z_ip_ RGNy (R)@In-1

=-a/p)
X (SS Y [ulzdxdy> .

Similarly we have

|f] 1 @ip-1 @in-1
(2.10) 88—7 dady <L R m(R)

% (gg £ 2dxdy)1—(1m.

Thus combining (2.8), (2.9) and (2.10), we have obtained the in-
equality (2.2).

Now we want to eliminate the assumption 1(0) =7 from Lemma 1.

We put 2=X4+72. And we transform the coordinate by

()~ Caoraor 120 G

'/ A\=x(0)/2,(0) 1/2,(0/ \y

Then the operator L in (2.1) is transformed into

(2.11) L'u=u,+ (—2(0) + 4 (x, y) +it(x, ¥))uy/2:(0).

If we denote the new metric norm by 7, we see easily the following

metric equivalent relation
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(2.12) BY<r<Br,

where B is a positive constant depending only on 4,(0), 2,(0).
Applying Lemma 1 to the operator L' in (2.11) we have

218) () |SCRUP (R HIR) | ([ e a)™”
+<Xg~ |fl2dx'dy’>1—(llp)} ’
r <R

where ]\Nl(R)=r{1ax(l,]l],|lxr|,|l,r]) and 7 (R) =max(L,iul,|f]). We

note that /I,r=/12(’(§)§/1, and A,,=2,+2:(0)4,. Then urséi;g (2.12), we get
MR <M(BRYmax (1+ [4(0) |,12(0) ).
Similarly using the relation (2.12) for (2.13), we obtain
Proposition 1. For the solution of (2.1) it holds that if 1<p<<2,

~(1/
@10)  Ju@=<tR B MBR|((] | 1uldzay)™"

I

where E=Ci(0)¥?  max(1+ [4(0)],12:(0) |) and C is a constant in-
dependent of u, 2, R.

3. In this section we see how the behavior of the solution of (1.3)
(or (1.5)) is influenced by the Cauchy data. Let us denote by S,
an open disc with the center (d/2,0) and with the radius d/2. We
put &= {0<<x<<h} NS, M= {0<x<h} N3S; and L= {x=h} NS;.

Lemma 2. IfucC'(,) and u=o(exp(—#%7%)) (r—0) along
I, for some positive numbers 0, e, then there is a function v such

that
) veC(2,) and v=u on T,
(i) veC'(2,— {0}) and

[ 1wy, { 1oliay and oy
] 3 x

=o(exp(—h®)) (h—0).
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Proof. We take a C~ function ¢(x) such that

S wqo(x)dx=1, and the carrier of ¢ C {|x|X1}.
If we set
£@=\ o /9-La,

we see that

B.D filx) EC™(—o0, o),
(3.2) filx)=1 for |z|<s and f.(x)=0 for |z|=3s,
(3.3) |fs(x) |1 and |df,(x)/dx|<c/s (¢ is independent of s).

We put k(x) =exp(—x*“?) and write a curve I'" such that

2+ (y+k(x))*=x for y>0,
r':
2+ (y—k(x))*=x for y<<0.

The curve I'" is smooth and tangent to .S; from the interior. We_de-

fine a function v(x,y) by
() {u(x, VZ—2) fuon(y—vVz—2) for y>0,
v(x,y) = - 7
Y w(z, — vV x— 1) frcop(y+v z+2%) for y<0.

We see from (3.1), (3.2) that this function satisfies (i).
We have from (3.3)

clu(x,Vx—22) | /k(x),
Ivylg{c]u(x,—Vx——xz) | /k(x).

Let us note that
u=o(exp(—h"¢?®) (h—0) on T,.
Hence u(x, V'x—z%) /k{x)=0(1) (x—0). Thus we get
@ 1o | 1o rdy—olep(—1) (-0,
A computation shows for y=>0

V= {ux<x> 'l/x_l‘2> +—Tl)'_uy (.Z, Vx_xz)-i:_ Zx} .
“ Vz—2
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Sunp(y— Vz— z*)

5 eV oy

( ()(y Vs a:—i-——k(x)))}

Ty O—VE- x——k(x»)

+u(zx, V’E—_E)ka_m {<p<(y—1/x—x2—z)—£§)—k—(35>—} Az

2k(%)

while,

flaey 0-vaa-2)3s 1

_ 3k (x) 3 L
/e(;)cz ‘”(k(x) -vaz-z z)>

9 (k@) 1-2z Jp—
k(x)a{ 2x 1/:6_:;2 HE (@) (y—V 2 -2 z)}

><<o'<(y—1/x—x2 2)

k(x ))
Hence we have for y>0

lv, | <const. {!u,(xn/x x5 |+ #iuy(:cn/x x22) |

vz

(@ 1 1 (K@)
+ |u(x, vz -763)|< k(j) +1/; k(x)+ k(x)? )

Similarly we have the same inequality for y<C0. Thus we obtain

(3.5) Shlvxlzdy=o(exp(—h'5)) (h—0).

Combining (3.4) and (3.5), we have completed the proof.

Now we consider in £, the m-th order elliptic equation (1.5).
We can assume that the coefficient @, equals identically 1 in 2,. Let
us set

v;=0""u/0x 0y j=1,-,m,
then we see
Ur 0 —1 0 } s U
: +‘ : 0 - =1 By
\

aa.m h am—2,2 am—l 1 ) \vm

3.6 =

Um
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where B is a differential operator of order m—2 whose coefficients

are in L=(2,). We write (3.6) in the following form:

v+ Hu,=g.
Set
Leeons 1 —k 0
N=| dg--ee* Am D= )
L O )

where 2; are, characteristic roots of (1.5), and w=N"v, then we see

easily
(3.7 w.+ Dw,= N"(g— N, w— HN,w).

From now on we denote Slhlu(h,y)lzdy by {le(R)|* and

u(h,)v(h,y)dy by [u(h),v(R)].

Proposition 2. Let u be a solution of the elliptic equation (1.5)

in 8, and u be in C"(,). If for some >0, 6>1
ai+iu - (__ .—25~é)> —0, 7+ 'g "‘D

W—o(exp 7 (—0,1+;<m on I,
then we have®
S l ai-l-ju |
o|| 00y’

Proof. We reduce the equation (1.5) into the form (3.7). And
we put

(3.8) 2du?::o(exp(—h’s)) (h—0,i+;<m—1).

=0 _ 0 i
M—— ax ll(‘r’y) 6y > 4 1: 7771,

where 2, =2+ and 2,50 in 2,.

If yr(x) is a function of one variable and (z) &C'[a,b]. then
it holds

(@ pare-a (06~ v @ Pz 4@ ),

using successively this inequality, we have for the operator B in (3.6)

1) When all characteristic roots of (1.5) are real in 2« (hyperbolic), this proposition
holds also.
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oot rmhi3 | S o}
where P,€r, and P,=(h,vV'h—h?). Hence we see
(3.9 | Miww; (h) [’<const.( %l[wj(h) 2+ exp (— A5-€)).
i=1,---,m.

From Lemma 2 there are functions @,£C°(2,) (:=1,---,m) such

that
(3. 10) %,‘:wi on I, and Z’T),’EC1<~Q—a—' {0} ),

(3.11) (WP, @ (WP and  |[@.(R)[°

=o(exp(—h¥¢®)) (h—0).
Now we put z;=w,;—w,; and go,.(x)=<x+—il—>~n And let us denote
by ¢;(z=1,2,--+) the positive constants independent of 7z and h. We
have by [3] and [10]

A 2 0z
Sa%(x) ox  dy

0z; i 12dx

gﬁnl—@ —a <h+ %))st (D=t dz— 1.5, B)

(z‘f (h+%)<c{1> :

where [ 2,(3, 1) | <. (8)*[|2: () [P+ 0. (8)*] [2:(8), A2y (3] |
+ @u (h)zi (= <h>, Aiﬁziy(h)] ]
We see from (3.11) that [z;(8)]—0, [z:y(8)]|—0 as 6—0. Thus,

(8.12) S:%(x)z{

o0z, 0z llz
o /L—~ay 1 dx

=2 (1-a(h+-1))|ou@ lalidz
— u (B (2B, s (D] .

Since ¢.(h)?| [2:(h), dnziy(h)] Igcy(h—i-—?lz—)hz”, taking h-+ -711-< 21c in
1
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(3.12), we get

c.z(k+—1‘>—2n+Shwxx)znz\mz,uwxziS”co'ﬂ(x)znz;nzdx.
n 0 2n Jo

We substitute 2z;=w;—; into the inequality. Then we see

s <h + —712—>>2” + ZSZ% ()¥| Mw; ||’ dx+ 28:% (x)?| M7, |*dx

h h
+-o{ o @wldez2 @ wlbar.

From (3.9) and (3.11) we have

2n+2
Csn2n+2(_g__|__};_> exp<_h—5-(£/3))

—2n 2n+2 m (k|2
—I—cm”‘(h—!— 1 > (—]i—i-——1—> 228 flee;|dzx.
2 n 1=1

n 0

Let us take /H——i— sufficiently small and nA sufficiently large.

an easy computation shows, in order to prove

(3.13) S:m[[w,«]lzdx:0<exp<—<%>»5>> (h—0, i=1,---,m),

it is sufficient to show that we can choose 7 in such a way that

nzn+zgexp<< % >'H‘>,

hn+2 >2" < < h >“‘H’> ,
< —
(—————Zhn 5 ) =exp - &1, € >0,

(3.14)

439

where ¢; is a given number and ¢ will be determined later. The in-

equalities (3.14) are verified if the following inequalities are satisfied

e (—’21—>_Hl >0,
(3.15)

.—6.—5’
o = (4)

Here we can take € arbitrarily small if 7z is sufficiently large. If we
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take & sufficiently small, there is a positive number & such that

S+E’ G+ED/A+E
S S <3_> <<_2_) _
3 h h
2 ].Og —“2—

Let us take 7 in such a way that

S+ G+ED/QA+E

1 <—2->+<n<<——2—>+6 +.
3 \7Z h

2 log

2
Then (3.15) is satisfied and nh—>co as hA—0. Thus we have proved
(3.13).

Now we take an open disk Si; in S;. For the point (z,y) in
Si2 we denote by 71(x,y) the radius of a circle tangent to S; whose

center is (x,7y). It is easily seen that there is a constant ¢ such that

(3.16) a<r(x,y)Zcx.

Proposition 3. Let u be a solution of the elliptic equation
(1.5) in 9, and u be in C"(Q,). Then if for some 0, 6>>1

i+7
% =o(exp(—7r%%)) (—0,i+;<m—1) on T,,

we hZZ'Ue Zn Sllgn.ga

[

@GID

=o(exp(—7%)) (—0,i+;<im—1).
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Proof. We reduce the equation (1.5) into the form (3.7). We
set —23-—5:—2(34-—?3——)——;——. And we regard 3+—§—— as new 0.

Then by Proposition 2 we have
h
.

This means that

——————aifrju _ 2a’.:z: =o(exp(— AT EP))
0x'0y’

(h=0,i+j<m—1).

3.18)  erdz—olexp(—H =) (h—>0),
and for Bu in (3.6)
(3.19) S:”fBuﬁzdx=o(exp(—h"s“(‘sm)) (h—0).

We apply Proposition 1 for the equation (3.7) in a disk with
center (x,y) and with radius 1 (x,y). In (2.14) we can take B and
k as fixed constant in Sy;. And from the behavior of u at the origin
it is assumed that 7 (BR)<1. Putting p=3/2 in (2.14), we have
from (2.14) and (3.7)

|0: (2, y®) |

1/3
<cref(\§, | lwldzdy)
V(=22 +(y—y™)2 <BR

+ <SS ;%‘_, |w; |*dxdy

V{x—x()2+(y—yM)2<BR j=1

| P ]zdxdy>1/3} ,

SS V{x—x®)2+(y-y(®)2 <BR

where (2%, y®) €Sys, BR=r1(x®,y®) and C is a constant independ-
ent of (z,y). Thus we get

w30 1 <C G )Y )
z4+ry(x,9) m 2+7,(%,5) 1/3
(0 S Buipar)
0 j=1 0

combining (3.18) and (3.19), we obtain

|w; (z, y) [ Zconst. (¢ x) *Pexp (— (cx+x) 5 E™)
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< const. exp(—x¥E),
Hence we have

(3.20)

m—1
‘aa—x'é%f— <const. exp(—7EM) i+ <m—1.

Let us denote by /.., the line connecting the origin and the point

(x,y). Then using the mean value theorem on [/.,, we see

0w . L0 6
1axiay,. @ Isr 5 | T @),

where (2%,y?)&l..,,. Hence from (3.20) we get for 0" %u/0x'0y’
the same inequality as in (3.20). Repeating this process we have
obtaind (3.17).

We put for d>0 £..= {0<<xz<<h} N S: and I';.= {0<x<h} UdS,.
Then the following corollary holds. This proof is reduced to Proposi-

tion 2 by an adequate coordinate transformation.

Corollary 1. Let u be a solution of the elliptic equation (1.5)
in Qo4 and u be in C"(Q.4). Then if for some 0, 6>1

i+j.
%zo(exp(—r’““e)) (r—0,i+;<m—1) on TI.a,

we have in L.

0y

_ i . .. _
—W——o(exp( ) =0, i+;<m—1).

In the case of elliptic system (1.3) the reduced equation (3.7)

has g=0. Thus we have in particular.

Corollary 2. Let {u,} be solutions of the elliptic system (1.3)
in Qua and {uyy be in C(24). Then if for some e=>0, 6>1

u,=0(exp(—7%%) (—0,1<p<m) on T,
we have in Q.4
u,=o(exp(—77°%)) (—0,1=p<m).

4. We consider the equation (1.3) and (1.5) in 2...
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Proposition 4. There is a constant 8 such that if u is in C" (2..0)
and is a solution of (1.5) in ,. satisfying

itJ
4.1) 0™

W:o(exp(—r“s)) —=0,i+;j<m—1) in LQ.a

then u vanishes identically in 2,.. Here 8 is independent of u.
Before proving this proposition we prepare some lemmas. We

consider the next transformation from (x,y)-plane to (6, o)-plane

(4.2) o=r%x, 6=tan*(y/x).

Let us denote by R; an open rectangular in (6, p)-plane such as
—n/2<0<n/2, 0<p<d.

Then the transformation (4.2) maps S; onto R;. Further this trans-

formation and its inverse are C*. We see
6. 0, ———1—tan0 1/0
0= Oy 1—tan®¥ 2tanf/"
We eliminate the part p=d from the boundary of R, and denote

the remainder by 8R,. And let us put R;=R,+dR,;. For the func-
tion f(x,y) in S; we define a function f(ﬂ, o) in R; by

f(0,0) for (6,p)E0R,,

S0, 0)= { £(0,0) for (8, p) EdR..

Lemma 3. If f(x,y) €C(SL), then £(0,0) €C(Ry).
Since it is easily verified, we omit the proof. From now on we

denote _)’”V by f for simplicity. We consider the next equation in Sy
(4.4) u,+u,=F,

where u=C (S,), 2€C*(S,) and the imaginary part of 250 in Si.
Now by (4.3) the equation is transformed into

(4.5) (o=t A0y tuo+ (6,420, us=F.

Lemma 4. If we set f(0,0)=]|p.+2p,|? costl, then we see
FECYR,) and there is a positive constant m such that f>>m in Ra.
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Proef. Since f=|cos’@+ 24 sin 0 cos §—sin’f|?, there is a required
m. And we see by Lemma 3 feC*(R.).
Now the equation (4.5) is reduced to

(4.6) up+fcos'd (o, + 20,) (0.+20,) us= fcos'0 (p.+ 20,) F.

Setting this equation into the form
4.7) zc,,+—(1’—(Q+z'P)ue—=-G,

we have from (4.3)
P60, p) =2, f cos*d
Q (0, p) =fcos 0 {sin 8 (sin’0 — cos?d)
+ 21 (cos®@— 3cos 0 sin®d) +2 | 2|*cos*d sin 6},

(4.8)

where 2=14,+i2;,. By Lemma 3 and Lemma 4, we see P,QEC‘(R;).
Let us set

(4.9) a0, p>=Qa—-QPﬁ—1.

Then we have

Lemma 5. QPs/P is continuous in R.. And in particular when
2(0) = %1, a0, p)—0 uniformly in 0 as p—0.

Proof. As we easily see from (4.8), QP,=f"'cos* X (continuous
function). Then, in view of |1,]>>c(>0), the first assertion follows.
If we note 2(6,0) =1, 4(6,0)=0 and that f(0,0)=1, f4(8,0)=0, we

have «(#,0)=0. Since «(, p) is continuous in R, we have completed

the proof.

From now on we denote by || || a L* norm with respect to
6(16!<x/2). And we define a weight function by
(4.10) ¢.(0) =exp(10™°).

Proposition 5. Suppose that 2€C*(S,) and the imaginary part
of 350 in S;. Then there is a positive number & depending only on
A And if ueC'(S,) and satisfies for some positive e

u=o(exp(—r%%)) (r—0) in S,
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then we have for sufficiently small h

h 2
(4.11) S¢ dp

u,,+—‘1)—(Q+iP)uu

" ¢ 27, €1 hod
=cn T llec |12 dp A exp(2nh7®),

where ¢, ¢y, are positive constants independent of 7.
Proof. We set
(4.12) ¢llp+—L¢(Q+l.P)ue
o

= I:Qbu) = —10— ¢Qu9] + [_i—me_ ¢’u}.

Here we omit ¢.(¢) by ¢ and d/dp by’ (prime). In order to estimate
the L* norm of the left side of (4.11) it is necessary to estimate

following four terms.

w1 ={ew s+ 18w, oD
= s — e s
{2 glufpds.

0
3 | -
(4.14) —S <[L¢Q2L9 , U }+ rq&'u, 1 Qo '> dp
\L o A R |
= Shﬂ[Qeu,ltj dp.
)
k PR 1 . ,
O N (e [+ LbiPus, (o)’ |}
g b .
= i:dm, —1—¢iPu9J (h) +S l_qziu, quSPztaJdp
0 oL" 7 o
~Sh ou, —1—¢oiP'u9:{dp
oL 4

o1 i1
*TP«‘JWL, (pu) +T¢Qlta}dﬂ

+ Sh % i Pou, %qSQue]dp-
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k 1 1 ,. . 1
(4.16) —dQus, —¢7 Puy +L—¢1Pua, —Que )dpzo.
o\L o 0 0 0
We put the right side of (4.15) into 25 I;. Then we see
L= S" [—"3”—, L i Pup— ¢'u:]dp 2
ol o e P
L= S [q&u, ; (—-—¢1Pue—¢ u)j]dp—i—g o0
L= —Sh[—l—:ﬁz Y (——-¢1Pue—¢ u>:J
oL p
(" e¢" [ PQ ]
So , l: p WU dp.

Here we note PsQ/P is bounded by Lemma 5. Applying Cauchy’s

(2, u] dp,

]dp,

inequality to each term we get

417 41+ 15>_2S%’5'[(Q9+1— PO Vot ]y
— L exp(2nh™) - czs:ﬁs}uu I*do
—ail #latldo—c |69 luldo

— Sz { H (pu)'+ —i—tﬁQue\ 2

+ ” —i;—quue —o'u Lr} dp.

We put M=max

)
0

gné(ﬁ—}—l—M)S =13 Hu'{zdp— exp("nh %)

Qe+1——P%_;Q—[. Then combining (4.13) and (4.17)

we obtain

up+%(Q+iP)ue "do

—czS le|Pdo— canSS o lee|*dp.

Thus taking 6>M—1 and % sufficiently small, we have completed
the proof.

Corollary 3. If we assume 2(0)= *i in Proposition 5, then we
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can take & as an arbitrary number larger than 1.

Proof. We see from Lemma 5 Qo+1— Q%zZ%—a(ﬁ,p) (a(8,0)—0

uniformly in 6 as p—0). Thus combining (4.13) and (4.17) we have

" 2
X

=

2dp

Iiup—}—%(Qﬂ—iP)ue

Shﬁa(;—j;lz—q?”u”de_Sh_M:—’L[ @2+a6,p))u,uldp

0

— o S luldo e #lulidp

- CS (66|l dp— - exp(2nl™).

Since a(f, p)—0 uniformly in 6 as o—0, we see

S”W%Q#Ilullzdp‘s:

‘¢j" [(2+a(8, o)), uldp

=\ - 1—a() ¢lulids,

0 pa-rz

where a(p)—0 as p—0. Hence we can take 6 as an arbitrary number
larger than 1, if & is taken sufficiently small.

Remark 1. The decomposition of (4.12) is due to Mizohata
[10].

Remark 2. I. S. Bernstein [2] proved the uniqueness in Cauchy
problem for the elliptic operator with distinct characteristic roots with-
out dimensional condition. He treated the problem by polar coordinate
system (7,0). We used the above coordinate system (p,8) instead of
the polar coordinate system.

5. First we prove Theorem 2. By an adequate coordinate transformation
we can take 2=2,, and I'=T",.. The exponent § will be determined
later. We have from Corollary 1
0 (—75)) (—0) in 2
W—O\exp 7 J r m a,d[2

i+j<m—1,



448 Kazunari Hayashida

where ¢ can be taken as an arbitrary small positive number. By pro

position 5 there is a positive constant & such that if §<l6—e¢,

S 0000wt @,+ iPYwa o

>—%6Xp @nh™™) +c nZS ¢"5<0f2 [[zv;l[*dp,

where ¢,(p) =exp(np®). Hence we see from (3.7)

(5.1) S 02| Bue|*dp +--exp (2nh~®)

l

>CanZ‘S i llw;|[*dp.

T otz

By Poincaré’s inequality we have
llee]| < const. |[us]].
On the other hand

uo=1.(p cos)e+1u,(p cos 0 sin 6)s.
Hence

llzel| <const. (J[ec|| + [ay ][ .

Using successively this inequality, we get
(5.2) [ Bu||<cost. _};lflw,-}i.

Combining (5.1) and (5.2), we obtain

T 5otz

cs(hn)exp(2nh~ E°\2ZS o —solwsl*do.

Therefore when we take 6>>d,+¢, we see that it is contradict if é{[wj![’i(h
in the neighbourhood of p=0. By classical procedure we Jsee w,;=0
in 2. Thus the first assertion of Theorem 2 has been proved.

Next we consider the case where m=2 and the coefficients a;; of
the principal part are real. Let us set d=1-+¢(e=>0). Then we have
similarly

U exp(— ) (=0, >0)i+j<1.
ox'0y’ ’ o
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We can assume a;;(0)=4;; by a coordinate transformation. Thus we

can apply Corollary 3 in place of Proposition 5, and we can follow

the same process as in the proof of the first assertion. Hence we have
finished the proof of Theorem 2. If the equation (1.3) is reduced to
the equation (3.7), we see that g=0. Therefore the proof of Theorem

1 is contained in that of Theorem 2 as a special case.
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