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On the uniqueness in Cauchy's problem
for elliptic equations

By

Kazunari HAYASHIDA

1. It is well known that the uniqueness in Cauchy problem holds for

the second order elliptic equation ([1], [4], etc.). On the other hand

Mergelyan [9] showed in 1956 that the harmonic function vanishes

identically if the Cauthy data tends rapidly to zero at a point along

the initial surface. This fact has been extended immediately for the

second order elliptic epuation by Laiidis [7] and Lavrentev [8] . In

this note we shall try to extend their results to more general elliptic

equations.

Let F be a smooth Cauchy initial surface in a N dimensional

space RN and @ be a domain such that the boundary of Q contains F.

And we consider an elliptic operator L of order m defined in Q.

Then we shall say that the strong Cauchy uniqueness property holds

for L and F, if any solution u satisfying two following conditions

vanishes identically in Q\

(i) MeO"C0) and Lu = 0 in Q.

(ii) At a point PQ in the interior of r, the Cauchy data of u tends

to zero along F in such a way that

where 8 is a positive number depending only on L and F.

First we consider the case where L is of second order

(1.2) L = a
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in which a,-yeC2(J2) and bi9 ceC1^). In this case Landis" and

Lavrentev proved our strong Cauchy uniqueness property. In particular,

the latter showed that the exponent 8 in (1. 1) can be taken as an

arbitrary number larger than 2, if F is a portion of a spherical sur-

face. Their method could be said to give an explicit estimate expres-

sing a relation between the solution and the Cauchy data. This rela-

tion is called "well behaved" in the sense of F. John [6] .

Now does the strong Cauchy uniqueness property hold for higher

order elliptic equations? We can show this property if the dimension

N=2 and if the elliptic operator has distinct characteristic roots. This

is an extension of a result of Carleman [4] . In particular, for the

second order elliptic operator in (1. 2) the regularity assumptions on

the coefficients can be relaxed in such a way

a^eC1^), bt and ceEL°°02),

where the dimension N=2 and L°°(J2) means a class of bounded

measurable functions in Q. The method used in this note consists in

establishing an energy integral estimates containing an adequate weight

function.

From now on we consider in the 2 dimensional space with the

coordinate (x,y) and with the metric norm r( = (^-fy1)1'2)- Let F

be a smooth curve containing the origin in its interior and let Q be a

domain whose boundary contains T. First we treat the solutions

tip(p=l,"°,m) of the elliptic system

(i. 3) +Sfl* .Gr , ;y)-+:*, . , ( :c , ;y)K f =0,
ox g=i oy <7= i

where a^^C1 (£), bP,g^L°°(ti) and £^C1(£). We assume that all

characteristic roots of Ap of the determinant

(1.4) l*,.f-^..i=0

are distinct in J2 and all imaginary parts of Ap are not zero in J2.

This system was considered by Carleman [4] .

Theorem 1. There is a positive number o such that if the solii-
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tions Up of (1.3) satisfies

along r, then it = 0 in Q, zuhere d depends only on {ap,q} and F.

Next we consider the single elliptic equation of order m

(1.5) Lu^S a

In the same manner we assume that the characteristic roots of L are

distinct in Q and aij(i-\-j = ni} are in C1^), and the other coefficients

are in

Theorem 2. Let u be a solution of (1. 5) in Q and let u be in

C';z(j2). Then there is a positive number d depending only on L and

F. And if u satisfies

- r = o (exp ( -

along r, then it = 0 in Q. In particular u)hen m = 2 and the coef-

ficients of the principal part of L are real, the number d can be

taken as an arbitrary number larger than 1 under the assumption

that F is a circular arc.

The proof of these theorems will be given in the last section.

The author wishes to express his heartly thanks to Prof. S. Mizohata

for his kind suggestions and encouragement.

2. First we prepare a mean value property for solutions of the elliptic

equation. We consider in r<^RQ(<l) the first order elliptic equation

(2. 1) Lu=

where u, ^^C1 in r<LRQ and the imaginary part of A is not zero in

0. WeputM(J?)=max(l,^|, ^] ,U,|) and m(R) =max(l,H, |

And we denote the origin simply by 0. Then we have

Lemma 1. When J(0)=z' and Kp<2, the solution of (2.1)

satisfies
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(2.2) \u(0) |^CRw»-*m(K)"""Af OR)

'where C is a constant independent of u, A and R.

Proof. From now on we denote by Ci, C2 , • • • the constants in-

dependent of u, A and R.

We take the C°° function 0(7") :

f 1 in r<R/2
*(r)=< and

1 0 z;z

Set v = </>u. Then we see

(2.3) Lv = L<t>-u + 4>f

and

(2. 4) vx + zu, = Lt; + 0 (0) -£)vy.

Since v has compact carrier, we have from (2. 4)

(2.5) „(()) = —^\\ ±^r^^4—f^i.dxdy.
Z7T JJr^/e X + iy

And we see by (2. 3)

(2.6)
x-\-iy

R T

By Green's formula we get

\\ m7*JJr^je x + iy

, ff Z'U(O)-^) , 7+ \\ ; . N2 vdxdy.
JJr^ Cz:-t^302

Hence we have

(2.7)
rrgtf

Combining (2.5), (2.6) and (2.7), we obtain
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(2.8) K tf r

Applying Holder's inequality we see

ff 1 \u\
\\ -- -7JJr^r wCR)

where J- + — = 1. Since l</><2, 2<g and [M <m(R), it holds

R r

That is,

(2. 9)
2—

Similarly we have

(2.10)
Z — p

Thus combining (2. 8) , (2. 9) and (2. 10) , we have obtained the in-

equality (2.2).

Now we want to eliminate the assumption /l(0)— i from Lemma 1.

We put X = h + iki. And we transform the coordinate by

fx\( I 0 v /*v

\yv \-^(o)A(o) iA(o/ \y'
Then the operator L in (2. 1) is transformed into

(2. 11)

If we denote the new metric norm by r, we see easily the following

metric equivalent relation



434 Kazunari Hayashida

(2.12) B-V

where B is a positive constant depending only on ^i(O), ^3(0).

Applying Lemma 1 to the operator U in (2.11) we have

(2.13) |«(0)|:

where M( JR)=max(l,U|, |^ |> Vl) and w (#) =max(l, jw | , | / | ) . We
rgfl rk.R

note that ^ = ̂ 2(0)^ and ^' = ̂ *-i-^i(0)^. Then using (2.12), we get

MOO^MCBfl)max(l+ Ui(0) |,M,(0) |).

Similarly using the relation (2 . 12) for (2 . 13) , we obtain

Proposition 1. For the solution of (2. 1) it holds that if\.<p<2,

(2. 14) l

where £ = C^(0)cl/*)~1max(l+ 1^(0) ,Ma(0) |) a;^ C w a constant in-

dependent Of ti, Ay R.

30 In this section we see how the behavior of the solution of (1 . 3)

(or (1.5)) is influenced by the Cauchy data. Let us denote by Sd

an open disc with the center (d/29 0) and with the radius d/2. We

put Qh= {Q<x<h} PSi, rh= {0<x<h} HdS1 and lh={x = h}nS1.

Lemma 20 //weC'Cft,) and M = o(exp(-r"aM)) (r->0) afon^

ra for some positive numbers d, e, then there is a function v such

that

(i) v^C\Qa} and v = u on Fa

(ii) v^C\Qa~{G}} and

\ \v\*dy, \ \v,\*dy and \ \vs\*dy
jih Jih J/»

= o(exp(-r5)) (/z^O).
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Proof. We take a C°° function <p(x) such that

S q>(x)dx = \, and the carrier of q> C { | .x j <I1} ._oo

If we set

we see that

(3.1) /.GO

(3. 2) /, Oc) = 1 for j # <s and /. GC) = 0 for x\

(3.3) |/",(.r) ]<^1 and \dfs(x} I dx\<Lc/s (c is independent of 5).

We put &Gc) =exp( — x^8^(£/2)) and write a curve F' such that

')2 = x for

z = x for

The curve F' is smooth and tangent to Si from the interior. We_de-

fine a function v(x,y} by

(u (x, Vx — x*~)fkM!3 Oy - Vx - .r2) for 3/>0,

for
•'? 3^/ j /•

\u(x,

We see from (3.1), (3.2) that this function satisfies (i).

We have from (3.3)

\vy
(.X,T/X-3?)\/k(x),

\c\u(x,-V~^c^\/k(x~).

Let us note that

on

Hence u(x, Vx — x^/k(x) =o(l) (x->0). Thus we get

(3.4)

A computation shows for

vx = \ux (x, V^x*} + -|- * - -.
I ^ Vx—x21)
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while,

Hence we have for :y>-0

-
v x

Siinilarly we have the same inequality for 3><CO. Thus we obtain

(3.5)

Combining (3 . 4) and (3.5), we have completed the proof.

Now we consider in Qa the m-th order elliptic equation (1.5).

We can assume that the coefficient am,0 equals identically 1 in Qa. Let

us set

then we see

) -1 -. 0

o '•• -i
\ <Zo,iB "" ^fn-2,2 ^m-1,1 / \*Um
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where J$ is a differential operator of order m — 2 whose coefficients

are in L°° (j2fl) . We write (3 . 6) in the following form :

Set
' 1 1 N

.„,_! _„__!

D —l_x —

~*1 . ° )

0 ". -Jl-

where ^ are, characteristic roots of (1.5), and fw = N^Iv.> then we see

easily

(3.7) wx+Dwy=N^1(g-Nxw-HNyw').

From now on we denote \ \u(Ji,y} \2dy by j^(/z)(|2 and
J • h

by [u Qi) , v (Ji) ] .

Proposition 2. Let u be a solution of the elliptic equation (1.5)

in Qa and u be in Cm(Q^. If for some e>0,

on

then we have15

(3.8)

Proof. We reduce the equation (1 . 5) into the form (3.7). And

we put

where /lf = /In + il& and ^2-2^0 in Qa .

If ^r(x) is a function of one variable and i/r(:r) eOj/z, £] , then

it holds

using successively this inequality, we have for the operator .3 in (3 . 6)

1) When all characteristic roots of (1.5) are real in "So (hyperbolic), this proposition
holds also.
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|| C3«) (/O H^const. l|]|K(/2) || + S 2 g^,g", (ft) },

where Ph^ra and Ph=(h,Vh — h*}. Hence we see

(3. 9) UM^C/0 l!2^consU]K(/0 II2 + exp ( -

From Lemma 2 there are functions w,-eC°(j2fl) (j=l9-~,m) such

that

(3. 10) Wi = Wi on Ffl and wt e C1 (^ - {0} ) ,

(3.11) ll^WUMIfi)!,^)!!1 and |I

And let us denote— / 1 \^
Now we put Zi = Wi — Wi and ^«(^) = (^:H -- ]

by Ci(i=l9 2, •••) the positive constants independent of n and h. We

have by [3] and [10]

dZi , 0^;

9 :̂ 'kf 9y
2

^

(if (k + i-)<c^) ,

where |/.(a, A) |^^(5)2||2l.(5)||2 + ̂ (5)2[ [«,(*) ,^««,,

We see from (3.11) that ||z,(5)||-»0, |k(J,(8)||->0 as «->0. Thus,

(3.12) dZ;
-

^ ' dy dx

( 1 \~2w i i
h + I , taking h+ <-— in

72 / 72 ZCi
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(3.12), we get

J/*+^VVr^G02i!M,.^
\ n I Jo z?7 Jo

We substitute zi =
 twi — zvi into the inequality. Then we see

Jo

From (3.9) and (3.11) we have

( -1 \-2»/ 7, 1 \2«+2 w P A / 2

fc+-L) (-A-+— ) ^S\ ik-,|iV^.71 / \ 2 n / i= i jo

Let us take /x-f- - sufficiently small and nh sufficiently large. As

an easy computation shows, in order to prove

P^/2 / / / 7 \-6\

(3.13) \ ||te;,.||'̂  =
Jo

it is sufficient to show that we can choose n in such a way that

n-

(3. 14)

where GI is a given number and e' will be determined later. The in-

equalities (3.14) are verified if the following inequalities are satisfied

~5-fi

(3.15)

Here we can take e arbitrarily small if n is sufficiently large. If we
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take e sufficiently small, there is a positive number e' such that

1 / 2 \s+£'^/ 2 V5+£i:

s 2

Let us take n in such a way that

2 \s+£' ^/ 2

Then (3.15) is satisfied and nh-**x> as A->0. Thus we have proved

(3.13).

Now we take an open disk £1/3 in 5i. For the point (x,y) in

5i/2 we denote by ri(^c,3/) the radius of a circle tangent to Si whose

center is (x,y). It is easily seen that there is a constant c such that

(3.16) c^x<r^x,y}<cx.

Proposition 3e Let u be a solution of the elliptic equation

(1.5) in &a and u be in C'"(J2a). Then if for some e>0,

-l on

(3. 17)
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Proof. We reduce the equation (1.5) into the form (3.7). We

set — 2<5-£= — 2h5 + -f-j — -|-. And we regard <?+-f- as new d.
\ o / «3 o

Then by Proposition 2 we have

di+ju
-Oaf By'

This means that

(3. 18)

and for &u in (3.6)

(3. 19)

We apply Proposition 1 for the equation (3.7) in a disk with

center Cr?jO and with radius ri(x9y). In (2.14) we can take B and

k as fixed constant in 5'1/2. And from the behavior of u at the origin

it is assumed that !n(BR)<^l. Putting p = 3/2 in (2.14), we have

from (2.14) and (3.7)

({{
\J J ^U-^C«>))

[[,
JJ V(jc-^CO))2T

where (^w,yo))e5i/2, B^ = r1U
CO),yo)) and C is a constant independ-

ent of Or, 30. Thus we get

i/s

/p* + r1(*,>) m r»* + r (* ,JF) \ l /3)

+ (\ S!kvll2^+\ !W|2^) ,
\Jo y=i Jo / J

combining (3.18) and (3.19), we obtain

I w, (*, y) \ ̂ const. (c^j;) ' 2/3exp (-
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Hence we have

(3. 20) Iconst. exp( —r

Let us denote by l^x,y^ the line connecting the origin and the point

Cr,30. Then using the mean value theorem on l^x^ we see

where (^co
?^

a)) ^/u»- Hence from (3.20) we get for dm~2u/dxidyi

the same inequality as in (3.20). Repeating this process we have

obtaind (3.17).

We put for d>Q Qhtd= {0<^</z} R& and rktd= {0<x<h} (JdSd.

Then the following corollary holds. This proof is reduced to Proposi-

tion 2 by an adequate coordinate transformation.

Corollary 1. Let u be a solution of the elliptic equation (1.5)

in Qa,d and u be in Cm(Qtt^. Then if for some e>0, 8>1

- on

iv e have in

In the case of elliptic system (1.3) the reduced equation (3.7)

has g=0. Thus we have in particular.

Corollary 2, Let {up} be sohitions of the elliptic system (1. 3)

in Qa^d and {up} be in C1^^). Then if for some e>>0,

up = o (exp ( - 7~~2M) ) (;— >0, l<p<Lni) on Fa,d ,

-we have in -Qa,d/2

UP = o (exp ( - r~5) ) (7— >0, l<Lp<jri) .

4D We consider the equation (1.3) and (1.5) in Qa,d-
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Proposition 4. There is a constant 8 such that if u is in Cm(Qatd)

and is a solution of (1.5) in &atd satisfying

(4.1) _ = 0(exp(-r-s)) (r_>o,t+y^m-l) in

then u vanishes identically in Qa,d. Here d is independent of u.

Before proving this proposition we prepare some lemmas. We

consider the next transformation from (^x, y} -plane to (0, p) -plane

(4.2)

Let us denote by Rd an open rectangular in (0, p) -plane such as

-7r/2<0<7r/2, 0<p<<^.

Then the transformation (4.2) maps Sd onto Rd. Further this trans-

formation and its inverse are C°°. We see

— — tanfl 1/p
(4.3) ' >-' P

\pf py
/ U-tan20 2 t a n 0 / '

We eliminate the part p = d from the boundary of Rd and denote

the remainder by QRd. And let us put Rd = Rd + dRd. For the func-

tion f(x> y} in Sd we define a function /(#, p) in Rd by

^) =
/(0?0) for

Lemma 3. If f(x,y) eC^S), ^fen (0, p)

Since it is easily verified, we omit the proof. From now on we

denote f by f for simplicity. We consider the next equation in Sd

(4.4) us + lu,=F,

where M^C1(5d), A^O-^Sd) and the imaginary part of ^0 in *?«?.

Now by (4 . 3) the equation is transformed into

(4. 5)

Lemma 4, // ?:e;£ 5^ f(6,p)=\px + lpy\*co$*0, then we see

25 a positive constant m such that f>m in Rd .
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Proof. Since f= |cos20 + 2>J sin 0 cos d — sin20|2, there is a required

m. And we see by Lemma 3 /eC^CR*).

Now the equation (4.5) is reduced to

(4. 6) up +/~1cos40 (p, + Ip,) (flx + J0,) UB^f^cos^ (p, + Ip,) F.

Setting this equation into the form

(4.7) ttp

we have from (4. 3)

Pd09p)

Q (P, P) =f~lcos 6 (sin 0 (sin20 - cos20)

+ A! (cos30 - 3cos 6 sin20) + 2 U | Vo52^ sin 0} ,

where ^ = ̂  + ̂ 2. By Lemma 3 and Lemma 4, we see

Let us set

(4.9) «(*,„) =Q9

Then we have

Lemma 5e QPe/P is continuous in Rd. And in particular when

^(0) = ±i, a(0,p)— >0 uniformly in 0 as p— >0.

Proof . As we easily see from (4.8), QPe =f~lcos26 X (continuous

function). Then, in view of ]^2 ̂ ^(>0), the first assertion follows.

If we note >l(0,0)=z', ^(^,0)=0 and that /(^,0)=1, /fl(^,0)=0, we

have o:(0, 0)=0. Since a(0,p} is continuous inJ^, we have completed

the proof.

From now on we denote by |[ ]| a L2 norm with respect to

0(|0|<jr/2). And we define a weight function by

(4.10) 0.(p)=exp(7zp-8).

Proposition 5* Suppose that /leC^/Sd) #w<i ^/i^ imaginary part

of ^7^=0 m &. TAe;i ^/ier^ is a positive number d depending only on

A. And if weC^GSj) and satisfies for some positive e

w = o(exp(-7-~5-£)) (r->0) in Sd,
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then we have for sufficiently small h

(4. 11) r«tf Mp +
Jo p

- - ex

where Ci,ca , '" are positive constants independent of n.

Proof. We set

(4. 12) 0HP + — 0 (Q + iP) ue
P

= I (0zO ' +
L p

Here we omit 0«(p) by 0 and d/dp by ' (prime). In order to estimate

the L2 norm of the left side of (4.11) it is necessary to estimate

following four terms.

(4. 13)

(4. 14) - C Yf J
Jo\L p

= \ _rr_
Jo p

J

-y 0w,— ̂ "P

o p
r^r i i n
\ — 4>iP*u9 —ifrQtio \dp
JoL p p J
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(4.16) [* (T —<I>QuB, —(/>iPue~] + [— <t>iPuQ, -^-(/>Que~}} dp = 0.
J o \ L p p J L p p J/

5

We put the right side of (4.15) into S //. Then we see
y-i

j {"I" <t>U 1 ..p ./ IT , f* 00' r n ,J2r=\ j£ — - <l>iPue~<l)U\dp+\^^—[u,u]dp,
JoL P P J Jo p

r pr -j
01 -v^,w Lfp,

L r J

o (0

r A
-\ _

Jo
r_ _
L P

Here we note PeQ/P is bounded by Lemma 5. Applying Cauchy's
inequality to each term we get

(4. 17) (4. 14) + (4. l 5 ^ Q 9 + l - - i i , u\dp
r

P P

do.

We put M=max

we obtain
r»A

<AS

Qe+l- PeQ
P

. Then combining (4.13) and (4.17)

dp

o p

Thus taking d>M— 1 and 7i sufficiently small, we have completed
the proof.

Corollary 3e If we assume ^(0) = ±z' z'/z Proposition 5,
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can take d as an arbitrary number larger than 1.

Proof. We see from Lemma 5 Qo+l- -^~- = 2 + a(6,p) (a(6,p)->0

uniformly in 6 as p-»0). Thus combining (4.13) and (4.17) we have

V Ik + — (Q + z P) uo \dp
o II Q II

o p

Since ^(^3io)-^0 uniformly in 9 as p-»0, we see

where <^(p)->0 as p— >0. Hence we can take d as an arbitrary number
larger than 1, if h is taken sufficiently small.

Remark 1. The decomposition of (4.12) is due to Mizohata

[10].

Remark 2. I. S. Bernstein [2] proved the uniqueness in Cauchy

problem for the elliptic operator with distinct characteristic roots with-

out dimensional condition. He treated the problem by polar coordinate

system (r, 0) . We used the above coordinate system (p, 0) instead of

the polar coordinate system.

5. First we prove Theorem 2. By an adequate coordinate transformation

we can take Q=-Qa.d and r = ra,d. The exponent 8 will be determined
later. We have from Corollary 1

n
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where e can be taken as an arbitrary small positive number. By pro

position 5 there is a positive constant dQ such that if 3Q<^d — e,

S f V (P) 2 1 W/P + — (Qi + i-P/) w; * I dpy=ijo II p 11

where $„ GO = exp (.np~s°~) . Hence we see from (3 . 7)

(5. 1)

;=1JO p

By Poincare's inequality we have

\\u\\<Lcon.st.\\uo\\.

On the other hand

ug=us(p cos20^e + Uy(p cos 6 sin
Hence

Using successively this inequality, we get

(5.2) ||^«Kcost.i]||u.v||.
y=i

Combining (5 . 1) and (5.2), we obtain

p

Therefore when we take d>8Q + e, we see that it is contradict if S! ze>/!|2^0
/• = !

in the neighbourhood of p = 0. By classical procedure we see Wj=Q

in Q. Thus the first assertion of Theorem 2 has been proved.

Next we consider the case where 7?z = 2 and the coefficients a^ of

the principal part are real. Let us set fl=14-e(e>0). Then we have

similarly
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We can assume tf/y(0)=5l-j- by a coordinate transformation. Thus we

can apply Corollary 3 in place of Proposition 5, and we can follow

the same process as in the proof of the first assertion. Hence we have

finished the proof of Theorem 2. If the equation (1. 3) is reduced to

the equation (3.7), we see that g=0. Therefore the proof of Theorem

1 is contained in that of Theorem 2 as a special case.

REFERENCES

[1] N. Aronszajn, A unique continuation theorem for solutions of elliptic partial dif-
ferential equations or inequalities of second order, J. Math. Pures Appl., 36 (1957),
235-249.

[2] I. S. Bernstein, On the unique continuation problem of elliptic partial differential
equations, J. Math. & Mech., 10 (1961), 579-606.

[3] A. P. Calderon, Uniqueness in the Cauchy problem for partial differential equations,
Amer. J. Math., 80 (1958), 16-36.

[4] T. Carleman, Sur un probleme d'unicite pour les systemes d'equations aux derivees
partiells a deux variables independants, Arkiv Mat., 26 B (1938), 1-9.

[5] E. Heinz, Ubber die Eindeutigkeit beim Cauchyschen Anfangswertproblem einer
elliptischen Differentialgleichung zweiter Ordnung, Nach. Akad. Wiss. Gsttingen
1 (1955), 1-12.

[6] F. John, Continuous dependence on data for solutions of partial differential equa-
tions with a prescribed bound, Comm. Pure Appl. Math., 13 (I960), 551-585.

[7] E. M. Landis, On some properties of elliptic equations, Dokl. Akad. Nauk SSSR
107 (1956), 640-643 (Russian).

[8] M. M. Lavrentev, On Cauchy's boundary value problem for linear elliptic equations
of the second order, Dokl. Akad. Nauk SSSR, 112 (1957) 195-197 (Russian).

[9] S. N. Mergelyan, Harmonic approximation and approximate solution of Cauchy's
problem for Laplace equation, Dokl. Akad. Nauk SSSR, 107 (1956), 644-647
(Russian).

[10] S. Mizohata, Unicite du prolongement des solutions des equation elliptiques du
quatrieme ordre,~Proc. Japan Acad., 34 (1958), 687-692.




