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On a method of acceleration
of convergence

By

Sin HITOTUMATU*

§0. Introduction

In a recent paper [4], the author discussed the numerical com-
putation of incomplete or complete gamma function through power

series and continued fraction.
When we use the continued fraction, the convergence of the suc-

cessive approximative values is rather slow, so that a certain accelara-
tion is desirable. In the present paper, the author discusses a method
of acceleration, which is a slight modification of Aitken's formula

and of quite general character.
The author is indepted to CDC 6600 in the computing center at

Brookhaven National Laboratory,13 for various numerical experiments.

§1. The original problem

The original formura for the incomplete gamma function is as
follows:

(1) '
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The first term is the asymptotic expansion of the incomplete gamma

function and the final term means a continued fraction. Its successive

approximative values pn/qa are given by the following recurrence
formula

(9^ h — 0 / ) — 1 n — 1 n— r\" J j-J 1 \Jj JJ 0 -*-j t/ —1 -L j If 0 *^ J

The same recurrence formulas hold for ^«'s, too.

The formulas are true for arbitrary complex values of x and v,

except when # is real negative, and in addition, for the first power

series some modifications are necessary when v is a non-positive inte-

ger. N may be an arbitrary non-negative integer, but in practice, N

is chosen such that | N— v \ — I x \ becomes as small as possible. By

a recurrence formula of the incomplete gamma function, we may

restrict our attention to 0<lRe v<l, without loss of generality.

Now, the convergence of the sequence p»/qn is rather slow. For

example, we need 27 repetitions when #=1.0, v = Q for the accuracy

10~8, and 54 repetitions when # = 1.0, y = 0.5 for the accuracy 10~12.

We remark that throughout the paper, we count the whole application

of (2) as one repetition, so that an=p2n/q2n is the ^-th approximate

value. When # is real positive and i^O, in which case we are main-

ly interested, the sequence pa/q» itself converges oscillatorily, and the

partial sequences p2n/q2n and ^2»-i/^2«-i converge monotonously (cf. [5],
[7]). This suggests that the mean value

(3) 4

will give a simple acceleration. (3) is effective also for complex

argument #, but we need still an alternative acceleration.



On a method of acceleration of convergence 3

It is known (cf. [3] )2) that the absolute value of the truncation

error of pnjqn is asymptotically of the form

A*e*V", 0<e*<l?.4*>0

where A* and e* are constants depending upon x, \> and N. As is seen

from this, the convergence is rapid at first and becomes slower and

slower successively; but when \x\ is large enough, e* being small,

we may fortunately stop the repetitions before the convergence becomes

very slow.

From the remark given above, the principal error term for an

==Pzn/q2n IS Of tllC f 01111

(4) As**, e = e*vf, 0<e<l; A= ±A

when x>Q, i^O. Though we have the expressions of the constants

A and e theoretically, we shall mainly use the fact that the main

error term has a form like (4) for some constants A, e, in the fol-

lowing.

§2. Modified Aitken's method

For a while, let us assume that the error of an=p2n/q2n itself is

just (4). Then three consecutive approximative values are

(5)

respectively, where V is the true value.

We put i/n—l = k, Vn = l, i/n+l = m for the sake of simplicity.

Remark that the second difference

(6) 3= (/-*)-(*»-/)

is much smaller than the values of k, /, m and even if compared

with the first differences l—k, m — l. In fact, we have, as the first

approximation, the following formulas

2) In paper [3], only the case u = l/2 is discussed, but similar theorems hold also
for
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Vn t ,or roughly

Now, we begin with a more general formula:

' ff^i= V+Aek,

(8)

'n+1=V+Aem,

instead of (5), and assume that (6) is small compared with / — k,

m — l. Then it is easy to see that

and then

(9) p= J*+1 _ * =e'-*-g_.—_

where we have put

(10) *->-T=^

We call A the modification factor.

Though A is a function of e, we may estimate it in various ways

as in the next paragraph, hence we proceed henceforth as if A is a

known quantity. Then we have

Aem= ®"+l~^"y

and finally

If 5 is precisely 0, we have A=l and the formula (11) is nothing

but the so-called Aitken's acceleration formula or the Aitkeris d2-

algorithm ([!]; see also [2] Chap. 4, or [6]). Hence (11) may be
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called a modified Aitken's method.

In the practical use, it will be more convenient to write the de-

nominator of (11) as

(12) [(0.+i —0») —(0,. —0,-i)

where we have put

' 1-e" '

The first term in (12) is the second difference of (8).

Now, in our original problem, the right hand side of (11) is not

the precise value V, because (4) itself is not the actual error, but its

main term. Nevertheless, we may expect that the value defined by

(11) much improves the approximation, if we choose A properly.

§3. The determination of the modification factor A

In the original problem in §1, we may have a possibility to choose

A=l, taking al9 a^ a9 or a±, aQ, a16 instead of three consecutive ap-

proximations (5). Or, simply neglecting d, we may assume A = l.

However, these procedures do not give satisfactory results in practice,

and we had better to look for the factor A.

i) As for (5), one of the selection of A is the following:

(13) A = A,=

or, neglecting smaller terms we may put

A „„ 1

(iso A=FA;-

(13) comes from the following considerations. Applying the approxi-

mation (7) we have

f-M^ r=l A = e — -*- OL

^*' r * • £^7(2«_-i/2) 1-ojA '

where we put

(15) a = e^/(4««-5/4> f t=(4n2- 5/4) /(2»-l/2) =2n +1/2.

In general, e may be assumed not so small; otherwise we need no
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particular acceleration. Hence we may assume that a. is fairly close

to 1. (13) is nothing but the limit of the right hand side of (14)

when OL tends to 1.

Many examples show that (13) gives much better results compared

with the choice A = l. However, in the original problem, some ex

periments show that it will be better to take

(16) A = A f = - , r=r? = - ,

instead of (13).

ii) Another choice of A is the following:

1-_
2 - j _ _ n 2 > H l / 2 » T — T2 - |___n2«+l/2 '

where we put

KI

If 0 = 1, r is replaced by l/(2»+l/2), and then (17) reduces to (13').

(17) comes from the following approximation of (14). From (9)

we have

Applying the approximations (7) and (13'), we may assume

• 4n-l
which gives

iii) As will be shown below, there is a similar but alternative

selection of 0 in (17), say 0 = p1/ZB, i.e.,

-f _ 1-1 MK I _ l/2n

(is) A=A;=P"» _ t t , r = r i = _ I B r .

Let us consider other choices of A. In the original problem, ap-

proximative equations
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hold, where a is given by (15). (19) follows easily from (7), (9)

and (14). If we equate both sides of (19), we have

(20) P(l-«r^1/2) = ̂ "+1/2(l-^""1/z).

Remembering that a. is close to 1, it is easy to see that (20) has a

root a very near to p1/2H, which corresponds to the A for our present

purpose. If we put a = ̂ ]2n and insert it into (14), we have just (18)

given above.

iv) In order to have a more precise approximation, we replace
^2,Hi/2 in both sides of ^0) by ^V/4", since OL is close to p1/2". After

this replacement, (20) reduces to a quadratic equation if we put

«2»=P+/,
say:

(21) f- [P"4»G, + l)-2^+(l-P
1'4")(p2+p)=0.

We need the smaller root of (21), since (21) has two positive roots

and t must be very small. It is

4P(1-V2") 7/a

- pu*(1_p). J '

Noting 0<|0<;l and 1— p1/2/z being small, we expand the last term,

and it is approximately

(22) t=

The root (22) gives us
1-1/4,,

,2,1 _1_ P

and hence

(23) A = A3 = -a£l7r = f-2-Y"1""^/*'

We again mention that (01/2/z is close to 1, and hence (23) may be
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replaced simply by

/T)A\ A ~l/2» 1 P
( ^4 ) A4 — P ' ~Z 1+1/0..
N. X = I -I ^J.Tj./^«

or, noting

£

if Jf is sufficiently near 1, we may replace (23) by

AA — [Yl— ^ ^ 1—^L\ 4»>/ i -pp i / 8

v) So far, we have discussed various approximations of A. In

most cases, there are only little differences among the values (17),

(18), (23), (24) and (25). For example, the difference between (18)

and (24) is

whose absolute value is about 3.6 xl(T3 when p = 0.3, n = 5. Later we

give some examples of the various choices of the values of A. Pro-

bably, Ai in (13;) or & in (18) will be the simplest and the most

preferable approximation of A in the practical application.

§4. Four point acceleration

The acceleration method discussed above uses three consecutive

terms. There are other formulas using four consecutive terms.

In the case of linear convergence, i. e., if

an= V+A&*,

there is an alternative acceleration method, say:

17— n _ \&n+2 #»+! ) \&n+2 #K ) __ #«+2#«~l dn&n+l
y — Cln+2 s N 7 N — •

Under the assumption (5), (26) should be modified as follows:

where
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(28) A^-^*- ;̂;;:̂ - —.
Since a = e~Vn+z + Vn+i +v» -^»-i js close to 1, and

i/n — i/n — l
~-]/n + 2

we may use

(29) * n

n+l n + 1

Table 1 Table 2

V

X

N

n

fl»-i

07*

«»+l

P

4l

Jl

Jf

^3

^2

A*
A±

"5

^1

y ^
^2

Js

0M+2

y*

true value

£^

Example 1

0

2.0
1

5

0. 01878318876

0. 01877201332

0. 01876876153

0. 290976

0. 903798

0. 904762

0.888889

0.841209

0.840141

0.848213

0. 843665

0. 848257

0. 01876729966—09

0. 01876718845—0io

0. 01876704142-09'

0. 01876706637—0(o

0. 01876771765

0.01876717536—010

0. 0187671309

7. Oio-3

Example 2

0
3.0

3

3

0. 001721034461

0. 001706356128

0. 001703968113

0. 162690

0. 841727

0. 846154

0. 800000

0.697938

0. 696402

0. 714987

0. 704315

0. 715045

0. 001703399777—06

0. 001703359580—07

0. 001703241112— 0£

0. 001703250871—05

0. 001703492462

0. 001703342621—09

0.00170334287

0.5
1.0
0

4

-0.2783221014

-0.2786468689

-0.2787464214

0. 306535

0. 880478

0. 882353

0. 857143

0. 811618

0. 808500

0. 819785

0. 813329

0. 820079

-0.2787994150

-0.2788018441

-0.2788072089

-0.2788058516

-0.2787813860

-0.2788023037

-0.2788055853I
3.5io-3 (1.4io-2)

, a'n = pin-i/Qm-i in Table 1; and On= the mean (3) in Table 2. V is
the value (11) using various approximation of J's, and "K* means the value (27),
using A in (29).
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for the modification factor A, similarly as (13). Of course, there are

many other approximations of A in (28) as in the previous paragraph.

But experiments show that (29) gives fairly good results.

§5. Numerical examples

In Table 1, we give some examples of various approximations of

A and the accelerated results for the term of continued fraction in (1).

Table 2 is another example applying the formula (11) to the mean

value (3). The results seem to be fairly good.
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