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§0. Introduction

Since about 1955, one has investigated the descriptive set theory

from the standpoint of the effective hierarchy. Such a theory is called

"effective descriptive set theory" by Addison. Many results appeared

in this branch (e.g., [1-4], [15], [27-28], [32], [33-35], [36], [37]). The

present paper belongs to the same branch. In this theory, several clas-

sical theorems can be very easily proved, sometimes by using results
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in the recursive function theory. The main reasons are based on full

use of logical smybols and on the consideration of the character of

an individual real number itself (such as being (hyper) arithmetically

real). Such examples will be stated in §2 below. To some sets and

ordinals whose existence had been proved classically, we shall determine

their positions which they occupy in the effective hierarchy. For ins-

tance, it is well-known that every non-denumerable analytic set contains

a perfect subset.i:> For this, we can obtain Theorem 2: Every non-

denumerable ^-set in NN contains a perfect subset P which is nj-

recursively closed, and hence it is in the class A\. (For notations

and terminology, see the following sections.) Since there is a non-

denumerable Si-set which contains no non-void Hi-subsets (Theorem

3), such a P cannot be (in general) a Ill-set. The above results will

be proved in §3.

Concerning the Lebesgue measure, one knows that every analytic

set is Lebesgue measurable. Kreisel [18] shows that the measure of

an arithmetical set in the segment /= [0, 1] is an arithmetical real

number. (Cf. Grzegorczyk [6].) It is proved that this fact also

remains true when we consider arithmetical sets in NN instead of those

in / (Corollary 3). What sort of real number is the measure of a Si-

set in NN? To this question we answer by Theorem 8 as follows:

The measure of a ^]l-set is a Si real number in a suitable sense.

And hence it is seen that the measure of every A\-set is a A\

real number (in the usual sense). The former gives an improve-

ment of Sampei [28; Theorem 5], — Some of our results are closely

related to and overlapped with those of Sampei [28]. But both were

obtained almost independently. — As applications of Theorem 8 we

shall give respective versions of Selivanowski's theorem concerning CA-

sets [29] and of Kondo-Tugue's theorem [14]. These are the main

contents of §§4-5.

In §6 we shall deal a Hi-set containing a perfect subset. There

we shall obtain an effective variant of Lusin's result [24], asserting

1) Here and after "perfect" means "non-empty perfect".
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that one can choose a perfect subset in a CA-set having a non-denu-

merable constituent. In §7. we obtain a result concerning a basis

theorem for the arithmetical sets in NN, that is theorem 16: If E

is an arithmetical set and mes(E)>Q, then E contains an arithme-

tical point. When E is II? (in a hyperarithmetical function), this theo-

rem is contrasted to Kleene [8; XXVI]. (See Remark 4 below.)

Finally, in §8 we shall obtain an effective version of Baire's theorem

with respect to a monotone well-ordered family of closed (open) sets.

Namely let 3 be a Si-family of open sets in /. (For its definition,

see §8 below.) If 3 is well-ordered by the inclusion relation c=,

then its order-type represents a constructive ordinal (Theorem 18).

This theorem will be proved by using the following proposition (Corol-

lary 5): Let E be a ^l-set in NN. If E is well-ordered with res-

pect to the usual linear ordering of real numbers, then its order-

type represents a constructive ordinal.

I wish express my hearty thanks to Professor Motokiti Kondo for

his valuable suggestions and kind encouragement in the preparation of

this paper.

§1. Preliminaries

1.1. Notations and terminology. Let TV and NN be the set of

all natural numbers and the set of all 1-place number-theoretic func-

tions, respectively. The lower case Roman letters mostly are used as

variables ranging over N or constants of N, if nothing is said to the

contrary. The lower case Greek letters (except for f and ->?, which are

reserved to represent ordinal numbers) are used as constants of or

variables over NN. We identify NN with the Baire's zero-space and

often do so a sequence number <*(£)(=£!) with a Baire's interval dHl...Hk

where ni = a(i —1) + 1. Notation and terminology for the recursive

function theory are ones in Kleene [7-10] if we do not indicate other-

wise. Following Addison [3], we denote by Si or Hi the class of

sets (or predicates) expressible in the respective forms in Kleene's

(arithmetical for r = 0 and analytic for r = l) hierarchy, according as
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the outermost quantifier is the existential or the universal one. After
Shoenfield we put 4; = SI D n I.

Let {*(!), 0(2),-, 3(»), • • •} and {**(!), 3*(2),-,**(»),-} be
standard effective enumerations of all sequence numbers (=£ 1) and
of all sequence numbers of length k>Q without repetition, respectively.
Of course we may assume lkn$k(n) is recursive. When we regard

{<5(^)}«>o and {5*(w)}ff>0 as sequences of Baire's intervals, we add 5(0) =
fl*(0)=0 ( = the empty set) to them. Let / denote the closed interval

[0,1] and {!„} n>Q denote an effective enumeration of all open intervals

0"», s») with rational endpoints contained in / without repetition.
Further let /0 = 0 and r0 = Sc = 0. When we consider sets in the space
/, "open" and "closed" are understood relative to /.

1.2. We shall often use the following the uniformization theorem

— which was first proved by Kondo in the classical case — and/or the
effective choice principle of its special case:2)

Uniformization Theorem (Addison [2], Kondo [11], Sampei
[26], Suzuki [32]). Every Hi-set in NNxNN can be made uniform

by a set of the same class.

Effective Choice Principle. From every non-empty Hi-set in

NN one can choose a point a such that the one element set {a} is

also a III-set; and hence a itself is a A\ number-theoretic function
(i.e., its representing predicate can be expressed in a A\-form}.

§2. Examples

In this paragraph we shall give several examples which are easily

proved by the recursuve function theoretic method rather than the

classical descriptive set theoretic one.

2.1. Let D be a set in the product space Xx Y, where X= Y=

NN, and let D<OL> denote the set {/3| O, £>eD}. The set, which consists

of all points a such that J9/oc> are not well-ordered by the usual linear

2) The method of using this principle was suggested by Professor Y. Sampei to
the author. Also cf. [28].
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ordering <3) with respect to the positive direction of the F-axis, is

called the set determined by the sieve D.
(A). The set E determined by a ^-sieve D is also a SI set.

(Lusin [23; p. 180])

Proof. We can describe the predicate "^e£"" as follows:

where /3,(0 = /3(/(#> 0) and / is a (fixed) usual pairing function.
Hence E is SI since 0,eD<a> is Si. (Q.E.D.)

The relativized version of (A) implies the classical one.

2.2. Let D be a Si-set in X X F.
(B) If E= (OL\ D/a-y is not scattered} , //&gw E is a ^l-set. (Lusin

[23; p. 182])

Proof. It holds the following equivalences:

a^E^ D<a> contains a subset dense in itself,
== _£)<a> contains a countable subset dense in itself,

= (3/3)[(w)(ft,e#'a>)A(the set {pn\ «;>()} is dense in it-
self)].

But

(ft. I ̂ ^0} is dense in itself =(»)(3r) [lim /37(o = j9i.]. Hence E
is S. (Q.E.D.)

2.3. It is well-known that there is a G5-set which can be made
uniform by no analytic set. Corresponding to this we have:

(C) There is a Hi- set in XxY which can be made uniform

by no Sl-s0£.

Proof .4) Gandy [5] proved that there is a recursive K0(u, v} such
that

(1)
(2)

3)
4) This proof is due to Dr. Y. Suzuki. He obtained it as an effective counterpart

of a classical result of P. Novikov.
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where the index M[a] indicates that the quantifier is restricted to the

set c#[oj, which is the set of all 1-place number-theoretic functions

hyperarithmetical in a. Let E be a set NN X NN defined by

(3)

E is a disired set. For, suppose E were uniformized by a Si-set B\

(4)

(5)

Take a recursive function <*<>• Then ,B<ao> is also Si, and by (1) and

(4) it consists of a single point, say /30. Hence, clearly /30 is hyperari-

thmetical. But since B^E, by (2) /30 cannot be hyperarithmetical, and

hence we have a contradiction.

2.4. Lusin proved a classical analytic set in Xx Y can be made

uniform by a ^4p(T5-set (cf . [22 ; p. 66] ) . Watanabe [38] showed that

it can be uniformized by the complement of a Ap(T-set. But these proofs

are rather complicated and/or geometrical. We can obtain a more

simpler proof of the above result.

(Z?) Every Si-set in X X Y can be uniformized by the comple-

ment of a (Si)Pa-set.5)

To prove this proposition, we use a basis result of Kleene [6] .

He showed that

where r(fl) = (A*)(3«)(^)A'(r(fl)*2*+1*5U)).6) We remark that if K

is recursive then the function r is in the class (SD

5) A set E is said to be a (Zi)p-set, if it is the difference of two Si-sets. A set
E is said to be a (ZU)pu-set, if it is expressible in the following form:

where P and Q are in the classes Si and n}, respectively. We shall denote by
C(SI)pa the class of all sets whose complements belong to the class (Z})pa.

6) This corresponds to considering the following system of sets in the classical
analytic set theory:

where E= U fl .EKOMIJ—K*) is a given analytic set.
'
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Now let

where R(r, u, v} is recursive. Following Kleene [8] and Tugue-Tanaka

[37] we define

Seq2(w)^Seq(^)A^ = H pt*</*(»)
M;,= n $00, -•»,+! for y = o,

/</*(»)

and

Then we have

(6)

Now we shall define the partial functional W as follows:

(7)

Then W satisfies the following condition:

(8) (30)Q(r,/3)-K#)[?r<r>00 is defined

Let U(r, /3) be defined by the following equivalence:

By (7) —(8) and the above remark, r<r>(^)=^ is expressible of a

C(Si)p^-form; and hence so is £/(?',/3). Further the £7 satisfies the

following conditions:

(3j3)G(r,j3)-*(3!j9)£7(r,j9), and

tf(r,/3)->Q(r,fl),

by (6) —(9). Consequently the set r?Z7(r, j9) is a C(22)pcr-umformiz-

ator of the Si-set fgQ(r,j3). (Q.E.D.)

2.5. Tugue-Tanaka [37] obtained a simple proof of a result which

implies Lusin's "Theoreme sur la projection d'ensemble d'unicite".
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§3. Non-denumerable Si-sets

3.L Regularization of a given Souslin's system. Let E be a Si-

subset of NN defined as follows:

where J?O(M, #) is a recursive number-theoretic predicate. Following

Mostowski we define

f n p<*>1 if x<lh(w),
rst(w,*) = 1 '<*

I 0 otherwise.

Then "rs£" is recursive and

*<i#-*rs£(5(*), 0 = 5(0

holds. Now let

, 0,

^?! is also recursive and satisfies (1) and (2) below:

(1) «e£s (30)00^(500, £(*))> and

(2) 51(5(^ + l),g(^ + l))->i?1(5

Further let u™ be defined as follows:

if

if (3M)J?i(«, w)

(«, w)] if (3*0

if (3«) J?i(w

By (3) we have

(4) (3*0^, w}-^(n)R,(u(:\ w).

We shall define the functions /, ^, /2 and a predicate 7?2 in the follow-

ing way:

7) Ki and Kz are the recursive functions that satisfy the condition
= x.
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g(k\w)= D. pf(i'w^+\

/(w, 10,0) = I g M *" .'
I 1 otherwise,

f sg \ u — UhfolLw^ I if Seq (w) l\lh (w) = 1,
f(u,w,Y) = \

( 1 otherwise.

For &>1,

if

if

where t =

otherwise.

Then obviously the function / is arithmetical and hence so is
And j??2 has the following properties:

( i ) R2(l, 1) is true,

(ii) if Seq(u)\l Seq(w)\/lh(u)3=lh(w)9 then Rz(u, w) is false,

and

(iii) (w) [Seq (w) -> (3 ! M)

Lemma 1.

Proof. Suppose ct^E. By (1) there is a function j9 such that
fa(k),$(k)}. By the definition of M^) we can find a sequence

such that

(5) «-i!(i}) = S(*) for

Take r(K)=J(p(k),mJ. Then I(*;r(*)) =g(A) and
= mk^. By the definition of ^?2 and by (5) we have

-R2(M,rOfe)) =« = a(£) for

Since l?2(S(0),r(0)) is true, it holds

8)
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(6)

Hence we have (3r) (K) R2(jx.(K) , r(k)}. Conversely, suppose there is

a function r such that (6) holds. Take j9(fe)=-K1(r(*)). First we

shall prove:

(7)

Assume there is an #>0 such that (3w)^i(w» £(#))• By (2) we would

have (3M)-Ri(«, /3(* + l)). Hence, since j??2(5(#+l), r(# + l))

=fl*Tl(0, where

(8) *

we would have

(9)

By the above (iii) and (6)

and hence by (8) it would be

Ext (F41(0,5(*)).

This contradicts (9). Hence we must have (7). By (7) and the de-

finition of R2 the following equivalence holds:

£2(w,TO) s « = «i&(*)
1

).y(*)) for

By our assumption (6) it holds

(10) fc>0 -> 5(*) =

On the other hand, by (4) and (7)

especially

Hence by (10) we have (k)k 0-f?i («(&), ?(^))» Consequently it is proved

(3^) (*)J?i(5(*), ^(fe)), since ^(5(0), ^(0)) is true. Thus

(Q.E.D.)
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Now we shall define R as follows:

(11) R(u,w)

9 0, rst(w, *))•

Lemma 2. The predicate R(u,w) is arithmetical and satisfies
the following conditions :

(12) *e£= (30) (*)£(«(*), £(£))•

(13) 5(1, 1) is true.

(14) For each k and ft £Ae set &R(a(K),'pW) either is empty
or consists of a single Barie's interval of order k.

(15) R&(k + VJ(k + l»-»R(a(k

Proof is obvious by Lemma 1 and (11).

S.,2. The evaluation of the predicate

Theorem 1. Let E be a ^l-set. Then \E\>*0 is expressible
in a 'Si-form.

Proof .9) Let E be defined by

a^E^ (3/9) 005o(5(*), PW),

where RQ is recursive. By Lemma 2 we can find an arithmetical pred-

icate R such that (12) — (15) hold. Then |J?j>»0 can be expressed

in the following form:

(16) |£|>»o-(30)e(/3),

where

(17) QGO ̂  (A) (S^(p(*)) A(3«)fi(w, 0(ft))} A

and

9) We shall use the method of proof in Kondo [13].
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is an effective enumeration (without repetition) of all sequence number
consisting of 0 and 1 only. We prove (16) : Suppose there is a func-
tion /3 such that Q(/3). Let M (a, w) be defined as follows:

r £(«(/), flGi/O [u; = P(A)])) if (3*) [!<; =
j where / =

otherwise.

Then we have

(18) £*/(«;, 0) AAf(o>, w)-*M(a, v),

and

(19) (v)

In fact, let w = p(K),v = p(k')J = lh(&(K)) and /' = /A(/3(*'))- By the
premise of (18), Ext(p(K), p(A')) holds. Hence by (17),
19 (*'))• Since Mfe w), we have 5(5(/), /5(*)). Thus £(«(/'), j
by (15). This proves (18). Next, we show (19) : For each v^2N and
& there is a number #* and a function r such that v(A)=p(^*) and

(*)[£(?*) ^Ow*)] by (17), where w* = /A (/3 (?*))• Obviously

(20)

Since (*) (3 «)/?(«, /3(?*))i we have (£) (3 «)./?(«, f (w*))- Hence by
(20), (14) and (15)

Again by (15) and (20)

So, the unique <* such that (&)-ff(5(j»*)> r(i«0) holds belongs to the
set £ (by (12)). Since M(«, y(^))=^(^(m,), F(wO), (19) holds.

Now we shall show

(21)

Let qk and rk be the numbers such that v(^)=0(#*) and r(&)
respectively. As qk^rk and lh(p(qk))=lh(p(rk))=k, we have



Some results in the effective descriptive set theory 23

Hence by the definition of M

Thus, (21) is true. Let

(22) M=^(3v)

Then by (18), (21) and (19) M=A(K) (3y) [ve2NAM(«, P(*))] and

0^=Mc£t. As the quantifier (Sv)^" on the right-hand member of (22)

can be replaced by a bounded existential number-quantifier with suitable

recursive conditions, M is a closed set in the space NN. (Call to

mind the fact that each set aRfa(lh($(k}}}j$(k)} is open-closed in

NN.) Further the set M is dense in itself. For, let a. be an arbitrary

element of M. Then there is a v<EE2" such that (K)M(a, v(/0). By

(19) (W)aVa(*)Af(«',v(ft)). Let >/(*)= !-"(*) and

, v(i) if
x'(0 if »=*,
0 otherwise.

Since r*^2^, by (19) for each k there is a unique function ak such that

(e)M(^,n(0). Of course M(aj*,f *(* + !)), namely Af(«*,P(fe)* [' 10)

By (18) we have Af^, v(fe)). On the other hand, by (21)

Hence ak^a. for all k. Further, if k^k' then ak^ak
f. Consequently,

OL is a limiting point of M Hence M is dense in itself. Thus, M

is a perfect subset of E. This implies |£"|>»0.

Conversely, suppose |£|:>tfo. Then for any v^2N there are dif-

ferent sequence numbers fi(v(&)) (& = 0, 1, 2, • • • ) such that for each k

( i ) if v,re2" and 5(ft)^r(*) then

(iii)
10)
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and hence by (15) it holds:

(iv) *(

Take j3(fe)=fl(p(&)). This function /9 satisfies the condition Q(j9).

Thus we have proved (16).

Since j?? is arithmetical, |£|>^0 is expressible of the form Si-

This completes the proof of theorem 1.

3.3. A set P in NN is said to be Hl-recursively closed if its

complement is expressible in the following form:

CP=\J{3(n)\nt=Q],

for some Q recursive in a Hi-number- theoretic predicate (cf. Kreisel

[17]).

Theorem 2. For every non-denumerable ^{-set E in NN there

exists a perfect subset P of E which is H\-recursively closed. A

fortiori, P belongs to the class A\.

Proof. By Lemma 2, we can define an arithmetical predicate R

satisfying the condition (12) — (15). Since haw[a^Ef\R(a(lh(u?)},

w)] is Si, by Theorem 1 so is *w[\En&R(aVh(w)), w)]>*0].

Hence there is a recursive function <p such that

where O is the complete Ill-set (of natural numbers) defined in Kleene

[7]. Now suppose |£|>>>?0. We shall define the functions /, g, I

and sets Mn as follows:

Step 0. /(0) = GmO [w = <(u;)o, (w)i>11)A(Oi<.S^ ((«;),)

and
By our assumption |£ ^^0,7(0) is defined and hence for i<2

11) <0o, 0i,..., fl*-i>= n
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Let MQ=

Step n + 1. Suppose /(f), /(f), A£(f<>0 and #(f) (f<;2"+2-3)

are defined, and |En£ff(*(/00), £(2K+1-2 + 0) l>*o for *'

Then define

^^
*+i Ext((w~)h £(2"+1-2 + 0)]. Obvi-

ously /(« + !) is well defined by the hypothesis of induction.

Let £(0 = (/(» + l)W+'HO for 2M+2-2</<2M+3-3, and /(
3-3))). Then

o, if 2«+2

Let Mn+1=

Thus we obtain /, £•, / and

We shall regard each Mn as a union of Baire's intervals and hence

as a subset of NN. Now let M and P be defined as follows:

Af=U Mw and P=CM.
n = Q

Then by the definitions, we see that P is ni-recursively closed. Fur-

ther let the function ^ be defined recursively as follows:

= [0] , ^(1) = [1] and for i^2

l)*[0] if 2 |f,
iK^ ) =

I ^ ( [«' /2] -!)*[!] otherwise,

where [t/j] is the quotient function. The ty enumerates the {0, 1}-

sequence numbers in the following way:

[0]° [I]1

[0,0] 2 [0,1] 3 [1,0] 4 [1,1] 5

For v^2N and k we put
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and

for ve2*. Then
00 00

P= S n £" v(») = n s £V(»).
j>-E2# B=I »=i ve2jsr

From this, it can be shown that P is a perfect subset of E. Thus

we have accomplished the proof of Theorem 2.

Remark 1. P is in the class C(Si)p<r. For, since M« is recursive

in O there is a number £ such that

where r is the representing function of O. Then P can be expressed

in the following form:

(23) a^P^ (»)(*) [a-e *(

where 5(*)eM.s(3^) [TJ(r(jO,*, n,

d(k)<E:Mn is a (SO pa-predicate. Hence P belongs to the class

by (23).

3o4» Now let us prove the following

Theorem 3, There is a non-denumerable mi-set in NN which

contains no non-empty Hi-subset.

Proofo Let

For every Ill-predicate P(a) (of a single function- variable at) there

is an n such that

By the effective choice principle (with a number-parameter n), from

each set &V(a,n) we can select a unit subset aVifan) such that

iG#, #) is also a nrpredicate.12) Let PF be the set defined as

12) Of course, for n such that (aa) V(a, w),aVi(a,M) is empty.
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follows :

Then W is a Hi-set and intersects with every non-void Hi-set in NN.
Consequently, the complement W = C W is a Si-set and it contains
no non-void Hi-subset. (The set W is similar to a simple set of
natural numbers in the sense of Post [25] .) Further W is non-
denumerable, since W is denumerable. (Q.E.D.)

Corollary 1. A set P given in Theorem 2 cannot, in general,

be in the class Hi.

Problem 1. Let E be a given non-denumerable Si-set in NN.
Can we obtain a perfect subset P of E which is in the class Si?
(Cf. Remark 2 below.)

By means of the Uniformization Theorem for Hi-sets (see § 1.2),
it is well-known that every S^set in the space Xx Y (where X=

Y=NN} can be uniformized by a SJ-set (Kondo [11], Sampei [27]).
Hence by the method of the proof of Theorem 3 we can obtain a non-
denumerable Hg-set in NN such that it contains no non-empty Srsubset.
Further, under GodeFs axiom of constructibility, for each ?€>3 every
S"-set in Xx Y can be made uniform by a S»-set, by using a result
of Addison [4;p.351]. (This also is a well-known fact.) Thus we
obtain the

Theorem 4. For each C>2, there is a non-denumerable Hi-set
in NN such that it does not contain any non-empty ^n-subsets,
where we assume the axiom of constructibility for the case n^>3.

3.5. Let E be a subset of NN. We denote the set of all con-
densation points of E contained in E by Ec. Let Er = E—Ec.

Theorem 5. If E is a ^l-set in NN, then Ec is also a Sl-s^
and hence Er is in the class (Si)P.

In fact, a^Ec can be expressed in the following form:

By Theorem 1 \d(n) n£j>*o is Si, and hence so is Ec. (Q.E.D.)
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Remark 2. As long as we concern with sets in the space NN,

Theorem 5 implies Kreisel's [17; Theorem 1] . Because, further if E

is closed, then EC = EP ( = the perfect kernel of E). Since a set is

Ill-closed in the sense of Kreisel if and only if it is a Si-set and is

closed, Ep is Ill-closed.

Theorem 6. There is a ^l-set E such that the Er is not in

the class C(Si)p.

Proof. Let A and B be Si-sets of natural numbers such that
A-B is not in the class CCSiV10 Let

=0] and

Then A* — B* is a denurnerable set in NN and is not in the class
C(Sl)p. We define E as follows:

E=A* + M,

where 0e Af=0(0)e5Ai3(l) -0. Obviously £ is Si and Er = A*-B*.

Hence E is a desired set.

Theorem 7. // E is a non-empty denumerable mi-set in NN

then the members of E can be enumerated by a A\-function.1^

Proof. For any non-empty set E it holds

where QG*) = (/3) [/3e£-*(3«) (*)(/3(*) =a(n, *))] . Since E is a Si-
set, we can select a ^-function r0 from the set E by using (D) in
§2.4. On the other hand, the dQ(a) is a non-empty Hi-set. Hence
by the effective choice principle we can select a Ja-function ^0 such
that Q(<EO) holds. We define the function a(n, x) as follows:

*(»,*) = { *°n'x l
 B- - -

I r0(x) otherwise.

Then 6 is also a Jrfunction and {^^<r(^, ^)}»=o,i,2,... enumerates the

13) Such a set A-B can be obtained by the diagonal procedure.
14) Sampei [28] also proved the same theorem.
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members of E. (Q.E.D.)

Theorem 7 is a refinement of a theorem of Kondo [13] .

§4. The measure of an arithmetical set

4.1. Speaker [30] proved that there exists a monotone increasing
bounded primitive recursive sequence of rationals {an} such that

lim an = x is not a general recursive real number. We may assume

Then one can find a recursive function <p such that

(0,
*=o

The set

E=NNH U(0,<O
K = 0

is recursively open and E= NN^} (0, r). Hence

mes(E) =x,

where "mes" denotes the Lebesgue measure. Thus we have the

Lemma 3. There is a recursively open subset of NN whose

measure is not a general recursive real number.

But mes(E) is an arithmetical real number for every arithmetical
set -E; a fortiori for a recursively open set. Kreisel [18] showed this
result for the case where E is contained in the space /, by using the
Borel-Lebesgue's theorem. Later on, the author also obtained the same
result independently. Now we shall show that this result remains true

when £ is a subset of NN.

Lemma 4. // E is a ^-set in NN, then mes (j?) is an arith-
metical real number.

Proof. Let £ be a Si-set in NN, then there is a recursive func-
tion (p such that

Let 0 be the function defined as follows: If <p(n)=Q for all n, then
d(m)=Q for all m. If (g«) [<p(n) =£0],
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0(0) = P(Gi*) 00

=«0 A 00 {*(*>(*))
) if there is such a k,

0 otherwise.

Then (i) 0 is arithmetical, (ii) (5((?(w))} m = 0 , i ,2 . . . , are disjoint each other
00

and (iii) E=\J 8(0(m)). Hence by (ii) and (iii)

k
Let ak = ̂ mes (5(0 (w))). Then {ak} is an arithmetical sequence of

»2 = 0

rational numbers and converges. Hence the limit of {ak} is an arithme-

tical real number.15) This completes the proof of Lemma 4.
By a slight modification of the proof of Lemma 4 we obtain the

Corollary 2. Let Ek be sets in NN (hyper-} arithmetically open
uniformly in k. Namely

for some (hyper-} arithmetical function (p. Then {mes(Ek)} is a

(hyper-} arithmetical sequence of real numbers.

4o2. Lemma 5. Every arithmetical set E in NN can be ex-

pressed in the following form :

a^E^ (*,W2,) (**-!»«,-!) - - - (wO (3 W0) [a<E:d(<p(m0, m^ • • - , W/))] ,

where <p is recursive and (*,-w,-) denotes (3mz-) or (m} according

as i is even or odd,
Proof is obvious. If we consider an arithmetical sequence of sets

instead of a single set, then such a <p can be obtained as an arithme-
tical function.

Lemma 6- For a given &>0; let {J?«lM2...KJ be a sequence de-

fined as follows :

15) See Grzegorczyk [6; Theorem 2.11].
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• • • , w/))], where (pis arithmetical. Then {mes(Eni...Hk)} is an arith-

metical k-fold sequence of real numbers.

Proof. We use the mathematical induction on t. Basis. t = 0.
This is no other than Corollary 2. Induction step. Let

•-, w,+1))], where <p is arithmetical. We define J?l'?..«ft as follows:

(1)

Obviously

..n^ = limmes(Ett(...Hk}.

By advancing (*/w/) in (1) and by contracting adjacent quantifiers of
the same kind, we can find an arithmetical function 0 such that

(2)

By using the hypothesis of the induction (taking k-fl instead of k)
on (2), {mes(E^LKk)} is an arithmetical (& + l)-fold sequence of real

numbers. Hence lim {mes(E(£.nk
>)} is also an arithmetical k-fold se-

/->oo

quence of real numbers153. (Q.E.D.)

Corollary 3. (Cf. Kreisel [18; p. 383].) // E is an arithme-
tical set in NN, then mes(E) is an arithmetical real numbers.

Remark 3. (i) if P(^, k) and QG*, k) are arithmetical predicates,
then the predicates

is also arithmetical.

(ii) Let Ek= U 8(<p(n, A)) and Fk= U
» = 0 « = 0

where <p, ^ are (hyper) arithmetical functions. Then
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is a (hyper) arithmetical predicate.
(i) follows from Lemmas 5 and 6, and (ii) follows from Corol-

lary 2. Remark 3 will be used below.

§5. The measure of a Si-set and related problems

5.1. Let E be a Si-set defined as follows:

where R is arithmetical and satisfies (3. 12) — (3. 15). (See Lemma 2.)

Let ££(*) = #1? («(&)> 5 (£))• Then we obtain a monotonous and arith-

metical Souslin's system {EnQnr..nk^} such that each Enoni...Ht_i either is

empty or consists of a single Baire's interval of order k. For any se-

quence number w, let

Ew = «

= u N n £Uio>3E=# j=o

As is known,

(1) E=\J EM and EL*°'"''H*=[J E^'"'9^\
fl = 0 11 = 0

Let ^ be an arbitrary positive integer. We shall define a function j3

inductively as follows: Step 0. By (1) there is a number w such

that

mes(\J Ew^mes(E)-l~--. Put0(0)=iw. Step

Suppose j9(0), • • • , &(K) are defined and
3(0) 0(*)

u ••• u.
«n = 0 nb=Q

By (1) there is a number w such that
3(0) <3« >»

mes((J - U U£:"--"

Put | 3 f e + l)=w. Thus
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3(0) 0(4) / 1 \~|
U "• U E^—^^mestE)- (1-- -=-) L

«0 = 0 « * = 0 \ P /J

3(0) 0(4) 3(0) 0(* + l)

Since U ••• U EL"°""'**^ U ••• U E^--"^3, we have
«0 = 0 « f e = 0 «0 = 0 K f e -r l=0

(2) mes(H U E^'"'
*=o »i<0(0

*<*

Let 0<<2) be defined as follows:

(3) <Z><^> = m£s(n U

Then obviously (^) [(P<oj> < mes(E)] , and hence

(4) sup {0<«0> 1 ̂ e^} < mes(E).

On the other hand, by (2)

Hence it holds: sup {0<aC> I aeNN} ^>mes(E'). Together with (4) we
obtain

(5) mes (£) - sup {$<» \a^NN}.

By (3) we can see that $<«:) is an arithmetical real number relative
to a. Indeed, it can be proved (by using the monotonity of {EHQ...ttk}

and Konig's Lemma [16] ) that

(6) h U £*«"••**= Fl U EMQni...}Jk.
k = Q »,•<«(!) *=0 »,<«(!)

l<k l<k

(Cf. Kondo-Tugue [14: Lemma 1] .) Since the set on the right-hand
side of (6) is arithmetical in a, its measure is a real number arith-
metical in ay by the relativized form of Cerollary 3. Thus we can

find pair of sets Aaj B^ consisting of rational numbers only which are

arithmetical in a and satisfy the condition 0<<*>= G4«, 5«), where
C4tt, 5a) denotes the Dedekind cut. If we put A= U {Aa\a& NN} and
B = the complement of A with respect to the rational numbers, then

Definition 1. A real number r(e/) is said to be a Si (Hi, or
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41) -real number if the set of all rationals smaller than x is in the class
SKresp. Ill or 4).16)

Since the above set A is in the class Si, mes(E') is a Si-real
number. Thus we obtain the

Theorem 8. The measure of a ^l-set in NN is a ^l-real num-
ber.

Corollary 4. For every Hi-set 8 in NN, mes(G} is a Hi-real
number. Consequently the measure of a A\-set is a A\-real number.

5,2. Applications of Theorem 8. 5.2.1. A refined form of a

Selivanowski theorem concerning CA-sets (i.e., complements of analytic

sets). Let G be a CAset in NN, and let £Vs (??<£) be the consti-

tuents of G with respect to a sieve determining its complement:

Selivanowski [29] showed that if mes(<5)>0 then there is an ordinal
number 7?Q-<£ such that

mes(£)=mes( U <?„)•
'Klo

For the case of a nj-set, we have the

Theorem 9. // G is a Hi-set and mes(£)>Q, then there is a
A\-ordinal f 17) such that

(7) mes(<5)=mes( U £„),

where G^9s(^<Sf) are the constituents of G with respect to any
recursive sieve determining its complement^

Proof. Let F be an arithmetical universal set for the closed sets

16) This definition for "a J}-real number" is equivalent to the other ones. (e. g.,
in Grzegorczyk [6], reading "hyperarithmetical" instead of "elementarily
definable" there.)

17) An ordinal number £ is called a ^-ordinal, if it is the order-type of a ^-well-
ordering of natural numbers.

18) This theorem is an improvement of Sampei [28; Theorem 6]. And Theorem
9 of [35] is a Corollary of this Theorem 9.
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in NN. (See §6.1 below.) We define the predicate K(OL, ri) as follows:

(8) K(a, ri) = F^

The first conjunction-member of the right-hand side of (8) is Hi and

by Corollary 4 the second is Si- Hence K is A\. Since mes(G}>§,

<? contains a closed subset whose measure is arbitrarily accessible to

mes(G}. Hence it holds (w) (3at)K(a, ri). Consequently, we can

choose a point a» from each set aK(pt, ri) such that Xnxa(n, #) is a

z/2-function, where a(w, #) =<*„(#). (Kondo [11]. Also cf. Sampei

[28] .) On the other hand, the sets F a"y are arithmetical in a. Hence

by the relativized form of Tugue-Tanaka [37 ; Theorem 3] , there are

ordinals $n recursive in a. such that

F a"> c U Sr, for each n.
>7<f«

Let ? = sup«{£K}. Then f is a 4-ordinal, since OL is A\. Consequently

we have (7), because for all n

mes(F a» ) > mes(S) — ±— and F a« e U ^^^
72 H~ 1 *7<;f

This completes the proof of Theorem 9.

Problem 2. Let <? be an arbitrarily given Ill-subset of NN whose

measure is positive. And let £Vs be its constituents with respect

to any recursive sieve determining CG. Does it hold mes(S) =

mes( U <?J? Here o>i denotes the first non-constructive ordinal. *}

T}CU)1

5.2.2. The following theorem is an effective version of Kondo-

Tugue's theorem [14] .

Theorem 10. Let E be a set in the class SI (or nl) in NNx

NN. Then the set

is contained in the same class.

Proof. First we remark that in the proof of Theorem 8 the con-

*} See the end of this paper.
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dition "mes(E)>Q" is not used. Let

Then by Theorem 8, Aa is Si or II \ relative to a according as E is
Si or ni. Further we have

F(3) = {a\ (3r) [r>OAre4a]},

where r is a variable ranging over the rational numbers. Hence r(-E)
is Si or Hi according as E is so.

5.3. Definition 2. A real number x is called a Jj-real number
if there is a Ji-function QJ such that

We denote this expression by "a det x".
A real number is a Ji-real number if and only if it is a

number in the sense of Definition 1.
Let 5 be a set of natural numbers which is Si but not II i. Take

(9) b = S-AJ-.
1«

Then 0<Cb<:l and b is not a Ji-real number. For, suppose b were
a Ji-real number. Then there would be a Ji-function /3 suet that

/3 det b, and hence

= «+ S 0(0]-1=1
Consequently 5 would be a 2/i-set, which is a contradiction.

Now we define the set M(c/) as follows:

= 0<x<b.

Then for any a and x it holds:

If OL det x, then

(10) xeM= f lr(0)

19) The experession (9) is not unique only if 5 either is finite or it contains even-
tually, that is, from a certain number on, all natural numbers. But since 5
is a proper Si-set, it is not the case.
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By -A(oO we denote the right-hand member of (10). Since 5 is Si,

4(a:) is also Si. Let M* = MHNN. Then

where W is the arithmetical functional defined as follows

y<0>(0)=OA
0(0) +1

Hence M* is a Si-subset of NN. Further we have

That is, W£s(M*) is not a Ji-real number. Thus we obtain the

Theorem 11. There is a ^l-subset of NN whose measure is not
a A\-real number, and hence, is not a Hi-real number.

5.4. A "massgleiche Hiille" of a Si-set. Sampei [28] proved
that a G5-set including a given Si-set and having the same measure
with it can be defined by a Js-predicate. We can improve this result,
thus:

Such a G5-set can be defined by a Ja-predicate.

Proof. Let G(^NNxNN) be a universal set for the G8-sets in
NN. We may assume G is arithmetical. Then mes(G/a-^ is an arith-
metical real number relative to <#.20) Now let M be the set defined as
follows :

By using Theorem 8 it is seen that M is A\. Since M^0, we can

find a Jj-function a0 contained in M (Kondo [11] . Also cf. Sampei

[28]). Hence G< O C°N is a 4-set, which is a desired one. (Q.E.D.)

§6. Hi-sets containing perfect subsets

6.1. A universal set for the perfect sets in NN. Let $* be

20) Note that even if (3oO[G(ar) = $] this fact remains true.



38 Hisao Tanaka

a variable ranging over 2N. We shall identify $ with the following

real number:

g»(0) 0»(1) . . g'(*) . ...
2 22 2fe+1 '

Let F be the set in NN X / defined as follows :

(For 7^ see §1.1.) Then F is a universal set for the closed sets in

/, namely

( i ) (a) [F(a> is closed in /] and

(ii) For every closed set 5 in / there is an a^NN such that

F<a> = S, where F'^= {0* <^,|3#>eF}.

Since F(oc> is arithmetical relative to a, so is the predicate "Fx'a>

is prefect", by Kreisel [17; Lemma A]. Further we define the set

V as follows :

<^,/9>eF= {F<a>is perfect in 7}-^

where ^'<0> is the arithmetical functional such that

0(0)+ 1 0(1)+ 1

+ -

Lemma 7. Tfe set V is an arithmetical universal set for the

perfect sets in NN.

Proof, (i) F^a> is either NN or the intersection of NN with a

perfect subset of /. Obviously V^y is not empty13. Since the Baire's

space NN is regarded as a subspace of 7, V GC> is perfect in JV*.

(ii) Let 5 be an arbitrary perfect subset of NN. Then the closure

S in the space 7 is perfect in 7. And there is an a. such that S =

F<a>. For this a it holds S= V<a\ (Q.E.D.)

662. Lusin [24] proved that one can effectively choose a perfect
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subset in a CAset having a non-denumerable constituent. For the
case of a Ill-set, we obtain the

Theorem 12. Let G be a Hi- subset of NN. Suppose G contains

a perfect subset. Then there is a perfect subset P of G such that

(i) it is a A\-set?i:> and

(ii) any recursive sieve determining C8 can be bounded on the set
P by a A\- ordinal.2^

Proof. Let M be defined as follows:

where V is the arithmetical universal set for the perfect sets given
in §6.1. Since M is Hi and is not empty by the supposition, we can

select a function a^M such that it is a A\-i unction (the effective

choice principle).

Let P= V™\ The P is a perfect subset of S. Since Fis arith-

metical, P is a Jj-set. This proves (i). Next we shall prove (ii).
By the definition of V, we have

CP= U {/3]r</3>e/aoCK)},
»=o

where W' is the arithmetical functional defined in §6.1. On the other
hand, there is an arithmetical functional Z<W> which satisfies the fol-
lowing conditions:

U {
H = 0

Hence

(i)
H = 0

Put r = Z<^0>. Then r is a Jj-f unction. By (1) we can find a pre-
dicate J?Y(j9, ri) recursive in r such that

(2)

21) Sampei [28; Theorem 2] obtained the same result.
22) By (ii) it is seen that there is an Jj-ordinal 77 such that £, is non-denumera-

ble. This is Corollary 2 of Sampei [28].
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Since P is disjoint with the Si-set C£, by Tugue-Tanaka [37; Theo-

rem 3] there are numbers e and a such that

(3) 03) [££ W&] (W is the set defined in Spector [31]),

(4) a^O\

(5) (0)[0eP->|*|*<|0 *], and

(6) £ is a uniform Godel number of the well-ordering of the section

F'3> of the recursive sieve T determining C6, from /3. Thus, PC U <?>].
i<i«r

Hence r can be bounded on the set P by a 4-ordinal | a | y. This proves

(ii).

§7. Concerning a basis result for the arithmetical sets

7.1. For any subset E^NN and <p^NN, <p is said to be a cov-

ering of E (denoted by 'VeC^CE)") if E <^\J d(<p(ri)}. Let

where Jl is the set of all arithmetical 1-place number-theoretic func-

tions. Such a cp is said to be a arithmetical covering of E.

Definition 3. For any

= inf
^>e^lCt;(£)

where w^5 is the Lebesgue measure.

Lemma 8. mes* has the following properties:

(1) 0<M£S*(E)<1 for every E^NN, and mes*(<l>)=Q.

(2) A^C~> mes* (A) <mes* (JB) .

(3) w^5* 04 U 5) <m^5* (^4) + mes*

(4) If E is measurable, then m

Proof is obvious.

7.2. Lemma 9. mes*(JC)=\.

Proof. Suppose mes*(JC)<'\.. Then there would be a function

such that
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(5) J2cU<5C?W), and
n

(6)

By using (6) we shall prove that there is a function oL^Jl such that

a. is not contained in LJ5(p(w)). This contradicts (5).
«

Construction of such an <%.23) Step 0. First we easily have

(7) (3 w) { mes( [m] fl Ufl(p(rc)))<w0s( [m] ) } .

(Here we regard the sequence number [m] as the corresponding Baire's

interval.) Then we can define

[mes([m]
M

Step k-\-l. Assume that W*, m?, • • • , m* are all defined and

(8) wes([w?,w*, • • - , w*] nUff(p(*0))<fl*0s([w?, w*, • • • ,mf ] )
n

holds. Then, similary as in the proof of (7) (using (8) instead of

(6)), we obtain

(3m) {mes([m£, • • - , m?9 m] nU^(^(»)))<w^5([w?, • • • , mt, m ] ) } .
n

Hence we can define

mt+1= (fj.m) [mes( [mf, • • - , m}, m] fl U^(^(»)))

<mes( [mf, • • • , mf , m] )] ,

Thus we have the sequence

W0*, W?, • • • , W?, •••

such that for each & (8) holds. Let a(k)=m* for all &. By Remark

3 (ii) (in §4.2), a. is arithmetical, i.e., oL^Jl. But a<£ Ufi(p(*0). For,

suppose ojelj5(^(w)). If we take a sufficiently large integer A, the
n

Baire's interval H(k} is contained in U5(^(w)). Hence S(^) R
M

. Consequently we have

23) This construction is one simplified by a suggestion of Professor Y. Sampei. The
original is rather complicated.
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This contradicts (8). Thus we have accomplished the proof of Lemma 9.
Similarly we obtain the

Lemma 10. If E is a ^l-set, then

7.3* Lemma 11. // E is a Ill-set in NN, then

mes*(EnJ[) ^ mes(E).

Proof. Suppose

( 9 ) mes*(Er\J[)<mes(E).

Since CE is a Si-set, there is a recursive function i/n such that

Then we have

(10)

Hence by (9) and (10) together with (3) of Lemma 8, it would be

true that

=1.

This contradicts Lemma 9.

Theorem 13. If E is n? and mes(E}>Q, then E contains an

arithmetical point.

Proof. Since mes(E)>Q, by Lemma 11 we obtain

As by (1) of Lemma 8 m£S*(0)-0, we have E[~\Jl^<j>. (Q.E.D.)

Remark 4. Kleene [10] proved that there is a recursive K± such

that

where M denotes the set of all 1-place hyperarithmetical functions. Let

£ = ££(#)-fiii(500). The set E is obviously a perfect subset of NN

(cf. Kreisel [17; p. 625]). Hence this fact implies that there is a IIJ-



Some results in the effective descriptive set theory 43

subset of NN which is perfect (a fortiori, has the power of the con-

tinuum) but contains no hyperarithmetical points. By our Theorem 13,

it is seen that such a set E has a zero-measure. But there is a Si-

set having a positive measure which contains no hyperarithmetical

points. For example, Wr defined in the proof of Theorem 3 and

NN-M are so.

We can easily extend Theorem 13 as follows:

Theorem 14. // E is an arithmetically closed set and
), then E contains an arithmetical point.

lAa Now we shall turn out to prove that if E is arithmetical
and mes(E^)X) then E contains an arithmetical point.

Theorem 15. Let {E)n...nk} be an arithemetical k-fold sequence
of sets in NN, where fc>0. Then there exists a (k + l}-fold se-
quence of sets {Ap

ni...nk} satisfying the following conditions:

(11) Ap
mi....k

for some arithmetical function ^ (i. e. A^...nk
fs are arithmetically

closed uniformly").

(12) Al..nkc:Eni..,nk for all p.

(13) mes(Eni ..Bfe-^,..,lft) < 2r^'"+n^\

Proof. 1°) Let E)n...nk be defined as follows:

where R is recursive. Then there is a recursive function <p such that

Enr.,lk=

Define E"nv..nk by

Then it holds:

(14) («,,

Since the scope of the quantifiers in (14) is arithmetical (by Remark
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3 in §4), there is an arithmetical function 0 such that

(15) mes(Eni...ttk-E
e
n^.'t;-k'

nk'p^ < 2-<"1+~"*+'>.

Let Ap
ni...nk = E^".\'n-k'

nk'p\ Clearly Afn...nk^Enr..nk. As .̂..,/s are open-

closed, so are ^r..Mfe's. Hence of course Ap
nr..nk are arithmetically closed

uniformly, and by (15) we obtain (13).

2°) Let Eni...Hk be defined as follows:

where J? is recursive. Then EH1...nk are recursively closed uniformly.

Define .̂..̂  = EHl...Hk.

3°) Let Eni...nk be defined as follows:

^e £„!...„, = (3 *Wi)OH2)---(± M,-) J? (oj, »i, ••-,«*, Wj, • • - ,

where j?? is recursive. Let

By the induction hypothesis, there is a (^ + 2) -fold sequence of sets

{ .̂..̂ J such that

(16) ^...njfcn are arithmetically closed uniformly,

(17) ^......ctf;^ for all p,

and

(is) ^s(J?
Since Eni...nk= LJ-Ei ...»*, we have

K

(19) (X, •",
»z = 0

As the scope of the quantifiers in (19) is arithmetical, there is an ari-

thmetical function 0 such that n = d(nl9 •••,nk,p) and

(20) mes(Eni...nk- U E:v..9^
w = 0

Define Ap
nr..nk as follows:

«
AP — I ' J^ + 2

•*1»i-"»* L_J-«- l »i"-»f t» i



Some results in the effective descriptive set theory 45

where n = d(n^ •», »*,£). Then it is seen by (16) -(20) that {A*ni...Hj}

is the desired.

4°) Let E,r..nk be defined as follows:

^eJEK1...Hfe = (m1)(3m2)---(±my) R (a,n^, •~,nk,mi, ••-,*»,•),

where R is recursive. Let

«££;,...„, = (3 w2)---(±wy)l?(af, »!, • • • , nk, n, m2, •-, *»,-).

Then, by the hypothesis of the induction, there is a (£ + 2) -fold sequence

{Ap
ni...ntn} such that (16) -(18) hold. Put:

AP — n /f/>+1
-£JLM1...«ft I I ./J.M1...K£K.

7Z = 0

Then {Afn...nk} are arithmetically closed uniformly and we have:

\J (fl E -̂̂ 1,,,,))

by (18).
Thus the proof of Theorem 15 is completed.

Theorem 16. // E is an arithemetical set in NN and
W£s(E)>0, then E contains an arithmetical point.

Proof. By Theorem 15 with & — 0, there is {A*} such that

(21) Ap are arithmetically closed uniformly,

(22) AP^E for all p, and

(23) mes(E-A*}<3r*.

Since mes(E^)X), there exists a positive integer p such that mes(E)

>2r*. Hence by (23) we have mes(Ap)>Q. Consequently by Theorem

14 and (21), A* contains an arithmetical point, and so does E by

(22). (Q.E.D.)

Remark 5. It can be easily seen that if E is a finite subset of

JL then mes*(E)=Q. Thence, by the proofs of Theorem 13 and 16,
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every arithmetical set having positive measure contains an infini-

tely many aritmetical points*^

7.5. We write mes*(E) instead of mes*(E) when 'arithmetical'
is replaced by 'hyperarithmetical' in Definition 3. Then Lemmas 8-11
and Theorem 13 remain true when mes* is replaced by mes* with M

instead of JL. Theorem 14 also is true when 'arithmetical (ly) ' is
replaced by 'hyperarithmetical(ly)'. Thus by using suitably modified
Theorem 15 and by modified Remark 5 we can obtain the

Theorem 17. If E is arithmetical in a given hyper arithmetical

function and mes(E)>Q, then E contains an infinitely many hy-

per arithmetical points.

Problem 3. Let E be an arbitrarily given 4-subset of NN whose
measure is positive. Then, does it hold

§8. On the Baire's theorem concerning a monotone
well-ordered family of closed sets

8.L By Kreisel [19; p.246] we can see that every Si well-ordering
of natural numbers represents a constructive ordinal. In the similar

way we can easily extend this for the case of Si well-orderings on
NN, thus:

Lemma 12. Let R(<*, 0) be a ^-predicate on NN. If la$R(a, /3)
is a well-ordering (that is, if it well-orders the field DR = a(lfi)

[J?(a, /9)VJ?G3, a)]), then its order-type r(AO represents a construc-
tive ordinal.

Proof. Following KreisePs proof, by -<e we denote the recursive
binary relation of natural numbers whose Godel number is e, and by De

we denote its field. Let L(e) and W(e) be the predicates "-<, is a linear

ordering" and "-<, is a well-ordering", respectively. Spector [31] proved
that L(e) is arithmetical and W(e) is a complete nj-predicate in the

sense of Post [25]. Following Kreisel, let W^(e) denote the predicate
"-<. is a linear ordering and De is embedded into DR by an order-

See the end of this paper.
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preserving mapping". Then we have

where /3,(0 = j3(/(#» 0)- Since ^ is Si, PFi(e) is also in the class

SI- Assume that fa$R(a, /3) is a well-ordering. Then clearly

(1) Wi(e)-»W(e).

If T(DK) were not smaller than ^i, where o^ is the first non-constructive

ordinal, then it would hold

(2) W(e)^Wi(e).

By (1) and (2) we had W(e)^W^(e), Hence W(e) would be ex-

pressible in a Srform. This contradicts the above Spector's theorem.

Consequently we must have r(D*)<<»1. (Q.E.D.)

Corollary 5. Let E be a l>]l-set in NN. If E is well-ordered

with respect to the usual linear ordering of real numbers^, then

its order-type r(£) represents a constructive ordinal.

Proof. Put R(a, j9) =

8.2. Let E be an open set in /. We shall define the number-

theoretic function £E as follows :2/n

if k-\-l is even,

otherwise,
k

where w = SCfi(0- Let 3= {EV}V~M, where M is a subset of NN. be
i -=0

a family of open sets in /.

Definition 4. 3 is called a Si-family of open sets if the set

{C*>eAf} is a Si-set.
We shall give an example of Si-families of open sets:

Lemma 13. Let 0 and M be a hyper arithmetical functional

and a ^-subset of NN, respectively. Put

24) Cf. Kuratowski [20; p. 144]
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£«=U /*<«;<„) for
K = 0

Then 3= {Ea\a^M} is a ^family of open sets.

Proof. There is a recursive function <p such that for all k

fk+l== U lytf.fi,
y=o

where "— " denotes the closure operation on 7. Then

The latter equivalence is proved by using the Borel-Lebesgue's theorem.250

Now it can be shown that "/* c; U /<xco" is an arithmetical predicate
z = 0

ofk,n,<%. Hence the Aka[Ik^Ea] is a hyperarithmetical predicate.

Therefore the functional

is also hyperarithmetical. So, the set {CfiJ^^M} is a Si-set in

since we have

8.3. Baire proved that every monotone increasing well-ordered

family of open sets is denumerable. (We deal with this statement

instead of what is concerned with "descending well-ordered family of

closed sets".) More precisely, let {£,} (T?<£) be a family of open

sets and let

Then there exists an ordinal y0<@ such that

Now, as an effective version of this theorem we obtain the following

Theorem 18. Let 3= {Ea\a<=M} be a ^-family of open sets

25) Cf. Lacombe [21] and Kreisel [18].
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in I. If £F is well-ordered by the inclusion relation c:, then its
order -type r(£F) represents a constructive ordinal. That is, the

well-ordered sequence is stationary from a certain constructive

ordinal on.

Proof. By the supposition, the set {C*J<*eAf} is SI. And

clearly we have

Since 3 is well-ordered by c:, the set {£Ea\a^M} is also well-ordered

by <, and

By Corollary 5, r( {£Ea I ^e M} ; <)<»!. Consequently we have r(£F ; c
This completes the proof of Theorem 18.

8.4. Remark 6. As is seen above, when we concern with the
space /, Xk [7Ac |J 7a(M)] is arithmetical in a. On the other hand, as far

as we concern with the Baire's space NN, the predicate Xk[S(k} ^ U

5(oj(w))] is not hyperaritmetical in a. Because we have the

Lemma 14. There is a recursive function <p such that Xk

is not hyper arithmetical.

Proof. Take a recursive K± such that

Since KI is recursive, there is a recursive function <p such that G

, where G = ̂ (3^)Xi(a(^)). As G^NN, it holds (g

, Now we shall define T/P as follows:

Clearly ^ is well defined. Since

) consists of a single point which does not belong to G.

We denote it by a§\
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Suppose "8(k)<^G" were hyperarithmetical. Then by (3) ^ is also

hyperarithmetical. But since

«o(*) =y = GO (00 [*effO<K«))] -**(*) =y} ,

or0 is also hyperarithmetical. Consequently CG = a(x')K1(a(x*)) would

contain a hyperarithmetical point <XQ. This contradicts the definition

of KI. Hence "fl(&)^G" cannot be hyperarithmetical. This proves

Lemma 14.

On the contrary, Ik [d(k) cCLJ5(a(«))] is arithmetical in «,«
because we have
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Note added in proof (April 21, 1967):

1) Theorem 16 was also obtained by Sacks: Measure-theoretic uni-

formity, Bull. Amer. Math. Soc., 73 (1967), 169-174.

2) Ppoblem 2 can be solved affirmatively as a consequence of a result
of Sacks' paper mentioned in 1).

3) Recently the author obtained an affirmative answer for Problem 3.

The author will write details for 2) and 3) elsewhere before long.


