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On some fields of meromorphic
functions on fibers

By

Takashi OKANO*

§1. Introduction

1.1. In this paper we consider the extension problem of meromor-
phic functions on fibers of complex analytic fiber spaces to neighbor-
hoods of the fibers.

Let X-> Y be a complex analytic fiber space, where X and Y are
normal and connected complex spaces and n is a proper holomorphic
mapping of X onto Y with irreducible fibers. We denote by Kt the

meromorphic function field of a fiber Xt\ =n~'L(f)9 and by K't the
subfield of Kt consisting of all elements of Kt which can be extended

to some neighborhoods of Xt. By [6] or [9], the field Kt is isomor-
phic to a finite algebraic extension of a rational function field.

We discuss here the following problem.
Let /!, •••,// be meromorphic functions on X and g be a mero-

morphic function on a fiber Xt which is dependent on flit, •••//,*,
where fitt(i = l, • • • , / ) is the analytic restriction of /,- to Xt. Then,

can we extend the function g to a meromorphic function on some

neighborhood of Xtl

We can answer this problem as follows.

(I) The complement of the set {t^Y\ any meromorphic

function on Xt which is dependent on f l i t , ••- , / / , / can be extended

to some neighborhoods of Xt} is nowhere dense in Y.

The proof of this theorem is essentially due to the Stein

factorization of a proper holomorphic mapping. This notion (or the
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notion of complex base} is useful to research dependency of holomor-
phic or meromorphic mappings (for example, see [5], [6], [8], [9]).

Using (I) we obtain:

(II) The set {i^Y\K't is not algebraically closed in Kt] is

nowhere dense in Y.

Furthermore, by a similar method to the proof of (I) we have:
(III) If the transcendence degree of K't over the complex

number field C is equal to the (complex} dimension of the fiber Xh

then K't = Kt.

1. 20 In this paper, we assume all complex spaces to be reduced,

and we denote the complex projective space of dimension m by Pm,

and the Osgood space of dimension / by Pl.

We recall here the concepts of rank and of degeneracy of map-

pings.

Let 6\ M-^N be a holomorphic mapping of an irreducible complex

space M to a complex space N. We define the local rank of <r at
a point x of M by dim*M— dim^1 (#(#)) and denote it by rx(<i).

Further we define the rank of 6 by sup ^00 and denote it by r(ji).
x = M

Now, if r*(<r)=£r(<y) for a point x of M, we call this point x a
point of degeneracy of a. By R. Remmert [8], the set of all points
of degeneracy is an analytic subset, and any holomorphic mapping
without points of degeneracy (we say such a mapping is non-degenerated

or is of constant rank) to a normal complex space whose dimension

is equal to the rank of the mapping is an open mapping.

§2e Some remarks on fiber spaces and meromorphic mappings

2.1. Let X and Y be complex spaces and {Xt} be the set of
irreducible components of X.

Now let / be a correspondence between X and Y. We denote

the graph of / by G and the natural projections of G to X and Y by

/ and / respectively. Conforming to [9], we call the correspondence

/ to be a meromorphic mapping of X to Y if the following condi-
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tions are satisfied;

(a) there is a dense open set of X on which / defines a holomor-
phic mapping to F,

(b) the graph G is an analytic subset of Xx F, and /^(JQ is
an irreducible component of G for each Xh

(c) the projection / is proper.

Let / be a meromorphic mapping of X to F. We call a point x

of X a singular point of f if f is not holomorphic at x, and call / to
be proper (resp. surjective) if/ is proper (resp. surjective). Further
we define the rank of / by r(/) and denote it by ?"(/)• Moreover
we say that a meromorphic mapping / of X to F is bimeromorphic
if the correspondence / defines a meromorphic mapping of F to X.

Next, we recall some fundamental properties of meromorphic map-
pings.

(i) The set of all singular points of a meromorphic mapping is
an analytic subset.

(ii) A meromorphic mapping of a certain complex space X to
the complex projective space F1 which maps X not constantly to °o
is nothing but a meromorphic function in the usual sense.

(iii) Let X, Y and Z be complex spaces and / and g be
meromorphic mappings of X to F and of Y to Z respectively. We
define naturally a correspondence between X and Z such that a point
x of X corresponds to the subset £"(/(#)) of Z. If there is a dense
open set U of X on which the above correspondence between X and
Z is single-valued, then we can define naturally one meromorphic

mapping h of X to Z such that &00=£(/00) for xeU. We denote
it by gof. In particular, if X is a subspace of F and / is the inclu-
sion map, we denote g°f by g\\X.

(iv) Let X, F!, • • • , YI be complex spaces and /,- be a meromorphic
mapping of X to F,;(z" = l, • • • , / ) . Then we can naturally define one
meromorphic mapping of X to the product space Fx X • • • X F/. We
denote it by f ^ x - - - X//.

(v) Let Jf and F be irreducible complex spaces of the same
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dimension and / be a proper and surjective meromorphic mapping of

X to F. Then there is a thin analytic subset N of Y such that / is

holomorphic on X - f ( f ~ l ( N ) ~ ) and the map/||(X-/(/^(^)) is a

proper holomorphic covering map of X—f(f~~l(N}} to Y—N. We

call such a meromorphic mapping to be a meromorphic covering.

Next, we recall the notion of dependency of meromorphic mappings.
Let X, Y and Z be complex spaces and / and g be meromorphic

mappings of X to F and of X to Z respectively. Then we say that
g depends on f if r(fxg')=r(f). Further let fl9 •••,// be meromor-

phic functions on X. Then we say that the system {/I,---,//} is

independent if r(/i x ••• x//) =/.

2. 2. Let X and F be complex spaces and n be a proper holomor-
phic mapping of X to F. We denote the set of all connected com-
ponents of all fibers of the map n by X'. By [1] we can define
on the set X' a topology and a complex structure which have the

following properties;

(a) the natural maps ni: X-^X' and n2: Xf->Y are holomorphic.
(b) an arbitrary map h of Xf to a complex space Z such that

h°ni is holomorphic is holomorphic.

We call this sequence X^>X'^>Y the Stein factorization of n.

Proposition 1. Let X be a compact irreducible complex space,

and /i, •••,// be meromorphic functions on X. We put F=fIx--

x//, G = the graph of F. Let G—>G be the normalization of G and

G-^H-^P1 be the Stein factorization of the proper holomorphic

mapping F°ju, where F is the natural projection of G to Pl.
Then, for any meromorphic function g on X dependent on F,

there is a meromorphic function g' on H such that g=gr<>hiOjr1<>F~\

Proof. Since X and G are bimeromorphically equivalent, we may

assume that X is normal and connected and F is holomorphic on X.

Under these assumptions we may identify the sequence G-^>H-ipl

with the Stein factorization X-^>Xf-iPl of the proper holomorphic

mapping F.
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Let S(gO be the singular set of g. Since X is compact and
g depends on F, there is a polynomial PS(X^ • • • , Xt}X*-\ ----- hP0

(-Xi, •-, X,\ where s>0, such that P.(/i, -, /i)£' + - + P0(/i, -,/i)
=0 on X and P.(/i, •••,//) ^0 on X (see [9], p. 864). Now we
take a point 2= (X, • • - , 2/) of F(JST) such that z f-=£oo for all * and

P*(ZI, •",£/) ̂ 0. Let # be a point of F~~*-(z). Then £"(#) is a finite
set in F1 since -P,G&i> '"» */)=£(). This fact and the normality of X

yield the holomorphy of g at % (see [9], Prop. 3. 1. 3). Hence

Since F(X} is an irreducible complex space, F(5(^)) is a thin
analytic subset of F(X) and so ^""1(^(5(^))) is a thin analytic set
of X. We put X0 = X-F~l(F(E)(JF(S(g^, where £ is the set of
degeneracy of F. (F'1(F(£1)) is thin in X) We denote the Stein
factorization of the proper holomorphic mapping F\XQ by Xo->X'Q->

F(JQ. Then we may consider that X^h^Xo^ciX'). For a point

x of X* rx(F)=rx(Fxg) because rx(F)<rx(Fxg*)<r(Fxg)=r(F)
= rx(F}. Hence g is constant along each connected component of

F-1^) for any z of -F(JST0) (see [8], p. 300). Therefore we obtain a

holomorphic function g'Q on X'Q such that g'H^o^g'o0^!.
Put G(gO=the graph of g, and G' = the Image of G(g-) by the

map /ZiXl of XxP1 to X'xP1. Then G' gives a moromorphic func-
tion g' on Xr such that g'\\X'0 = g'0.

Remark. Proposition 1 can be generalized as follows:
Let re: X->Y be a proper holomorphic mapping, where X is

irreducible, and flt •••,/, be meromorphic functions on X. We

put tf=/iX'"X//X7r, G = the graph of a, and 0, 0= the natural
projections of G to PlxY and to X. Let G-^G be the normaliza-

tion of G and G-^H^>Plx Y be the Stein factorization of 0°jui.

Then, for any meromorphic function g on X dependent on a,

there is a meromorphic function g' on H such that g = g'°h-LQfjr*°'3~*.

Proposition 2. Let V be an irreducible analytic subspace of

Pm. Then any element of the field K(V} of all meromorphic

functions on V is the restriction of a rational function of Pm.
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Furthermore let {/i, ••-,//} be a transcendence base of K(V) over
the complex number field C. Then the degree of K( F) over the

field CC/i, •••,//) is equal to the number of sheet of the meromor-
phic covering map F: F->P', where F=f1x-~xfl.

Proof0 Let JT#(F) be the subfield of Jf(F) consisting of all ele-
ments of j?f(F) which can be extended to a rational function of Pm.

Then the transcendence degrees of K(V) and KR(V) over C are equal
to the dimension of F. Let {/i, •••,//} be a transcendence base of
KR(V) over C and F be the meromorphic mapping / iX-- -x / / of F
to P'. Then F is a meromorphic covering map, because dim F=/
= dim P' and the system {/i, • • • , /,} is independent. So there is an

analytic subset N of P' such that F is holomorphic on V—F~*(N*)
and F|[(F— F^C^O) is a proper unramified holomorphic covering map
to P'-N. We put ft -the number of sheet of F \KV-F~1 CAT)),

rf=[^T(F): CCA,-,/!)] and <f^[^(F): CC/i, -,/,)]. Then
clearly b>d>df, because any element / of JT(F) satisfies; /* +
fli-i/^H ----- h£T0 = 0, where Hi(i = Q, 1, • • - , ft — 1) is a suitable rational
function of P' which is considered as an element of CC/i, •••,//).

On the other hand, we can find an element £ of ^(F) whose
degree over CC/i, •••/ /) is not smaller than ft. In fact, fix a point />
of P'-JV, and put F~\p} = {pl9 •», />,}. Then we can easily find
two linear forms M;1 = ff02o4- -~ + aMzm, w2 = b0zQ-i ----- \-bmzm, for a system
of homogeneous coordinate {Zc,-~,zm} of POT, such that Wi(pd=£Q for

all i, and J^L^J^j) (for z>j). Now we put a = ̂  and « = S|| F.
MiCAO ^CA) ^i

Then it can be easily proved that the degree of a. over €(/, •••,//)
is not smaller than ft.

Theorem. (H. Grauert and R. Remmert, [2], [4]). Let X and Y
be complex spaces and 6 be a proper holomorphic mapping of X

to the product space Pmx Y with discrete fibers. Let U be a re-

latively compact Stein open set of Y. We put Xu=(T1(PmxU).
Then, there is a natural number N and a biholomorphic

mapping & of Xv to an analytic subspace of the product space
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PmxUxPN such that 0\Xu=po(jo, where p is the natural projection

of Pmx YxPN to Pmx Y.

Proposition 3. Let n:X-*Y be a proper holomorphic mapping

of a normal complex space X onto a complex space Y. Then the

set {t^Y\ the space n~l(t} is not locally irreducible} is nowhere

dense in Y.

The proof of this proposition is essentially due to W. Thimm
[11] . We prove this in the next section.

§3. Proof of Proposition 3

To prove our proposition we use local descriptions of the normal
complex space X. Therefore we start by setting the following nota-

tions. We put;

Zm={zl9 • • • , * „

Dm=TxZm, p=the natural projection of Dm to T,

Zmit=p~*(F), where Ms a point of T.

Now let A be an analytic set of Dm and T0 be the set {t^ T\

Zmitr\A = Zm,t}. We consider the following condition (*) for a point
x of Dm with respect to A:

(*) The point p(x) does not belong to Tc and there is a

fundamental system of neighborhoods {U{} of the point x which

satisfies the following condition (C) ;

(C) for a curve C in Ut such that CnA = (f> and />(C(0)) =

^>(C(1)) =/>(#), there is a deformation of the curve C to a curve

in f/in^«,K*) through the space U{ — A, with the end points C(0)
and C(l) fixed.

Lemma 3o 1. Let M be a connected normal complex space and
r be a proper holomorphic covering map of M to Dm which is

unramified over Dm — A. If, for a point x of M, the point r(x)
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satisfies the condition (*) with respect to A, then x is an irredu-

cible point of the fiber (^ofO

Proof. Suppose that r(#) satisfies the condition (*) with respect

to A. We put Mx=(por)~l(porXx). Then Mxr\r~\A) is a thin

analytic set of Mx, and Mx~ r~l(A) is non-singular. Hence x is an

irreducible point of Mx if and only if there is a fundamental system

of neighborhoods {£/*} of the point x in the space Mx such that

U'k — r~~*(A) is connected.

Take a connected neighborhood V of x in the space M such that

Vr\Mx is sufficiently small and,

(a) the open set r(F) satisfies the condition (C) with respect

to A at rOO,

(b) the mapping r| F: F-»r(F) is proper.

We put E7'= FfW,. Then from the above (a) and (b) U'-r-^A)

is connected. In fact, let x± and #2 be points of U' — r^^A). Since

F is connected and normal, we can connect x± to xz by a curve C in

V—r^^A). We put C = r(C). By (a), C can be deformed to a curve

in Z,W i K r W )n(^(F)— ̂ 4) through the space r ( F ) — ^4, fixing the end

points. On the other hand, the map r\ V is a proper unramified

covering over r(F) — A. Hence we can deform C to a curve of

U' — r^(A) through the space F— r^(A), by lifting the deformation

of the curve C. Hence Uf — r~~l(A) is connected.

Lemma 3.2. We put: Zm^= {(*lf -, ^^) eC^1] |^|<Cy;; = l,

• • • , w — 1}, ^^ Dm^=TxZm-i and q = the natural projection of Dm

to Dm^.

Suppose that q\A is a proper holomorphic covering map onto

A«-i and it is unramified over Dm^ — B, where B is a thin analytic

set of Dm-i.

Then, for a point x of Dm, if q(x) satisfies the condition (*)

with respect to B then x also satisfies the condition (*) with respect

to A.
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Proof. Let W be a neighborhood of x. Then we can find a

neighborhood U of x having the following properties;

(a) C/C W,

(b) U is of the form #(£/) X A where Z) is a disk of C1,

(c) #(t/) satisfies the condition (C) at #(#) with respect to B,
and

(d) 0|4fW: ,4fW->tf(t/) is proper.

Then we can prove that the open set U satisfies the condition

(C) at x with respect to A by the same methods as in [11]. We
give only an outline of the proof.

Let C be a curve in U— A with the end points C(0) and C(l)

such that />(C(0))=/>(C(1))=/>00. Without loss of generality, we
may assume that #(C(0)) and #(C(1)) do not belong to B, because

^.-i.fGori-B^Za-i.pGO by above (c) and so we can replace the end
points by two suitable points in Uf~]ZmjPW— 04 U^"1 C5)) which are
connected to C(0) and C(l) by arcs in UT\ZmipM — A respectively.

Moreover we may assume that #(C) is disjoint with B, because the

curve C can be deformed, fixing the end points, to a curve which is
sufficiently near to C and whose projection to #(E7) is disjoint with B

(see [11], §2). Under these assumptions, #(C) can be deformed by

the above property (c) to a curve of #(£/) n^C^.x*)) though the

space q(U)—B with the end points fixed. On the other hand, since

q\A is proper and unramified over Dm-± — B, we can construct a defor-

mation of C in U— A with the desired properties lying above the

deformation of #(C) (see [10], §2 and [11], §2).

Lemma 3. 3. We suppose that A is purely 1-codimentional in

Dm, and put Dl={x^Dm\x satisfies the condition (*) with respect

to A}.

Then p(Km — D^} is nowhere dense in T for any relatively

compact subset Km of Dm.

Proof. We prove the lemma by induction on m. If m = Q, it is
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trivial. So we suppose that m>0 and that the result holds for m— 1.

We denote the e-neighborhood of the set T0 by T0(e). Then

p(Km — D*^) is nowhere dense in T if and only if it is nowhere dense in

T— T0(e) for any positive number e. We put Km(e*)=Km—p~1(TQ(e')^.

Now let x be a point of Dm. If x&A, take a neighborhood Um(x)

of jc such that t7w(#) n^4 = 0. Then any point of C/,.00 satisfies the

condition (*) with respect to A. Next we suppose x^A—p~*(T^.

Then, since A is purely codimensional 1, we can find a neighborhood

Fw(#) of x satisfying the following properties:

(a) Vm(x^) is the product of two polycylinders T(#) and Ym(x'),

where T(#) and Y^OO are defined as follows;

where # = £< — £,OOO) and yj = ̂ cjkzk + dj such that jyy (#) =0 (for any
A = l

/) and the matrix (cjk) is non-singular, and r( and ^- are suitable

positive numbers.

(b) Let r.-i(^) = {(j;1,-,y.^)eC>"-1| |yy <^-; ; = 1, -,iw-l}

and V»-I(#) = TOO X y^OO and g^the natural projection of Vm(x)

to V«-i(^). In this situation, q Vm(x)f}A is a proper covering map

and unramified over F«_I(A:)— J5, where .B is an analytic subset of

V«-i(#) purely of codimension 1.

We denote the natural projection of Vm-i(x} to T(JC) by />w_i,

and the set {se K,_i(#) | 5 satisfies the condition (*) with respect to

B] by Kf-iOc). Let now C/w-iCa;) be an arbitrarily fixed relatively

compact open neighborhood of #00 in Vm^(x). Then, by the hypo-

thesis of induction, ^«-i(Z7«-i(^)— K,li(^)) is nowhere dense in TOO-

Hence, by Lemma 3. 2, p(Um(x)—D%) is nowhere dense in T(#),

where E/,,,00 is the set q^(Um^(x^.

For each point ^ of Km(i) we take such an open neighborhood

Um(x) mentioned above. Since Km(e) is compact, it is covered by a

finite system of such neighborhoods Um(Xk) and hence p(Km(i)—D*^)
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is nowhere dense in T.

Proof of Proposition 3. We may assume that Y is non-singular

and n is of constant rank. For, our assertion is of local character

about Y and the 7r-image of the set of degeneracy of n is a thin

analytic set in Y. Moreover we may assume; Y= {(t^ • • • , £„) eC"|

\ti\<Ti'9i = l9 • • • 9 n } . Then, for each point x of X, we can find a con-

nected open neighborhood U(x) such that there is a proper holomor-

phic covering map r of C7(#) to Dm, where Dm is a polycylinder which

is obtained by replacing tt by £,— £,0*00) in A« °f the beginning of

this section.

Let A be a purely one codimensional analytic set in Dm such that

r is unramified over Dm — A. Further let IF be a relatively compact

open set of Dm containing r(#) and F(^) be the open set r^CWOH

E7(#). Then, by Lemma 3. 3, p(W—D%) is nowhere dense in

T(eiF) and hence Jf,n V(x) is locally irreducible by Lemma 3. 1

for any point t of />( JF) -/>( JF-D2).

For each point # of Jf, we take such a neighborhood F(#). Let

Q be a relatively compact open set of Y. Then the set Tif^CQ) is com-

pact and so it is covered by a finite system of open sets F(^). Hence

the set {t^Y\Xt is not locally irreducible} is nowhere dense in F,

§48 Meromorphic function fields on fibers

In this section, we consider a fiber space X^>Y9 where X and Y

are complex spaces and n is a proper surjective holomorphic mapping.

We put dimY=n and dimX=m + n. Furthermore we assume;

(a) X and Y are normal and connected,

(b) n is of constant rank, n,

(c) for every t£=Y, the fiber Xt is irreducible.

These assumptions imply,

(d) TzT^C/) is connected for any connected open set U of F.

From now on, we use occasionally a notation ht instead of h\\Xt9
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where h is a meromorphic mapping of X to a certain complex space

and Ms a point of F such that h\\Xt is defined.

Lemma 4. 1. Let fl9 ••• , / / #£ meromorphic functions on X. We
put F=f1x-"Xfl and S(F*)=the singular set of F. Then the set
{t^Y\XtttS(F}} is a dense open subset of Y.

Let t be a point of Y such that Xt<tS(F). We suppose that

(fi.ty m"yfi,t} is independent. Then there is an open neighborhood
U of t such that /M,(j = l, • • - , / ) is defined and {/i,,/, • • • , //,,/} is
independent for any t' of U. {In this case, r(Fxn^)=nJrl and

Proof . The first assertion is trivial.

Suppose that {/!,*,•••,//,/} is independent. We can find a point
x of Xt such that #<$S(F) and rx(Ft')=r(Ft^)=l (here we consider
F as a holomorphic mapping on a neighborhood of x}. Then

= r(Fxn')=n + l because dim^FXn^^F x *)(*)) = dim,/?,
= m-rx(Ft^ = m-l, and so (Fx^CZ) = P'x F.

Take a neighborhood Q of * such that QflS(F)=0 and
= n + l for any point #' of Q. Put U=n(ff). Since TT is of constant
rank, U is an open set and clearly has our desired properties.

Theorem I. Let tc be a point of Y and f1} •••,// be meromor-
phic functions on X such that /Mo is defined for any i and the

system {/i,,0, • • • , //. J is independent. We put F=f-Lx ...... x//,
a = Fxn, G = the graph of <r, and Gto = the graph of FtQ, and we
denote the normalization of G by G-^>G.

We suppose that]

(I) the complex space G\XtQ ( = the restriction of G over Xt^)
is locally irreducible.

Then there is an open neighborhood U of tQ such that any
meromorphic function defined on XtQ which is dependent on FtQ can
be extended to a meromorphic function on ^(f/).

Proof. Since X is normal, every fiber of the map G->X is con-

nected, and Xt is irreducible by the assumption. Hence G\Xt is con-
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nected for any t of Y. On the other hand, G \ XiQ is locally irreducible

by the assumption (I). Therefore G\Xto is irreducible, and so G\XtQ

is also irreducible and hence G\XtQ = Gto. By these facts the space

G | XtQ is homeomorphic and bimeromorphic to the normalization G,0
of G,0.

Let G-^>H-^Plx Y be the Stein factorization of the proper

holomorphic mapping S°A where o is the natural projection of G to

P 'xY, and GtQ^*Hto'^>Pl be the Stein factorization FtQ°jutQ, where

fit* is the normalization mapGtQ-^Gto and Fto is the natural projection

of G,0 to Pl. From above, /^(-P'X^o) is also naturally homeomorphic

and bimeromorpic to Hto, so we may identify HtQ with /^(P'x^o).

By proposition 1, we can find a meromorphic function g' on HtQ such
N/ NX

that g=g'°hiitQ
otJL~0

1°Fro
1, where FtQ is the natural projection of G,0 to X<0.

On the other hand, the map hz: H-^P1X Y is proper (and surjec-

tive) with discrete fibers. Hence, by Theorem of §2, there is a neigh-

borhood U of tQ and a biholomorphic mapping OD of h^(PlxV) to

an analytic subspace Lv of P'x UxPN.

We put ^P" = ^p'o(fl)|!5i0)""1 on -^'o- By proposition 2, there is a

rational function £•'" on Pl X PN(=Pl X txP^ such that g"'\\Lto=g".

Further we put g"' = g"'°r, where r is the natural projection of PlxU

XPN to PlxPN, and put g" = g'"\\Lu. Finally we set g = g" °a°hi°

/j^o^1 on Ti^Cf/). Then g is a meromorphic function with g=g\\Xto.

Remark« By the construction of 'g, it is easily shown that there

is a polynomial P(£)(X^ Xl9 • • • , Xi) with holomorphic functions on

U as coefficients (if necessary, replace U with a smaller neighbor-

hood of f0) such that P(0(^,/i, •", //) = 0 o^

We use the following notations:

If, = the field of all meromorphic functions on the fiber Xt,

K'v= the subfield of Kt consisting of all elements of Kt, which
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can be extended to neighborhoods of YtJ

={t^Y\ there is a neighborhood U of t in Y such that

the transcendence degree of Kf
tl = k for any ti of U}9 and

Corollary. Let fl9 •••,// #£ meromorphic functions on X such
that fitt is defined for any i and the system {flit, • •- , / / , /} zs inde-
pendent for any t of Y, We set K7(f)=the algebraic closure

of the field C(/M, -,//.,) in Kt. Then the set {t^Y\K7(f)^K't}
is nowhere dense in Y,

Proof. By Proposition 3 there is a nowhere dense set F0 of Y

such that any point of F— F0 satisfies the condition (I) of Theorem

I. Hence our assertion is proved by Theorem I.

Theorem II. The set Y1={t^Y\Kf
t is not algebraically closed

in Kt] is nowhere dense in F.

Proof . The assertion is of local character about F, and F' is a

dense open set of F. So we may assume that Y= Y(K) and there

are k meromorphic functions on X such as in the above corollary. Hence

F! is nowhere dense in F by corollary of Theorem I.

Lastly we discuss the case Y= Y(m) (where m is the dimension

of fibers).

Lemma 4, 2. Let Z be a complex space and W be a compact
irreducible analytic subspace of Z of dimension m, and /i, ••-,/„ be

meromorphic functions on Z such that /f-|| W is defined for any i

and { f i \ \ W , — , f m \ \ W } is independent. We put F=f1x — x f m , FQ

= F\\ W, G= the graph of F, G0= the graph of Fc, and G^ = G\ W
(the restriction of G over W*).

Now A be the natural projection of G± to Pm and G^G(^>Pm

be the Stein factorization of L Then the holomorphic mapping

^i |G0 : G o-^i (G0) is bimeromorphic and /li(G0) is an irreducible
component of G[.
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Proof. The graph G0 of FQ is an irreducible component of Gx.

Let G2 be the union of all the irreducible components of G^ which

are distinct from G0. Since {/JI W, •• -,/J[ W} is independent and

dim W=m, the proper holomorphic mapping A\GQ: G0-^Pm is surjec-

tive and of rank m. From this, it follows that /?(G0nG2) =£Pm, for

^(G0nG2) ^P™ implies GccG2. Hence our assertion is proved.

Theorem III. // the transcendence degree of the field K't is
equal to the (complex} dimension of the fiber y then K't = Kt.

Proof. By Lemma 4. 1, we may assume that Y= Y(m) and that
there are m meromorphic functions fl9 •••,/,« on X such that fiit is
defined(f = 1, - - • , m) and the system {/i.*, ••• , /», /} is independent. We
put F=fiX •" X/,n> and G=the graph of FXK and Gt= the graph of

/\
Ft1 and denote the Stein factorization of Fxn by G->G'-*PmX Y.
Then, by Lemma 4.2, Gt is bimeromorphically equivalent to an ir-
reducible component of G'\Xt. Hence v^e can prove this theorem
similarly to Theorem I.
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