Publ. RIMS, Kyoto Univ. Ser. A
Vol. 3 (1967), pp. 53—67

On some fields of meromorphic
functions on fibers

By

Takashi Oxano*

§1. Intreduction

1.1. In this paper we consider the extension problem of meromor-
phic functions on fibers of complex analytic fiber spaces to neighbor-
hoods of the fibers.

Let XY be a complex analytic fiber space, where X and Y are
normal and connected complex spaces and =z is a proper holomorphic
mapping of X onto Y with irreducible fibers. We denote by K, the
meromorphic function field of a fiber X,: =x"'(¢), and by K the
subfield of K, consisting of all elements of K, which can be extended
to some neighborhoods of X,. By [6] or [9], the field K, is isomor-
phic to a finite algebraic extension of a rational function field.

We discuss here the following problem.

Let f1, -+, f1 be meromorphic functions on X and g be a mero-
morphic function on a fiber X, which is dependent on fi, -fin
wherve f;,(i=1,---,1) is Lhe analytic restriction of f; to X. Then,
can we extend the function g to a meromorphic function on some
neighborhood of X,?

We can answer this problem as follows.

(1) The complement of the set {teY! any wmeromorphic
Sfunction on X, which is dependent on fi. -+, fi.: can be extended
to some neighborhoods of X} is nowhere dense in Y.

The proof of this theorem is essentially due to the Siein
factorization of a proper holomorphic mapping. This notion (or the
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notion of complex base) is useful to research dependency of holomor-
phic or meromorphic mappings (for example, see [5], [6], [81, [9]).
Using (I) we obtain:
(D) The set {teY|K.: is not algebraically closed in K.} is
nowhere dense in Y.
Furthermore, by a similar method to the prcof of (I) we have:
(II) If the transcendence degree of K, over ithe complex
number field C is equal to the (complex) dimension of the fiber X,
then K;=K..

1.2. In this paper, we assume all complex spaces to be reduced,
and we denote the complex projective space of dimension # by P,,
and the Osgood space of dimension [ by P’.

We recall here the concepts of 7ank and of degemeracy of map-
pings.

Let 6: M—N be a holomorphic mapping of an irreducible complex
space M to a complex space IN. We define the local rank of s at
a point x of M by dim,M—dim,s'(¢(x)) and denote it by 7.(s).
Further we define the 7ank of ¢ by sup 7.(¢) and denote it by 7(s).

Now, if 7.(¢) #7(s) for a point x of M, we call this point x a
point of degeneracy of s. By R. Remmert [8], the set of all points
of degeneracy is an analytic subset, and any holomorphic mapping
without points of degeneracy (we say such a mapping is non-degenerated
or is of constant rank) to a normal complex space whose dimension

is equal to the rank of the mapping is an open mapping.

§2. Some remarks on fiber spaces and meromorphic mappings

2.1. Let X and Y be complex spaces and {X;} be the set of
irreducible components of X.

Now let f be a correspondence between X and Y. We denote
the graph of f by G and the natural projections of G to X and Y by
JV‘ and f respectively. Conforming to [9], we call the correspondence
f to be a meromorphic mapping of X to Y if the following condi-
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tions are satisfied;

(a) there is a dense open set of X on which f defines a holomor-
phic mapping to Y,

(b) the graph G is an analytic subset of XX Y, and f(X,) is
an irreducible component of G for each X,

(¢) the projection f is proper.

Let f be a meromorphic mapping of X to Y. We call a point %
of X a singular point of f if f is not holomorphic at x, and call f to
be proper (resp. surjective) if f is proper (resp. surjective). Further
we define the 7ank of f by 7( f ) and denote it by 7(f). Moreover
we say that a meromorphic mapping f of X to Y is bimeromorphic
if the correspondence f defines a meromorphic mapping of ¥ to X.

Next, we recall some fundamental properties of meromorphic map-
pings.

(i) The set of all singular points of a meromorphic mapping is
an analytic subset.

(ii) A meromorphic mapping of a certain complex space X to
the complex projective space P' which maps X not constantly to oo
is nothing but a meromorphic function in the usual sense.

(iii) Let X, Y and Z be complex spaces and f and g be
meromorphic mappings of X to Y and of Y to Z respectively. We
define naturally a correspondence between X and Z such that a point
x of X corresponds to the subset g(f(x)) of Z. If there is a dense
open set U of X on which the above correspondence between X and
Z is single-valued, then we can define naturally one meromorphic
mapping 7 of X to Z such that Z(x)=g(f(x)) for x= U. We denote
it by gof. In particular, if X is a subspace of Y and f is the inclu-
sion map, we denote gof by gl X.

(iv) Let X, Y, -+, Y, be complex spaces and f; be a meromorphic
mapping of X to Y.(¢=1,---,]). Then we can naturally define one
meromorphic mapping of X to the product space Y;x-+XY, We
denote it by fiX -+ X f..

(v) Let X and Y be irreducible complex spaces of the same
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dimension and f be a proper and surjective meromorphic mapping of
X to Y. Then there is a thin analytic subset N of Y such that f is
holomorphic on X—f(f"l(N)) and the map fH(X—f(f“l(N)) is a
proper holomorphic covering map of va( f“l(N )) to Y—N. We
call such a meromorphic mapping to be a meromorphic covering.

Next, we recall the notion of dependency of meromorphic mappings.

Let X, Y and Z be complex spaces and f and g be meromorphic
mappings of X to Y and of X to Z respectively. Then we say that
g depends on f if v(fxg)=r(f). Further let fi, -+, f; be meromor-
phic functions on X. Then we say that the system {fi, -, f} is
independent if r(fix - Xf,)=L.

2.2. Let X and Y be complex spaces and = be a proper holomor-
phic mapping of X to Y. We denote the set of all connected com-
ponents of all fibers of the map = by X’. By [1] we can define
on the set X’ a topology and a complex structure which have the
following properties;

(a) the natural maps =;: X—X' and m,: X'—Y are holomorphic.

(b) an arbitrary map %2 of X’ to a complex space Z such that
hon, is holomorphic is holomorphic.

We call this sequence X->X'">Y the Stein factorization of =.

Proposition 1. Let X be a compact irreducible complex space,
and fi, -+, f1 be mevomorphic functions on X. We put F=f; X
Xf, G=the graph of F. Let GG be the normalization of G and

G- H3P' be the Stein factorization of the proper holomorphic

mapping f‘w, where F is the natural projection of G to P’
Then, for any mervomorphic function g on X dependent on F,

there is a meromorphic function g’ on H such that g:g’ohlo,u"loﬁ‘“l.

Proof. Since X and G are bimeromorphically equivalent, we may
assume that X is normal and connected and F' is holomorphic on X.
Under these assumptions we may identify the sequence GLHE P
with the Stein factorization X->X'-3P' of the proper holomorphic
mapping F.
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Let S(g) be the singular set of g. Since X is compact and
g depends on F, there is a polynomial P.(X,, -, X)X+ -+ P,
(X, -+, X)), where s>0, such that P.(fi, -+, f)g 4+ Po(f1, =+ f1)
=0 on X and P.(fy, - f)=0 on X (see [9], p. 864). Now we
take a point z=(z, -+, 2,) of F(X) such that z;#cc for all ¢ and
P,(zy, ++,2)#0. Let x be a point of F*(z). Then g(x) is a finite
set in P* since P,(z, ---,2,)+#0. This fact and the normality of X
yield the holomorphy of g at x (see [9], Prop. 3. 1. 3). Hence
F(S(g)+F(X).

Since F(X) is an irreducible complex space, F(S(g)) is a thin
analytic subset of F(X) and so F*(F(S(g))) is a thin analytic set
of X. We put X,=X—F*(F(E)UF(S(g))), where E is the set of
degeneracy of F. (F*(F(E)) is thin in X.) We denote the Stein
factorization of the proper holomorphic mapping F|X, by X—X—
F(X,). Then we may consider that X;=%4,(X,)(cX’). For a point
x of X, v.(F)=r,(FxXg) because 7.(F)<r (FxXg)<r(Fxg)=r(F)
=7.(F). Hence g is constant along each connected component of
F-(z) for any z of F(X,) (see [8], p. 300). Therefore we obtain a
holomorphic function g on X; such that g| X,=gooh,.

Put G(g)=the graph of g, and G'=the Image of G(g) by the
map A, X1 of XX P* to X'XP'. Then G’ gives a moromorphic func-
tion g’ on X’ such that g'|| X;=gs.

Remark. Proposition 1 can be generalized as follows:
Let n: X—Y be a proper holomorphic mapping, where X is
trreducible, and fi, ---,f1 be wmeromorphic functions on X. We
put o=fiX--Xf,Xn, G=the graph of o, and 5, = the natural
projections of G to P'xXY and to X. Let GG be the normaliza-
tion of G and G2> H3P'X Y be the Stein factorization of sou.
Then, for any meromorphic function g on X dependent on g,
there is a meromorphic function g’ on H such that g=g’ ohouos™

Proposition 2. Let V be an irreducible analytic subspace of
P,. Then any element of the field K(V) of all meromorphic
Sfunctions on 'V is the restviction of a rational function of P,.
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Furthermore let {f,---,f} be a lranscendence base of K(V) over
the complex number field C. Then the degree of K(V) over the
field C(fy, -+, f) is equal to the number of sheet of the meromor-
phic covering map F: V—P', where F=f,X X f,.

Proof. Let Kix(V) be the subfield of K(V) consisting of all ele-
ments of K (V) which can be extended to a rational function of P,.
Then the transcendence degrees of K(V) and K,(V) over € are equal
to the dimension of V. Let {fy,--,f,} be a transcendence base of
K.(V) over € and F be the meromorphic mapping f;X-Xf, of V
to P’. Then F is a meromorphic covering map, because dim V=/
=dim P’ and the system {fi, :--, fi} is independent. So there is an
analytic subset N of P* such that F is holomorphic on V—F*(N)
and F||[(V—F-(N)) is a proper unramified holomorphic covering map
to P'—N. We put b=the number of sheet of F[[(V—F(N)),
d=[K(V): €(fi, - f)] and d'=[K(V): C€C(f1, - f1)]. Then
clearly b>d>d’, because any element f of K(V) satisfies; f°+
H, f"*+...+ H,=0, where H;(i=0,1,---,b—1) 1is a suitable rational
function of P’ which is considered as an element of C( fi, -+, f1).

On the other hand, we can find an element g of K;(V) whose
degree over C(fi, -+ fi) is not smaller than . In fact, fix a point p
of P'—N, and put F*(p)={p, -, p»}. Then we can easily find
two linear forms w;= a2+ - *+ @2,y We=D0020+ -+ +b,2,, for a system
of homogeneous coordinate {z, -, 2,} of P,, such that w,(p;)+#0 for

w2<pr) Wz(i’:) ., ~ W, .
10:0h)) =+ w.(5) (for 7). Now we put &= *and a=al| V.

Then it can be easily proved that the degree of a over C(f, -, f1)

all 7, and

is not smaller than b&.

Theorem. (H. Grauert and R. Remmert, [2], [4]). Let X aud Y
be complex spaces and ¢ be a proper holomorphic mapping of X
to the product space Pn.XY with discrete fibers. Let U be a re-
latively compact Stein open set of Y. We put Xy='(P.xU).

Then, there is a natural number N and a biholomorphic
mapping o of Xy to an analylic subspace of the product space
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P. X UXPy such that o\ Xy=pow, where p is the natural projection
of PxXYXPy to P,XY.

Proposition 3. Let n: X—Y be a proper holomorphic mapping
of a normal complex space X onto a complex space Y. Then the
set {t€Y| the space ='(t) is not locally irveducible} is nowhere
dense in Y.

The proof of this proposition is essentially due to W. Thimm
[11]. We prove this in the next section.

§3. Proof of Proposition 3

To prove our proposition we use local descriptions of the normal
complex space X. Therefore we start by setting the following nota-
tions. We put;

T={{, - toeC"| |t|<z,; i=1,-,n},
Zy=Azy, =, 2,) EC"| |2,|<C;; j=1, -, m},
D,=TxZ,, p= the natural projection of D, to T,
Z,.=p(t), where ¢ is a point of 7.

Now let A be an analytic set of D, and 7T, be the set {{cT|
Z.:VA=Z,,. We consider the following condition (*) for a point
x of D, with respect to A:

(¥) The point p(x) does not belong to T. and there is a
fundamental system of mneighborhoods {U;} of the point x which
satisfies the following condition (C);

(C) for a curve C in U, such that CNA=¢ and p(C(0))=
p(C(D))=p(x), there is a deformation of the curve C to a curve
in UNZ, o through the space U,— A, with the end points C(0)
and C(1) fixed.

Lemma 3.1. Let M be a connected normal complex space and
v be a proper holomorphic covering map of M to D, which is
unramified over D,—A. If, for a point x of M, the point r(x)
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satisfies the condition (x) with respect to A, then x is an irredu-

cible point of the fiber (por)~*(( por)(x)).

Proof. Suppose that 7(x) satisfies the condition (*) with respect
to A. We put M,=(per)*(por)(x). Then M,Nr*'(A) is a thin
analytic set of M,, and M,—7»*(A) is non-singular. Hence x is an
irreducible point of M, if and only if there is a fundamental system
of neighborhoods {U,} of the point x in the space M, such that
Ui—7r*(A) is connected.

Take a connected neighborhood V of x in the space M such that
VN M, is sufficiently small and,

(a) the open set (V') satisfies the condition (C) with respect
to A at r(x),

(b) the mapping 7| V: V—r(V) is proper.

We put U'=V( M,. Then from the above (a) and (b) U'—7»*(4)
is connected. In fact, let x; and %, be points of U’'—#»'(A). Since
V is connected and normal, we can connect %; to x, by a curve C in
V—71(4). Weput C=r(C). By (a), C can be deformed to a curve
in Z, san(V(#(V)—A) through the space »(V)—A, fixing the end
points. On the other hand, the map 7|V is a proper unramified
covering over 7(V)—A. Hence we can deform C to a curve of
U’ —7r7*(A) through the space V—7»""(4), by lifting the deformation

of the curve C. Hence U’'—7»'(A) is connected.

Lemma 3.2. We put; Z,..={(z, -, 2..) EC™]|z;]<<C;;j=1,
o m—1}, and D,,=TXZ,, and q=the natural projection of D,
to D,

Suppose that q| A is a proper holomorphic covering map onto
D, and it is unrvamified over D,_,— B, where B is a thin analytic
set of D,

Then, for a point x of D,, if q(x) satisfies the condition (x)
with respect to B then x also satisfies the condition () with vespect
to A.
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Proof. Let W be a neighborhood of x. Then we can find a
neighborhood U of x having the following properties;

@) UcCw,

(b) U is of the form g(U) x D, where D is a disk of C?,

(¢) q(U) satisfies the condition (C) at ¢(x) with respect to B,
and

(@) qlANU: ANU—q(U) is proper.

Then we can prove that the open set U satisfles the condition
(C) at x with respect to A by the same methods as in [11]. We
give only an outline of the proof.

Let C be a curve in U—A with the end points C(0) and C(1)
such that p(C(0))=p(C(1))=p(x). Without loss of generality, we
may assume that ¢(C(0)) and ¢(C(1)) do not belong to B, because
Zwsn \B#Z,— sy by above (c¢) and so we can replace the end
points by two suitable points in UNZ,,xn— (AUg*(B)) which are
connected to C(0) and C(1) by arcs in UNZ, ,.o»—A respectively.
Moreover we may assume that ¢(C) is disjoint with B, because the
curve C can be deformed, fixing the end points, to a curve which is
sufficiently near to C and whose projection to ¢(U) is disjoint with B
(see [11], §2). Under these assumptions, ¢(C) can be deformed by
the above property (¢) to a curve of q(U)MNg(Z, ) though the
space q(U)— B with the end points fixed. On the other hand, since
g| A is proper and unramified over D,_,— B, we can construct a defor-
mation of C in U—A with the desired properties lying above the
deformation of ¢(C) (see [10], §2 and [11], §2).

Lemma 3.3. We suppose that A is purely I-codimentional in
D,, and put Di={x<D,|x satisfies the condition (x) with respect
to A}.

Then p(K,.—D}) is nowhere dense in T for any relatively
compact subset K, of D, .

Proof. We prove the lemma by induction on m. If m=0, it is
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trivial. So we suppose that >0 and that the result holds for m—1.

We denote the e-neighborhood of the set 7, by 7,(¢). Then
p(K,.— D}) is nowhere dense in T if and only if it is nowhere dense in
T— Ty(e) for any positive number e. We put K, (¢) =K, —p'(To(e)).

Now let x be a point of D,. If xe A, take a neighborhood U, (x)
of x such that U,(x)NA=¢. Then any point of U,(x) satisfies the
condition (*) with respect to A. Next we suppose x=A—p(T,).
Then, since A is purely codimensional 1, we can find a neighborhood
V.(x) of x satisfying the following properties:

(a) V.,(x) is the product of two polycylinders 7T(x) and Y, (x),

where 7(x) and Y,(x) are defined as follows;
T(x>:{<t;;"') ti’!)EC"I lt,!<?.',,; i:]-’"',n}y
Ym(x>:{(y1)"'sym>ecml iy;l<77:; j:1:"') m})

where {,=t,—#,(p(x)) and y,:kZm}c,-kz,,—i—d,- such that y,(x) =0 (for any
7) and the matrix (cu) is non-;ilngular, and ¢, and y; are suitable
positive numbers.

() Let Y,u(x)={(yy " Yu-) €EC™| |3;1<<us; j=1, -, m—1}
and V,.(x)=T(x) xY,(x) and g=the natural projection of V,(x)
to V,.(x). In this situation, ¢| V,(x)(A is a proper covering map
and unramified over V,_,(x) —B, where B is an analytic subset of
V..-:(x) purely of codimension 1.

We denote the natural projection of V,..(x) to T(x) by P,
and the set {s€V,,(x)]| s satisfies the condition (*) with respect to
B} by Vjii(x). Let now U,,(x) be an arbitrarily fixed relatively
compact open neighborhood of ¢(x) in V,,(x). Then, by the hypo-
thesis of induction, p,.(U,-.(x)— V,x:(x)) is nowhere dense in T(x).
Hence, by Lemma 3. 2, p(U,(x)—D}) is nowhere dense in 7(x),
where U,(x) is the set ¢ (U,—(x)).

For each point x of K,(¢) we take such an open neighborhood
U,.(x) mentioned above. Since K,(e) is compact, it is covered by a
finite system of such neighborhoods U,(x,) and hence p(K,(c) —D¥)
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is nowhere dense in 7.

Proof of Proposition 3. We may assume that Y is non-singular
and = is of constant rank. For, our assertion is of local character
about Y and the zn-image of the set of degeneracy of = is a thin
analytic set in Y. Moreover we may assume; Y= {({, -, t,)EC"|
|¢;|<<z;;i=1, ---,m}. Then, for each point x of X, we can find a con-
nected open neighborhood U(x) such that there is a proper holomor-
phic covering map 7 of U(x) to D,, where D,, is a polycylinder which
is obtained by replacing ¢; by {,—%,(z(x)) in D, of the beginning of
this section.

Let A be a purely one codimensional analytic set in D, such that
7 is unramified over D,— A. Further let W be a relatively compact
open set of D, containing #(x) and V(x) be the open set (W )N
U(x). Then, by Lemma 3. 3, p(W-—D}) is nowhere dense in
T(cY) and hence X, V(x) is locally irreducible by Lemma 3. 1
for any point £ of p(W)—p(W—-D}).

For each point x of X, we take such a neighborhoed V(x). Let
Q be a relatively compact open set of Y. Then the set (@) is com-
pact and so it is covered by a finite system of open sets V(x,). Hence

the set {{=Y| X, is not locally irreducible} is nowhere dense in Y.

§4. Meromorphic function fields on fibers

In this section, we consider a fiber space X5Y, where X and Y
are complex spaces and = is a proper surjective holomorphic mapping.
We put dimY=#» and dimX=m+#n. Furthermore we assume;

(a) X and Y are normal and connected,

(b) = is of constant rank, #,

(c) for every t€Y, the fiber X, is irreducible.

These assumptions imply,
(d) #*(U) is connected {for any connected open set U of Y.

From now on, we use occasionally a notation %, instead of %[X,
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where % is a meromorphic mapping of X to a certain complex space
and f# is a point of Y such that %|| X, is defined.

Lemma 4. 1. Let f;, -+, f, be mevomorphic functions on X. We
put F=fix--Xf, and S(F)=the singular set of F. Then the set
{eY| X.CS(F)} is a dense open subset of Y.

Let t be a point of Y such that X, & S(F). We suppose that
{fie, = fre} is independent. Then there is an open neighborhood
U of t such that f,.(i=1,---,1) is defined and {fiu -, [0} iS
independent for any t' of U. (In this case, v(FXz)=n+I and
(Fxa)(X)=P'xY).

Proof. The first assertion is trivial.

Suppose that {fi -, fi,} is independent. We can find a point
x of X, such that x&S(F) and 7. (F,)=7(F,) =] (here we consider
F' as a holomorphic mapping on a neighborhood of x). Then 7.(F X =)
=7(F Xr)=n+[ because dim,(FXz)'((F Xz)(x))=dim, F*(F,(x))
=m—r,(F)=m—I, and so (Fxn)(X)=P'XY.

Take a neighborhood @ of x such that Q\S(F)=¢ and 7(FX=)
=n+/ for any point %" of €. Put U=z(Q). Since = is of constant
rank, U is an open set and clearly has our desired properties.

Theorem I. Let t be a point of Y and fy, -+, f, be meromor-
phic functions on X such that f.. is defined for any i and the
system  {fuiu - frno} 1S independent. We put F=f;X - X1
o=Fxn, G=the graph of o, and G,=the graph of F., and we
denote the normalization of G by G>G.

We suppose that;

(I) the complex space ﬁ]X,D (=the restriction of G over X))
is locally irreducible.

Then there is an open neighborhood U of t, such that any
meromorphic function defined on X, which is dependent on F,, can
be extended to a meromorphic function on »~*(U).

Proof. Since X is normal, every fiber of the map G—X is con-

nected, and X, is irreducible by the assumption. Hence EIX, is con-
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nected for any ¢ of Y. On the other hand, G| X,, is locally irreducible
by the assumption (I). Therefore éiX,o is irreducible, and so G| X,,
is also irreducible and hence G|X,=G,. By these facts the space
G[X,o is homeomorphic and bimeromorphic to the normalization G
of G,,.

Let G->H2P'x Y be the Stein factorization of the proper
holomorphic mapping sou, where ¢ is the natural prOJectlon of G to
P'xY, and G, h—;"H hz—';P’ be the Stein factorization F 1Olts, Where
u:, is the normalization mapG eG and FfD is the natural projection
of G, to P'. From above, h;'(P’x#,) is also naturally homeomorphic
and bimeromorpic to H,, so we may identify H,, with A;'(P'Xt1,).

By proposition 1, we can find a meromorphic function g’ on H,, such
that g= g'ohl,,oo;z;lol\?/ -}, where l\”/‘,u is the natural projection of G,, to X,,.

On the other hand, the map h,: H—P'x Y is proper (and surjec-
tive) with discrete fibers. Hence, by Theorem of §2, there is a neigh-
borhood U of #, and a biholomorphic mapping o of h*'(P'XU) to
an analytic subspace Ly of P'X UX Py.

We put g"’'=g'o(w||H,,)™ on L,. By proposition 2, there is a
rational function g’ on P’ X Py(=P’' XX Py) such that g'’|L,=g".
Further we put g"'=g""or, where t is the natural projection of P'X U
X Py to P'X Py, and put g"'=2""||Ly. Finally we set g=g""owolyo

w5 on »~*(U). Then g is a meromorphic function with g=%|X,..

Remark. By the construction of 3, it is easily shown that there
is a polynomial P(t)(X, X -+, X)) with holomorphic functions on
U as coefficients (if necessary, replace U with a smaller neighbor-
hood of t,) such that P@)(g, fi, =+, f)=0 on *(U) and
P(t) (X, Xi, =+, X)) 0.

We use the following notations:
K ,= the field of all meromorphic functions on the fiber X,,
K .= the subfield of K, consisting of all elements of K, which
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can be extended to neighborhoods of Y,
Y(k)={te Y| there is a neighborhood U of ¢ in Y such that
the transcendence degree of K; =k for any #, of U}, and
Y=YOUYMU--UY(m).

Corollary. Let f,, -+, f, be meromorphic functions on X such
that f,. is defined for any i and the system {fi. -, [} 1S inde-
pendent for any t of Y. We set K,/(f)=the algebraic closure
of the field C(fi. - fi.) in K,. Thenthe set {<Y|K,/(f)TK}
is nowhere dense in Y.

Proof. By Proposition 3 there is a nowhere dense set Y, of ¥
such that any point of Y — Y, satisfies the condition (I) of Theorem
I. Hence our assertion is proved by Theorem I.

Theorem II. The set Y,={t=Y|K: is not algebraically closed
in K.} is nowhere dense in Y.

Proof. The assertion is of local character about Y, and Y’ is a
dense open set of Y. So we may assume that Y=Y (k) and there
are k meromorphic functions on X such as in the above corollary. Hence
Y, is nowhere dense in Y by corollary of Theorem I.

Lastly we discuss the case Y=Y (m) (where m is the dimension
of fibers).

Lemma 4.2. Let Z be a complex space and W be a compact
irreducible analytic subspace of Z of dimension m, and fi, -+, fn be
meromoyphic functions on Z such that f.|| W is defined for any i
and {fi| W, -, | W} is independent. We put F=fix-Xf, Fy
=F| W, G=the graph of F, G,= the graph of F, and G,=G| W
(the restriction of G over W).

Now 2 be the natural projection of G, to P" and GG P
be the Stein factorization of 2. Then the holomorphic mapping
M Gy: G—4(Gy) is bimeromorphic and »(G,) is an irreducible
component of Gi.
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Proof. The graph G, of F, is an irreducible component of G,.
Let G, be the union of all the irreducible components of G; which
are distinct from G, Since {fi| W, -, f.| W} is independent and
dim W=m, the proper holomorphic mapping 1|G,: G,—~P" is surjec-
tive and of rank m. From this, it follows that A(G,NG,)#P", for
2(G,NG,) =P implies G.CG,. Hence our assertion is proved.

Theorem IIL. If the transcendence degree of the field K, is
equal to the (complex) dimension of the fiber, lhen Ki=K,.

Proof. By Lemma 4. 1, we may assume that Y= Y(m) and that
there are m meromorphic functions fy, -+, f,, on X such that f;, is
defined(i=1, ---, m) and the system {fi, -, fu.} is independent. We
put F=f,X--Xf,, and G= the graph of FXz and G,= the graph of
F,, and denote the Stein factorization of F ;<\7r by GG —-P"xY.
Then, by Lemma 4.2, G, is bimeromorphically equivalent to an ir-
reducible component of G'| X, Hence we can prove this theorem

similarly to Theorem I
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