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Cartan-Kuranishl's prolongation
of differential systems

combined with that of Lagrange and Jacob!

By

Michihiko MATSUDA

§0. Introduction

There exist differential systems which can not be prolonged
to an involutive system by Kuranishi's standard prolongation, al-

though they have a solution. A simple example was given by

Kuranishi himself in [8]. We shall construct here a partial

prolongation, combining Cartan-Kuranishi's standard prolongation

and Lagrange-Jacobi's classical prolongation. Applying our partial
prolongation, we can prolong any differential system to an involu-

tive system if it has a solution.

Let (M, N] TT) be a real analytic fibered manifold and let /'(M,
Nm, TT) be the space of /-jets. A subsheaf of ideals (which is locally

finitely generated) in 0(/0» the sheaf of germs of real analytic func-
tions defined on Jl(M,N; TT), is called a system of differential equa-
tions of order / on N. We consider here systems of differential equa-

tions of the most general type which may be non-linear and overdeter-

mined in general.
Roughly speaking, a differential system is said to be involutive,

if its general solution can be obtained by solving successively equations

of Cauchy-Kowalevsky's type.

As to exterior differential systems, E. Cartan characterized in-

volutive systems in [2]. M. Kuranishi constructed the standard prolon-
gation of exterior differential systems in [8]. He gave in [8] and

[9] a necessary and sufficient condition under which a system can be
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prolonged to an involutive system by the standard prolongation.

Lagrange considered systems of linear differential equations of the

first order with one unknown function. He showed that every such

system can be prolonged either to an involutive system of the first
order or to an incompatible system (see [4]). Generalizing the method

of Lagrange, Jacobi proved that every system of non-linear differential

equations of the first order with one unknown function can be pro-

longed either to an involutive system of the first order or to an in-

compatible system (see [4] ).

E. Cartan showed in [3] that any exterior differential system with

two independent variables can be prolonged to an involutive system if

it has a solution. He also conjectured in [3] that any exterior dif-

ferential system with more than two independent variables can be pro-

longed to an involutive system if it has a solution.

J. A. Schouten and W. v. d. Kulk obtained in [14] the theorem

of prolongation on exterior differential systems of the special type.

H. H. Johnson treated in [7] certain types of differential systems

which are prolonged to an involutive system by Kuranishi's standard
prolongation.

Recently M. Kuranishi characterized involutive systems of dif-

ferential equations in [10]. He gave a clear proof of his prolongation

theorem on systems of differential equations also in [10].

We shall compare Kuranishi's prolongation theorem with the clas-

sical theorem of Lagrange and Jacobi. Let us consider a system of

differential equations 0 of the first order with one unknown function.

Then it can be proved that, if 0 is not involutive, it can not be pro-

longed to an involutive system by the standard prolongation. Hence

Kuranishi's prolongation theorem does not contain Lagrange-Jacobi's

theorem as a special case.

Roughly speaking, we say that a system of differential equations

0 of order / is quasi-involutive, if p0, the prolongation of 0, contains

a system {fa, • • • , 0r} of functions defined on Jl(^M,N\n) with the fol-

lowing property: 0 is involutive if and only if 0 contains all 0,-(l<i
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i^r).
From this point of view, it follows from Kuranishi's prolongation

theorem that every system of differential equations can be prolonged

to a quasi-involutive system of higher order by the standard prolon-

gation, if it has a solution.

Generalizing the method of Lagrange and Jacobi, we shall define

the prolongation of the same order for every system of differential

equations of order /. Let pQ0 be the set of all functions defined on

/'(Af, N; TT) that are contained in p0. Then pQ0 is a subsheaf of

ideals in 0(/0> which contains @. We call pQ0 the prolongation of

the same order of 0.

Also we shall call the subsheaf of ideals (J pl0 in 0(/0 the p-
» = 1

closure of 0. Here pi® is defined by Pl0=p0(pr10) inductively. By

this definition the theorem of Lagrange and Jacobi can be expressed

in the following form: if (2) is a system of differential equations of

the first order with one unknown function, then the ^-closure of 0 is

either involutive or incompatible. The success of Lagrange and Jacobi

results from the fact that every system is quasi-involutive in their

case.

The algebraic aspect of Kuranishi's prolongation theorem was de-

scribed in a purely algebraic theorem by V. W. Guillemin, I. M. Singer

and S. Sternberg in [5] and [15]. The theorem was conjectured first

by them and was proved by J.-P. Serre (see Appendix in [5]). In

his proof, J. -P. Serre clarified the relation between vanishing of Spencer's

cohomologies and involutiveness, applying a theorem on commutative

algebra in [1].

We shall combine the prolongation of Cartan and Kuranishi with

that of Lagrange and Jacobi in the following way. For a given system

of differential equations 0 of order /, let ¥Q be the ^-closure of 0.

For every integer n we inductively define ¥n as the ^-closure of p¥n^.

Then we have the sequence of systems { ¥ 0 y ¥ l y ¥ 2 y } with the

following property: for every n, pQ¥n and p¥n are contained in ¥n

and ¥tt+1 respectively.
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We say that a system ¥ of differential equations is p-closed, when

¥ contains pQ¥. Then every system ¥„ above constructed for 0 is p-

closed. We shall prove in Theorem 1 that a system ¥ is involutive

if and only if W is ^-closed and quasi-involutive.

Applying the theorem of Kuranishi, Guillemin, Singer, Sternberg

and Serre, we can prove that the system ¥n above constructed for 0

is quasi-involutive for sufficiently large n, provided it is compatible.

Since every ¥n is ^-closed, we see in Theorem 2 that ¥„ is involutive

for such sufficiently large n. Hence we can prolong every system 0

either to an involutive system or to an incompatible system.

As to prolongation of G-structures, N. Tanaka recently constructed

in [19] the partial prolongation. He gave an application, proving

finiteness of the automorphism groups of certain G-structures which

are not of finite type. Our construction of the partial prolongation

was motivated by Tanaka's construction of his prolongaiton.

As to prolongation of systems of linear differential equations,

fruitful results are being obtained by D. C. Spencer, M. Kuranishi, D.

G. Quillen, W. J. Sweeney, C. Buttin, H. Goldschmidt and others. A

part of their results has been published (see [11], [13], [16], [17],

[18]).

Their results are being obtained in the category of infinite dif-

ferentiability. However, we discuss the problem here in the category

of real analyticity. Also we discuss here local existence of solutions.

The author wishes to express his sincere gratitude to Professor

M. Kuranishi, Professor T. Nagano, Professor S. Nakano, Professor

D. C. Spencer and Professor N. Tanaka for their kind advices and

encouragement.

§1. Systems of differential equations

Let 0(/0 be the sheaf of germs of real analytic functions defined

on /'(M, N] n} and let 0 be a subsheaf of ideals in 0(/')- Here we

say that 0 is a system of differential equations of order /. We do

not assume that 0 is locally finitely generated. The following Proposi-
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tion 1 explains what happens if we do not assume that 0 is locally
finitely generated.

A point X in J'(M, N; TT) is called an integral point of 0, if every

(p in 0X vanishes at X. Let 0 be the set of all <p in 0(/0 such that
there exists a domain ^U0 with the property that <p is defined over VQ

and vanishes on ^oH/^. Here 10 is the set of all integral points of

0. Then 0 is a subsheaf of ideals in 0(/'), which contains 0. We

have the identity 10=10. Hence the system 0 has the following pro-

perty: for an arbitrary domain f, any section over ^U which vanishes

on ^Un/0 belongs to 0.

Proposition 1. For any domain ^U0 in /'(M, -Af; TT) containing

an integral point of 0, there exists in ^o an integral point XQ

around which 0 is finitely generated on 10.

Proof. For every point X on ^oH/^, we define s(-X") by

We assume that the function s(Jf) attains the maximum s at XQ.

We can take a coordinate system (<?i, • • • , ^ , , M I , ••- ,«,) around JT0 cho-

osing 0>f in 0x0(l<j<Is). Let X^ be an integral point which belongs
to a sufficiently small neighbourhood of X0. For every <p in 0Xl, there
exists a function i/r defined on a neighbourhood ^ of X^ which satis-
fies the congruence

Since the function ^ belongs to (5^, we have the identity d^ = 0 at

every point on ^UiD/^. Hence every derivative -^- vanishes on
_ _ oUk

^1^10 and belongs to 0Xi.

It follows also that every derivative -— - ^ - of higher order
_ duki-~dukm

belongs to 0Xi and vanishes at X^. Since the function ^ is real ana-
lytic at .X^ it vanishes identically. Hence we have the congruence

<p=0 mod(^!, ••• <ps) for every <p in 0Xi- This proves the proposition.
An integral point X is called an ordinary integral point, if 0 = 0
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is a regular local equation of 10 around X.

Let pLi be the projection from Jl(M,N; 71) onto Jl~\M,N\ TT)
defined by

Then for every pair of X and X=p\^LXJ we have the injection i

from feC/'-1) into 0Z(/0 defined by

I<P = <P°P*I-I.

We identify Ox(J1^ and its image by i in <5*(/')-

Let r be the natural projection from T*(/') onto Tx(/')/

Im(7r°,0o)*- We say that 0 is compatible at J?o if $x0 is generated by
such functions ^, • • • , <p, that r^, • • • , r6?^s are independent at XQ and
if X0 is an integral point of 0.

A real analytic mapping / from a domain U in N to M which
satisfies TTO/= identity is called a solution of 0, if .#(/) is an integral
point of 0 for every point % in £7.

Proposition 2e Let X0 be an ordinary integral point of 0,

If a solution f passes through X0, then 0 is compatible at XQ.

Proof. We choose such functions <ply • - • , <ps in 0Xo that rJ^, • • • ,
rd(ps are independent at X0 , where 5 = dim (rd<p ; y e 0Xo} .

We take a coordinate system (<p1? • • • , ^?s, Mt, • • - , urj xlt • • • , ̂ «) around
X0 with the property that rrf^i, • • - , r^5, rJ^1? • • • , tdur are independent

at X0 and every #, belongs to 0(N). For every ^ in 0Xo there exists
a function ty which satisfies the congruence

Uj, x^=^(Ui, %k) mod (PI, • • • , 0

Since -cdty = Q at X0, for every h(l<^h<Lr) we have

-£-
at JST0. On the other hand we have the identity

- - « • * » =

from which for every i(.l<Li<Lri) we have



Cartan-Kuranishi's prolongation of differential systems 75

duh ' d%i d%i

at X0. Hence for every i^l^i^ri) we get

-&«•*»=*
and we have the identity d^ = 0 at X0. Since Xc is an ordinary

integral point, 0Xo is generated by <plt • • • , <ps.

§2. Prolongation of systems of differential equations

Let 0 be a system of differential equations of order /. M. Kura-

nishi defined in [10] the prolongation of 0 in the following way. Let

? be a vector field on TV. To every function <p in 0(70 we associate

the function ^ in 0(/m) defined by

Let ^>0 be the subsheaf of ideals in 0(//+1) generated by 0 and <p^

where q> and f vary over all elements of (5 and all vector fields on TV

respectively. M. Kuranishi called pffl the prolongation of 0. Let (*f,

y<x.jpa, •••>#T' I0 be a coordinate system around X, where /#'"'* O'K/))
9fef= — - =^-| - . If 0* is generated by <^(l<I&<ir), then (p0)x is gener-

f

ated by 0 and %>*(1^&<>, 1̂ "̂  dim TV) for every Z in

Here d(q>k is the function defined by

Generalizing the method of Lagrange and Jacobi, we define p00,

the prolongation of the same order of 0, as the sheaf associated to

the presheaf {CU->£(CU')} . Here £(<U) is the set of all elements

of rCL/) that are contained in the r(^U) -module generated by (5 and

9#(2?, where rC^L/) and r(^L/) are the rings of all sections over ^U and

(p5+1)""lc[J respectively. Then ^0$ is a subsheaf of ideals in

which contains 0.

We say that 0 is ^-closed at JT, when 0X contains
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Following [10], we define the subspace Cx(.&) of 0z(/0 for every
integral point X by

= 0 for all

where Qx(J
l) = ̂ er(dpli^. Also we define £(CZ(0)), the prolonga-

tion of Cz(0), by

where Q*(M) =Ker(^7r). Then we have the identity

for every -Y in (pJ

Proposition 3. L££ XQ be an ordinary integral point of 0

which satisfies the following two conditions (i) and (ii) :

( i ) 0 is p-closed at XQ.

(ii) dim />(Cjr(0)) = constant on a neighbourhood of X0 in 10.

Then there exists such a neighbourhood <U0 of X0 that (°^Qy

^o," io//Tl) forms a fiber ed manifold, where ^o and^o are (pi
+iyLCU0

n/(^^) and ^UoH/^ respectively.

Proof. We take a system of generators {<pl9 •••,^s} of 0XQ, where
5 = codim 10.

Let {£*; l<*k<Lns} be an arrangement of {%>,-; l^r^^, 1 '̂̂ s},

where n = dim N. And let {^A; l^A^m({t*)} be an arrangement of

{p«+l',l^a<m, //+i=(*'i,-",*'i+i), l^'i,-",*'/+i^»}, where
— n. Then we have the identity

= dim XC

We denote by T the rank of the matrix ^^-JXQ and assume that

we have the inequality

at JT0.
Every ^,- can be expressed in the form
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where C{ and fa belong to 0*0(/0- By the assumption we have the
inequality

For every f(^T+l) we can solve the following system of linear equa-
tions with unknown functions Bi(l<Lj<LT) uniquely:

The solutions B{ belong to 0*0(/0- Then every <pt (i = * + l) is
expressed in the form

Here A\ and $,- are the following functions:

and

The functions A* and 0,. belong to O X Q ( J l ) , (T+l^Li, *).
It follows from the assumption (ii) that every v4* vanishes on a

neighbourhood of Jf0 in 10 and that every A] belongs to 0XQ. Hence

we see that every 0,- belongs to (/>o$)*0 by the definition of />00- It
follows from assumption (i) that every 0, belongs to $*0.

Let IJo be a sufficiently small neighbourhood of X0. Then for

every X in (pl+1)~1£U), (/>$)z is generated by ^, • • • , <p, and &, • • • , ^T.
This proves the proposition, because <r{+V^!, • • • , 6l^d<pT are independent

at X Here ^+1 is the projection from 2V(//+1) onto Tj*(//+1)/Im

Remark. L^^ JT0 ^ an ordinary integral point of 0 which

only satisfies the condition (ii) in Proposition 3. Let us consider

the system ®Q generated by 0 and 0f- (T+l<;z<l^s). Then we have

the identity pQ0 = 00 on ^U0, if 00=Q is a regular local equation of
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10o around X*.

§3. Involutive systems of differential equations

In [10] M. Kuranishi defined involutiveness by the following

Definition 1. We say that 0 is involutive at XQ, when the

following three conditions (i)-(iii) are satisfied:

(i) Xc is an ordinary integral point of 0.

(ii) There exists a domain ^Uo in //+1(M, N\ TT) such that

is a submanifold ^o which forms a fibered manifold

5+1) with a neighbourhood ^o of X0 in 10.

(iii) C*0(0) is an involutive subspace of Q^0(/')-

If 0 is involutive at ^T0, then 0 is compatible at X0. To prove

this fact, let / be a mapping from N to M which satisfies the identi-

ties n°f= indentity and j l
x * l ( f ) = XG. Here XQ is an integral point of

p0 which satisfies pl+1XG=XQ. We see that such / exists by the condi-

tion (ii) in Def. 1. We replace the / in the proof of Prop. 2 by the

/ thus taken. Then we have the identity (1) by the definition of

9^i/r. This proves our assertion.

An involutive system 0 is completely integrable at XQ, if and only

if the identity C*0(0) = {0} holds. Let 0 be a system of the first

order which is completely integrable at every point in M. Then for

every point z in M, there exists the global solution which passes

through z (see [10]). T. Nagano treated in [12] completely inte-

grable systems with singularities.

We define quasi-involutiveness by the following

Definition 20 We say that 0 is quasi-involutive at XQ, when

the following three conditions (i)—-(in) are satisfied:

( i) XQ is an ordinary integral point of 0.

(ii) dim p(Cx(0)) = constant on a neighbourhood of XQ in 10.

(iii) Cjf0(0) is an involutive subspace of Q*0(/0-

If 0 is quasi-involutive at XQ, then there exists a system {0Z-;1<I

z'<r} of functions in p00 with the following property: 0 is involutive

at XQ if and only if 0 contains all 0,-(l<^"<y). This fact can be
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proved by the method used in the proof of Prop. 3.

We have a necessary and sufficient condition for a system to be

involutive in the following

Theorem 1. Let 0 be a system of differential equations of

order 1. Then in order that 0 be involutive at XQ, it is necessary

and sufficient that 0 is p-closed and quasi-involutive at X0.

Proof. Let 0 be /^-closed and quasi-involutive at XQ. Then the

conditions (i) and (iii) in Def. 1 are satisfied by the definition of

quasi-involutiveness. The condition (ii) in Def. 1 is satisfied by Prop.

3.

The necessity of the conditions will be proved later.

M. Kuranishi showed in [10] that his definition of involutiveness

coincides with the classical notion of involutiveness, proving the fol-

lowing theorem:

Let 0 be a system of differential equations of the first order

which is involutive at XQ, Then 0 is generated by the following

functions <pa(Q<Li<*n, 1^^<^0 in & neighbourhood ^Uo of X0 and

p0 is generated by 0 and dt<pa(l<^i<,n, 1<^<^,, 1<><10 in the

domain (pl~)~ICUQ:

(2)

where

x= (#!, • • • , #„), independent variables

y= ( jV i> • • • > < y » i ) , dependent variables

Pi=(P(y "'yp'n^y derivatives with respect to
and

Then we can construct the general solution of 0 around XQ by

solving successively equations of Cauchy-Kowalevsky's type.

For a system 0 of higher order, we construct from 0 the system

of differential equations of the first order 0 in the natural way.

For example, let 0 be a system of the second order generated by
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<pk(x,y; z\ p, q; r, s, 0,
where

x, y\ independent valiables

z ; dependent valiable

. 9z n=dz^ r_ Q2z d2z f_ 62z
" *~ > " *.. 1 * ^-,2 » ^ -ft-,*.. » 6vj u^ dxdy ' dy2 '

Then 0 is the system of the first order generated by

and

Ox dy dy dx '

In general 0 has the following properties: integration of 0 is

equivalent to that of 0 and, 0 is involutive if and only if 0 is involu-
tive. Hence in the general case Kuranishi's definition of involutive-
ness coincides with the classical notion of involutiveness.

Also 0 has the following properties (i) and (ii) :

( i ) 0 is ^-closed if and only if 0 is ^-closed.

(ii) 0 is quasi-involutive if and only if 0 is quasi-involutive.
Now we shall prove the necessity in Th. 1. In the case where 0

is of the first order, we can prove the necessity by Kuranishi's theorem
above stated. Hence, in the general case, we see that the conditions

in Th. 1 are necessary by the remark above mentioned.
In the case where 0 is a system of the first order with one un-

known function, the subspace Cx(0) is always involutive (see [10]).
Hence in this case our theorem is equivalent to the classical theorem
of Lagrange and Jacobi (see [4], [6], [10]).

§4. The prolongation theorem

M. Kuranishi obtained in [9] and [10] the following prolongation
theorem :

For every non-negative integer n, let 0n be a system of differ-

ential equations of order l-^n. We assume that, p0nd0n^ for every
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n and that, there exist for every n an ordinary integral point X"0

of 0n and its neighbourhood ^n in I®n which satisfy the follow-

ing two conditions (i) and (ii):
( i ^ /+«+i y«+i_ y«^ i ) p!+n A0 — A0,

(ii) (C^r1, °Vl\ p'I»+1) forms a fibered manifold.
Then ®n is involutive at Xl for sufficiently large n.

In his new proof he applied the following

Lemma. (Kuranishi-Guillemin-Singer-Sternberg-Serre). Let E and

F be vector spaces over real numbers. For every non-negative
integer n, let AM be a linear subspace of jE"(g)S'+B(F*). We assume

that An is contained in p(An^ for every w(^l). Then for suf-

ficiently large n, we have the identity p(An-^) = An and An is an

involutive subspace.

Let 0 be a system of differential equations of order /. We define

pQ0 inductively by pl^ = p^pl^^ for every n^i. We call the sub-
00

sheaf (JpQ0 the ^-closure of 0. Then the ^-closure of 0 is a system
«=i

of differential equations of order / which is ^-closed at every point in

]l(M, N', Tt). By the definition we see that integration of 0 is equiva-
lent to integration of the ^-closure of 0.

Theorem 2. Let 0 be a system of differential equations of

order I. We define ¥„ inductively as the p-closure of p¥n^ for

every integer n, where ¥Q is the p-closure of 0. We assume that

there exists an ordinary integral point X*Q of Wn for every n with
the following two properties (i) and (ii):

(i) p\VUXl=Xl^ (»^1),

(ii) dim/>(C*(?"„)) = constant on a neighbourhood of Xl in

IV n.

Then Wn is involutive at Xl for sufficiently large n.

Proof. Since p¥n^ is contained in Wn, it follows from the Lemma

that CXo(^n) is involutive for sufficiently large n. By Theorem 1 we
see that the system Wn is involutive at Xl for such n, because ¥„ is
^-closed at every point.
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Corollary. Let 0 be a system of differential equations of order

I. We assume that the system 0 has a solution f defined on a
domain U in N and that, there exists a point XQ in U with the

following properties (i) and (ii) :
( i ) Xl=jl+\f} is an ordinary integral point of Wn for every

n.

(ii) d imp(C x (&, ) ) = constant on a neighbourhood of Xl in Iwn

for every n.

Here Wn is the system of differential equations of order l+n defined

for 0 in Theorem 2. Then ¥„ is involutive at Xl for sufficiently

large n.

Example 1, (given by Kuranishi in [8]). Let 0 be the system
generated by the following functions <pi, <p2 and <pz:

(P~\ U\ ~ I rfV9 A 5

Qu2

The general solution of 0 is given by

where c is a constant. The system 0 can not be prolonged to an
involutive system by the standard prolongation. For the system 0 we
see that WQ is generated by 0 and the following functions <p4 and <p5:

- - X2 — ^,

7/U2
„ _ _ _<P5 — - # ii 22 — i 2 2 .

OX2 dX2

The system ¥Q is involutive at every integral point X for which x

and

Example 2. Let 0 be the system generated by <pi=y—p2, where
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= -:r-' Then ^o = 0, and pW* is generated by ^ and (p2=

d2vwhere p'= , 9 . We have
^ d#2

' = ~~2)

Hence ^ is involutive at (#,0,0,0).

By the standard prolongation the solution y = Q remains a singular

solution of pn® for every n.

Example 3. (Clairaut's equation). Let 0 be the system generated

by <pi=y—px—f(p'). Then p® is generated by ^ and <p2=P'(x—fr

We have

Hence Clairaut's singular solution is a regular solution of S^.

Example 4. Let $ be the system generated by

where p = -^ — , Q = ^ — • Then p® is generated by <plf cp2 and <p3:ooc oy

where r=* s = ̂  and t= **dxdy ~ df '
We have

(^1)^= (<PI,P-X, q-y, r-i, 5, t-i}
at X for which r^ —52 = 0. Hence Lagrange's singular solution is a

regular solution of W-L.
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