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Do Introduction

In this paper we shall prove the existences of solutions for the Cara-

theodory type contingent equation and, using this existence theorem,
we shall consider a control problem for the contingent equation.

Furthermore we shall extend the existence theorem of optimal con-
trol that was considered in [3] to the case of the contingent equation.

The author wishes here to express his thanks to Professor Masuo
Hukuhara, who read the original manuscripts and suggested a number

of improvements.

1. Notations and definitions

The notations used in this paper are the followings.

Let X be a metric space. The distance between two points x, y

e X is denoted by dist (#, y). The distance between a point x e X and

a set AczX is defined by dist(#, A) =inf {dist(#,jO \y^A}. For <5>0,
the ^-neighborhood of a set A dX is denoted by

£704, 5) = {x GE X] dist (#, A) <d}.

For two compact sets A, BdX, the distance between A and B is

denoted by Dist (A, 5), where Dist (A, 5) = inf{£>0; £7(^4, £):D£,
E7( J3, d) z> ^4}. This (Hausdorff) distance makes the set of compact sets
into a metric space.

Definition 1. A compact-set (in X} valued function F(f) defined

on a topological space T, is said to be upper (resp. lower} semi-
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continuous at £0(Xo^ ^O, if for every e>0 we can find some neigh-
borhood of tQ, say V, such that U(F(t0*),e)nF(t)(resp. Z7(F(0,0
z>F(/0)) for all t^V. When F(f) is upper (resp. lower') semi-con-
tinuous at every point of T, F(f) is said to be upper (resp. lower}
semi-continuous on T. A function F(f) is said to be continuous at
t0 (resp. on T) when F(t} is upper and lower semi-continuous at t0

(resp. on T).

Definition 2. // a compact-set (in X} valued function F(t) de-
fined on a measurable space E is such that, for every compact C
of X, the set {t<^E; F(f)c:C} is measurable, then F is said to be

measurable on E.

Definition 3. For a sequence of subsets (in X} {An} (n = l,2,
• • • ) we define

lim inf An={x^X\\im dist(#, A) =0}
n->oo H->oo

lim sup An={x^X\\\m distO, A)=0}
«->°° »->oo

and
lim An = lim inf An = lim sup An,
n->oo n-^oo n-><x>

when lim inf ^4M = lim sup An.

It is known [1] that these sets are closed.
For a set A in X we denote by clA the closure of A.
We denote by Rm an m-dimensional Euclidean space with the usual

norm \x\ for each x^Rm, and by / the compact interval [tQ,tQ + a]
in R\

Let F(f) be a compact and convex set valued measurable function
(in Rm} defined on a measurable set E.

We denote by \F\ (f) a scalar function sup {dist (0, x)\ XeF(f)}.

If \F\(t) is integrable on E, then the Lebesgue integrals F(f)dthas
JE

been defined in [2]. In this case we say that F is integrable.

2. Propositions

In [3] we have proved the following Propositions.
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Proposition 1. Let (Fn(t)} (w = l, 2, ••-,) be a sequence of com-
pact-set (in J?'") valued functions defined and measurable on E and

monotone decreasing in n.
00

Then H Fn(f) is measurable.«=i

Proposition 2. Let (FH(f)} (n = l, 2, • • • ) be a sequence of com-
pact-set (in 7?'") valued functions defined and measurable on E and

F(t*)dC(t)(n = l,2, • • • ) for some compact-set (in Rm) valued func-
00

tion C(f). Then cl U FH(f) is measurable.

Proposition 3. Let F(f) be a compact-set (in Rm} valued func-

tion defined on E. Suppose that meas (£)<<*>.
F(f) is measurable on E if and only if, for every real positive

e, there exists a compact set Er in E such that meas (£"—£")<;£
and such that F(f) is upper semi-continuous on E'.

Remark. In [2] it has been proved that the continuity of F in

this sense follows from the measurability of F.

Proposition 4. Let F(f) be a compact-set (in J?m) valued func-

tion defined and measurable on E. Suppose that measC-E1)^^.
Then there exists a measurable function f(f) on E such that /(f)

for each

Proposition 5. Let F(t, x) be a compact-set (in Rm} valued
function defined on IxRm and measurable in t for each fixed x^Rm

and upper semi-continuous in x for each fixed t^L

Then F(t, x(t)~) is measurable in t for each continuous func-

tion

Remark. Proposition 5 also holds if / is replaced by a compact

set.
Further we can prove the following Propositions.

Proposition 6. Let F(t, x} be a compact-set (in Rm} valued

function defined on IxR'n and measurable in t for each fixed

and upper semi-continuous in x for each fixed



88 Norio Kikuchi

Then F(t, #(0) is measurable in t for each measurable function

Proofs Since x(t) is measurable on /, for every real positive e

we can find a compact set / in / such that x(f) is continuous on /.

F(t,x(f)) is measurable on /.

Hence F(t, #(0) *s measurable on /.

Proposition 1, Let F(t, u) be a compact-set (in Rm} valued

function defined on IxRr and measurable in t for each fixed u^Rr

and continuous in u for each fixed t^I.

Then for every compact set U (in Rr) F(t, £7) is a compact-set

(in Rm} valued function and measurable in t,

Proof, For each fixed t<^I,F(t,U') is a compact set in Rm.

Indeed, let {xn} be a sequence of points in F(t, 17). For each n we

can select un^ U such that xH^F(t, «„). Since U is a compact set, we

can assume that {u,} converges to u^U. From the continuity of F(t,

u) in u, there is a subsequence of {%„} which converges to some x^

F(t,u)c:F(jt, tO-

The measurability of F(t, C7) follows from the following relation;
00

F(t, U)=cl\JF(t,ui'), where {ut} is a dense subset of U.
i = l

Proposition 88 Let F(t, u) be a compact-set (in Rm*) valued

function defined on IxRr and measurable in t for each fixed u<=Rr

and continuous in u for each fixed t^L

Then F(t, Q(0) is measurable in t for each measurable com-

pact-set valued function Q(£)dRr.

Proof. We first prove Proposition when Q(f) is continuous. We

denote a subdivision of / by D: tQ<.t±<."-<tk = tQ + af and 5(D) = max
0<i<*- l

(^+i-/f). For t^t<ti+1 we define Q(t;D)=Q(tt). Let {Dn} (n = I,

2, •••) be a sequence of subdivisions of / such that each division point

of Dn belongs to that of DH+1 and {d(Dn)} tends to zero as ?z-»<x>.

Also we define Fn(f)=F(t,Q(t\Dn^, and
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where /(F«ccC) denotes the set ( t ^ I ; F n ( f ) ccC}.
is measurable for every n, and hence /'(C) is measurable.

From the continuity of F(t, x) and Q(f), we can show that I(F
ccC)c/'(C) and 7(FccC')^/'(C) for every compact set C'(=>

IDC). Let C»(« = l, 2, •-.) be the compact set cl U(C, — ). From%
the relations stated above, it follows /CFc cC.+i) C/'(C«+1) c/(Fc c

C.). Since 7(FcC)= p /(FcC.)= H /'(CB), F(f, Q(0) is measur-
M = l H = l

able on /.
When Q(£) is measurable on /, for every e>>0 there is a compact

set / in / such that meas (/—/)<£, and Q(f) is continuous on /.
Therefore F(£,Q(f)) is measurable on / and hence F(t,Q(£)) is

measurable on /.

Propositon 9. Let Q(x) be a compact-set (in Rr} valued func-
tion defined on Rm and upper semi-continuous in x^Rm.

Let F(x, u) be a compact-set (in J?m) valued function defined
on RmxRr and be upper semi- continuous in (x,u).

Then R(x)=F(x,Q(x)) is upper semi-continuous in x.

Proof. Take any XQ^ Rm, and e>-0. According to the upper semi-
continuity of Q(#), F(x> %} c Z/CR(#o), e) whenever Dist(Z, Q(^0))<5
and \x — xQ\<d for some 3(>0). We can take O(^o)UQC^) as X if
x is sufficiently near XQ. Consequently the relation

holds since Dist (Q(#0) LJC(^), G(^o))<^ holds for every ^ sufficiently
near XQ.

Proposition 10. L^# F(^f, u) be a compact-set (in Rm) valued
function defined on IxRr and measurable in t for each fixed u^Rr

and continuous in u for each fixed t^I.
Let Q(f) be a compact- set (in Rr) valued function defined and

bounded on I and measurable in t. Let y(f) be a measurable func-
tion (in Rm} on I.

If {u\F(t,u)^y(f), u^Q(f)} is empty nowhere on /, then the
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compact-set valued function F(t) (in Rr) defined as

F(f) = {u;F(t, u) =3X0, «^Q(0}

is compact-set valued function and measurable on I.

Proof. From the compactness of Q(0 and upper semi-continuity
of F(t,u) in u, F(f) can be verified to be compact for each t^I.

Take a denumerable set of points {«,-} (i = l, 2, •••) which is dense
in Rr, and a monotone decreasing sequence {e;} J,0(j = l, 2, •••). Denote

the following compact set by F2;(f).

F,;(0 - {^e {«!•..«,} ;dist(XO, JU »))<*/

F,v(0 is measurable on /, and the relation

shows that F(0 is measurable on /.

Proposition 11. Let{Fn(f)} (n = l, 2, •••) ^ (2 sequence of com-
pact-set (in J?") valued functions defined and measurable on E.
Suppose that there exists a compact-set (in Rm) valued function

jP0(0 such that Fn(f)dF,(t} (n = l, 2, • • • ) on E. Then F(0=lim
»->oo

sup -F,,(0 ^"5 measurable.

Proof. Since Fw(0c^o(0 on £, lim sup Fn(f) exists and is a
H->oo

compact set in Rm. F(f) is measurable since F(f) can be expressed
as follows.

on E.

Proposition 12. L^^ (Fn(f)} (n = l, 2, • • • ) te # sequence of com-
pact and convex set (in Rm} valued functions defined and integrable
on E, and suppose that there is an integrable function F0(f) (which
is a compact and convex set valued function) such that Fn(t) cF0(0
(^ = 1,2, •••) on Ey then lim sup Fn(t) is integrable and

K-=>oc>

lim sup \ FH(f)dtc:\ lim sup Fn(f) dt holds,
n->°° JE jEn->°°
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Proof. By Proposition 2.1 [1] lim sup Fn(f) exists for each t^E.
M-^oo

Similarly lim sup \ Fn(f)dt exists, since
«->oo j£

\ F.(f)dtc\ Ft(f)dt.
JE JE

Let x be any point in lim sup \ Fn (f) dt. Then there is a subsequence
n->°° JE

(FH'(f)} such that

lim dist (*, [ FXO df)=0
«->oo J E

holds. By Proposition 1.3 [1] we can select a further subsequence
{FM»(0} such that ImuFXjQ =F(f) exists for each t^E. By Pro-

»->oo

position 3.2 [1] we conclude that

lim Dist CFX

Since

dist (*, { F(f)df)
JE

I C \ /f f \<llim dist #, \ Fn»(£) dt] -i-lim Dist \ Fn»(f}dt. \ F(f)dt},
—«->- \ 'JB

 Vy / H^CO \JE JE V /'

and

lim Dist (J/XO<ft, J^(OrfA=0

[2], then

dist(#,!

holds.

Hence

Remark. Proposition 12 also holds if the conditions Fn(f)
are replaced by the following conditions; Fn (f) ] <*M(f) on E for
some integrable scalar function M(f).
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3. Existence theorem for contingent equation

Theorem 1. Let the compact and convex set {in Rm) valued

function F(t, #) be defined on a parallelepiped R(in RLxRm')i tQ<L

t<^t0-}-a, \x — xQ\<*b, and measurable in t for each fixed x, and up-
per semi- continuous in x for each fixed t. Let there exist a scalar

function M(f), integrable on I=[t0, t0 + a]y such that

for all (t,
Then there is an absolutely continuous function x(f) such that

for almost all t in /, and

Proof. Let D be a subdivision of /:^0<^<"<< tk = tQ
Jra. We

denote max (t^ — ti) by 5(D). Since F(t, X0*) is measurable on [ f 0 i W ,
O^fgfe-l

we can select a measurable function /0(0 such that /0(0 ^F(t, x^)

for each t e [t0, ti] .
For to<Lt<^ti we define

and put

S *i

h

Then

holds.
We define inductively {x} and {/,(£)} (f = 0, 1, • ••»-!) as follows.

Suppose that we have defined x{ such that

and then for t^t^t^ we define
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and put xi+i = x(ti+im,D), where /,-(£) is a measurable function such that
t:/) for each t e [ti} ti+1]. Then

holds.
The function x(t\D} has thus been defined for all t^L By de-

fining y(t\ D) = #* for fe [t{, /,.+1), Q<i<k-2, and X* ;£)=**-! for

holds for all £e[r,
Hence x(t]D} is absolutely continuous, and

hold independently of the choice of D.

Let {Dn} (n = l, 2, • • • ) be a sequence of subdivisions of /such that

{d(Dn')} tends to zero as w-»°o. Since {#(£;AZ)} is equi-continuous
on / and satisfies the same initial condition, {#(£;£)„)} is a normal

family. Hence we can select a subsequence of {%(t\Dn}} (without

changing the notation) which converges to a function x(f) uniformly

on /, and

hold.

From the equi-continuity of {x(t\Dn}} and the construction of

{y(t\D^)}, we conclude that {y(t\D^} also converges to x(f) uniform-

ly on 7.

From the relation

and the upper semi-continuity of jF(£, ̂ ) in x and Proposition 12

sup

sup F(t,y(t',Dn))dt

K->oo
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Then

holds for almost all t m I and

Theorem 2. Let F(t, %} be a compact and convex set (in Rm)
valued function defined on IxRm, and be measurable in t for each
fixed x^Rm and upper semi-continuous in x for each fixed t^I.
Suppose that x-y<ZjC(\ #|2-f-l) (C>0) holds for every y such that
y^F(t,x\ where the dot denotes the scalar product, and that F(t,
#) carries every bounded set in IxRm into a bounded set in Rm.

Then for every xQ^Rm there exists an absolutely continuous
vector function x(f) such that

for almost all t in 7, and x(t0*)=xQ.

Proof. We first prove this theorem under the assumption that
F(t,x) is bounded. Similarly as in the proof of Theorem 1 we define

{*(*;£„)}, and {y(t]Dn}} such that

Since F(t, x} is bounded, {#(£;/)„)} is a normal family and then
{x(t-,Dn)} with {y(t;/)„)} can be assumed to converge to a function
x(f) uniformly on /. From Proposition 12 we conclude that

J T

Hence

for almost all £e/, and
Next we denote (k0 |2 + l)exp(2C^)-1 by
By taking a sufficiently large C, we can assume that H>\. Also

we define

\x\>H.
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F(t, #) defined as above can be verified to be measurable in t for each

fixed x^Rm and upper semi-continuous in x for each fixed t^I, and

is bounded on IxRm. Hence there exists an absolutely continuous

function #(£) such that

for almost all t^I and x(t^)=x0.
For ~F(t,x) the same relation as F(t,x), i.e., x-y<LC(\x 2 + l) for

every y^F(t,x), holds. From this condition we can conclude that all
solutions of

dx/dt^F(1k,x) and x(t^)=xQ

satisfy \x(f)\<LH on /.

Indeed if z(f) = \ x ( f ) |2 + 1, then dz(f)/dt<£Cz(f), hence

(|*0|8 + l)exp(2C0),*.*. \x(t)\<H. In \x\^H,F(t, x) and

coincide. Hence a solution ^(0 for

is also that for

Consequently we have proved the existence of solutions.

Theorem 3. Let F(t, x') satisfy the condition in Theorem 2.
Then for every compact set K in Rm the collection of all solu-

tions x(f) of the contingent equation such that x(t^)^.K is compact
in the topology of the uniform convergence.

Proof. Let (xn(f)} (« = 1, 2, •••) be a sequence of solutions. We
must show that there exists a subsequence which converges uniformly
to a solution. Since

for almost all fe/, it follows that

On the other hand (xn(f)} is uniformly bounded and equi-contin-
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uous on /. Thus there exists a subsequence (without changing the
notation) which converges uniformly to some function x(f), and #(7P)
^K holds.

Further, since all the xH(f) satisfy the same Lipschitz condition,
their limit x(f) satisfies the same Lipschitz condition.

Hence %(£) is absolutely continuous.
By Proposition 12,

sup

holds for all t^

Since x(f) is absolutely continuous,

for almost all t^L This completes the proof of the theorem.

4. Existence of optimal control

In this chapter we shall consider the control problem for the con-
tingent equation and prove the existence of optimal control.

We shall make the following assumptions.
1) F(t, x, u) is a compact-set (in Rm) valued function defined in /X
Rm x Rr.
2) F(t,x,u) is measurable in t for each fixed (#, M)^RmxRr, and
continuous in (x, u) for each fixed t^I.
3) F(t,x,it) carries every bounded set in IxRmxRr into a bounded

set in Rm.
4) Q(t, x) is a compact-set (in Rr) valued function defined inlxR"1

and measurable in t for each fixed x^Rm, and upper semi-continuous
in x for each fixed t^I.
5) Q(t, x') carries every bounded set in IxRm into a bounded set in

Rr.
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6) R(t, x) =F(t, x, Q(t, #)) - {y,y^F(t, x, u), u^Q(t, *)} is a com-
pact and convex set (in Rm} for each (t,x)^IxRm.

7) For every t and x and weQ(£, #), x-y<^C(\x\2 + l') holds for
every y such that y^F(t, x, u), where the dot denotes the scalar product.
8) K is a compact set in Rm. K(f) is a compact-set (in i?1*) valued
function defined in /, and upper semi-continuous in t.

9) /(£, x) is a real function defined in IxRm, and is measurable in t

for each fixed x^Rm, and continuous in x for each fixed £e/, and is
bounded from below.

If u(f) is a measurable function in Rr, F(t, x, M(£)) is measurable
in £ for each fixed x^Rm, and is continuous in x for each fixed t^L

Therefore for each measurable function u(f) the system of equations

( d x ( f ) / d t ^ F ( t , x ( t ) , u ( f ) ) for almost all

has an absolutely continuous solution x(f) for every xQ^R'n, if F(t,x,

u) satisfies the assumptions stated above.
We say that x(f) is the trajectory corresponding to a control u(f)

(measurable in t and ^Q(t,x(f)} on /) if x(f) is an m-dimensional,
absolutely continuous function satisfying the above system of equations.

We say that a control u(f), defined for £0<^<X t^I, transfers

K to K(f) if one of the trajectories x(f) corresponding to u(f) satis-

fies the relations x(t^^K and x ( f ) ^ K ( f ) .

We shall consider the problem of finding a control function u(f)

which transfers K to K(f) and which minimizes the cost functional

where x(f) is one of the solutions corresponding to u(f), and t rep-

resents a value of t such that x(f)

Theorem 4. Suppose that the conditions stated above are sa-

tisfied. Also suppose that there exists at least one control u(f)

which transfers K to K(f) on I.

Then there exists an optimal control, i.e., a measurable func-
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tion u*(f) for which one of the corresponding solutions, #*(f)> with

initial condition #*(£0) K, attains K(t*} for some t* in /, and

inf /(*) =/(**) =

where, in addition, u*(f) eQ(f, #*(£))•

Proof. Now consider the set of all the #(£) satisfying

almost everywhere on /, x(tj) ^K and x(£) ^ K ( f ) for some FeJ, where,

in addition, M(£) eQ (£,#(£)) for some control w(£). Since one such
solution exists by hypothesis, this set is not empty. Consequently we
can select a sequence of trajectories (xH(f)} on /, with

decreasing monotonically to inf /(^), where tn represents a value of
t such that x n ( f ) ^ K ( f ) . xn(f) satisfy the following relations

almost everywhere on / and xn(t^)^K. By the compactness of solu-
tions of the contingent equation, we conclude that

where x*(f) is a limit function of a subsequence of {#„(£)}• Also we
can select a further subsequence (without changing the notation) such
that {t,} converges to some t* in / since / is a compact interval. Fur-

ther, making use of the equi-continuity of (xn(f)} and the upper semi-

continuity of K(f), we conclude that ^*(«eJT and **(**)(=#(**).

From Proposition 8 we can select a measurable function w*(£) such that

dx*(f)/dt^F(t, x*(t\ «*(0)

almost everywhere on / and «*(OeQ(*> #*(0) on I- Finally

approaches
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*/(*, **(0)<# as rc-*°o and hence inf /(*)=/(**)• Thus
0

#*(£) on tc<>t<Lt* is optimal
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