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Control problems of contingent equation

By

Norio Kixucur*

0. Introduction

In this paper we shall prove the existences of solutions for the Cara-
théodory type contingent equation and, using this existence theorem,
we shall consider a control problem for the contingent equation.

Furthermore we shall extend the existence theorem of optimal con-
trol that was considered in [3] to the case of the contingent equation.

The author wishes here to express his thanks to Professor Masuo
Hukuhara, who read the original manuscripts and suggested a number
of improvements.

1. Notations and definitions

The notations used in this paper are the followings.

Let X be a metric space. The distance between two points x,y
e X is denoted by dist(x, y). The distance between a point x = X and
a set ACX is defined by dist(x, A) =inf {dist(x, y) ;y=A}. For >0,
the dé-neighborhood of a set AC X is denoted by

U(A, d) = {x= X;dist(x, A)<5}.
For two compact sets A, BC X, the distance between A and B is
denoted by Dist(A4, B), where Dist(4, B) = inf {i>0; U(4, ) DB,
U(B, §)DA4}. This (Hausdorff) distance makes the set of compact sets

into a metric space.

Definition 1. A compact-set (in X) valued function F(t) defined
on a topological space T, is said to be upper (vesp. lower) semi-

Received March 27, 1967.
Communicated by M. Hukuhara.
* Department of Mathematics, KObe University.



86 Norio Kikuchi

continuous at t,(t,&T), if for every ¢=0 we can find some neigh-
borhood of t,, say V, such that U(F(t,),e) DF() (resp. U(F(1),¢)
DF(t) for all teV. When F(t) is upper (resp. lower) semi-con-
tinuous at every point of T, F(¥) is said to be upper (resp. lower)
semi-continuous on T. A function F(t) is said to be continuous at
t, (resp. on T) when F(t) is upper and lower semi-continuous at t,
(resp. on T).

Definition 2. If a compact-set (in X) valued function F(t) de-
fined on a measurable space E is such that, for every compact C
of X, the set {{cE; F@)cC} is measurable, then F is said to be
measurable on E.

Definition 3. For a sequence of subsets (in X) {4} (n=1,2,
-) we define
lim inf A,= {xeX;lim dist(x, 4,) =0}

n->co n->co

lim sup A,= {x€X;lim dist(x, 4,) =0}

n->o0 ey

and
lim A,=lim inf A,=lim sup A,,

n->c0 n->co n->c0

when lim inf A,=lim sup A..

It is known [1] that these sets are closed.

For a set A in X we denote by c/A the closure of A.

We denote by R" an m-dimensional Euclidean space with the usual
norm |x| for each x&R", and by I the compact interval [f,, {,+a]
in R

Let F(t) be a compact and convex set valued measurable function
(¢tm R™) defined on a measurable set E.

We denote by | F|(¢) a scalar function sup {dist (0, x); xe F(?)}.
If |F|(?) is integrable on E, then the Lebesgue integral SEF (t)dt has

been defined in [2]. In this case we say that F' is integrable.

2. Propositions

In [3] we have proved the following Propositions.
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Proposition 1. Let {F,(8)}(n=1,2,--+) be a sequence of com-
pact-set (in R™) valued functions defined and measurable on E and
monotone decreasing in n.

Then N F,(t) is measurable.

n=1

Proposition 2. Let {F,(})}(n=1,2,---) be a sequence of com-
pact-set (in R™) valued functions defined and measurable on E and
F)CCO)(n=1,2, ) for some compact-set (in R™) valued func-
tion C(t). Then cl "GlF,,(i) is measurable.

Proposition 3. Let F(t) be a compact-set (in R™) valued func-
tion defined on E. Suppose that meas(E)<Too,

F(t) is measurable on E if and only if, for every real positive
e, there exists a compact set E' in E such that meas(E—E')<Z
and such that F(t) is upper semi-continuous on E'.

Remark. In [2] it has been proved that the continuity of F in
this sense follows from the measurability of F.

Proposition 4. Let F(¢) be a compact-set (in R™) valued func-
tion defined and wmeasurable on E. Suppose that meas(E)<loo,
Then there exists a measurable function f(1) on E such that f(&)
eF @) for each t<E.

Proposition 5. Let F(t, x) be a compact-set (in R™) wvalued
Sfunction defined on IX R" and measurable in t for each fixed x =R"
and upper semi-continuous in x for each fixed t<1.

Then F(t, x(1)) is measurable in t for each conlinuous func-
tion x(t) =R".

Remark. Proposition 5 also holds if [ is replaced by a compact
set.

Further we can prove the following Propositions.

Proposition 6. Let F(¢, x) be a compact-set (in R™) valued
Sfunction defined on Ix R" and measurable in t for each fixed x =R"
and upper semi-continuous in x for each fixed t<1.
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Then F(t, x(t)) is measurable in t for each measurable function
x(t) ER".

Proof. Since x(¢) is measurable on I, for every real positive e
we can find a compact set J in I such that x(¢#) is continuous on J.
F(t, x(t)) is measurable on J.

Hence F(¢, (%)) is measurable on I.

Proposition 7. Let F(t,u) be a compact-set (in R™) valued
Sunction defined on IX R™ and wmeasurable in t for each fixed uc R’
and continuous in u for each fixed t<1.

Then for every compact set U (in R") F(t, U) is a compact-set
(tn R™) valued function and measurable in t.

Proof. For each fixed t=1, F(¢t,U) is a compact set in R™.
Indeed, let {x,} be a sequence of points in F (¢, U). For each n we
can select #,& U such that x,=F (¢, u,). Since U is a compact set, we
can assume that {#,} converges to u=U. From the continuity of F(Z,
#) in u, there is a subseguence of {x,} which converges to some x&
F(t,u)cF(, U).

The measurability of F(¢, U) follows from the following relation;
F(,U) =cl'_QF (t, u;), where {u;} is a dense subset of U.

Proposition 8. Let F(t, u) be a compact-set (in R™) valued
Sfunction defined on IxX R™ and measurable in t for each fixed us R’
and continuous in u for each fixed t<1I.

Then F(t, Q(t)) is measurable in t for each measurable com-
pact-set valued function Q) CR".

Proof. We first prove Proposition when Q(Z) is continuous. We
denote a subdivision of I by D: t,<<t,<l---<<t,=f,+a, and 6(D)= max

0<i<k-1
(tin—1t). For t,<t<t,, we define Q(¢;D)=Q(t). Let {D,} (n=1,
2, --+) be a sequence of subdivisions of I such that each division point
of D, belongs to that of D, and {3(D,)} tends to zero as #—>co,
Also we define F,(#) =F(t,Q(¢;D,)), and

1'(c>=NL:J1 ”il(Fnc cC},
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where I(F,ccC) denotes the set {{e;F,(i)ccC}. I(F,CCOC)
is measurable for every #, and hence I'(C) is measurable.

From the continuity of F(¢, x) and Q(¢), we can show that I(F
ccC)cI'(C) and I(FccCHDI'(C) for every compact set C'(D
20). Let C,(n=1,2,---) be the compact set ¢! U(C, %). From
the relations stated above, it follows [(Fc cC,,) cl'(C,.) cI(Fcc
C). Since IFCC)= N I(FCC)= (1 I'(C), F(t, QD) is measur-
able on I

When Q(?¢) is measurable on I, for every >0 there is a compact
set J in I such that meas(/— J)<e, and @(¢) is continuous on J.

Therefore F (¢, Q(¢)) is measurable on J and hence F(¢, Q%)) is
measurable on I.

Propositon 9. Let Q(x) be a compact-set (in R") valued func-
tion defined on R™ and upper semi-continuous in x<R".

Let F(x,u) be a compact-set (in R™) valued function defined
on R"X R and be upper semi-continuous in (x,u).

Then R(x)=F(x,Q(x)) is upper semi-continuous in x.

Proof. Take any x,=K" and e=0. According to the upper semi-
continuity of @(x), F(x, X) cU(R(x,),e) whenever Dist(X, @(x,)) <o
and |x—x,| <6 for some §(>>0). We can take Q(x,) UQ(x) as X if
x is sufficiently near x,. Consequently the relation

R(x)=F(x, Q(x)) CF(x, Q(x) URx)) cUR(xy),e)

holds since Dist (@ (x,) U@ (x), &(x,))<<s holds for every x sufficiently
near Xx.

Proposition 10. Let F(t,u) be a compact-set (in R™) valued
Sfunction defined on IX R and measurable in t for each fixed uc R’
and continuous in u for each fixed t<1I.

Let Q) be a compact-set (in R”) valued function defined and
bounded on I and measurable in t. Let y(¢) be a measurable func-
tion (in R™) on L

If {w;F(t,u)ysy@), ucQ)} is empty nowhere on I, then the
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compact-set valued function F(t) (in R") defined as
F@)={u; F(t, u)2y(), usQ(@)}
is compact-set valued function and measurable on I

Proof. From the compactness of @(#) and upper semi-continuity
of F(t,u) in u, F(f) can be verified to be compact for each ¢l

Take a denumerable set of points {u#;} (:=1, 2, ---) which is dense
in K7, and a monotone decreasing sequence {¢;} |0(j=1,2, --). Denote

the following compact set by F;;(?).
Fi;(1) = {u€ {uru} ;dist(y (@), F(E, u))<<e;, uc U@, ¢)}.

F;;(t) is measurable on I, and the relation
Ft= el UF,;@®)
j=1  i=1
shows that F(¢) is measurable on I.

Proposition 11. Let{F,()} n=1,2,---) be a sequence of com-
pact-set (tn R™) valued functions defined and wmeasurable on E.
Suppose that theve exists a compact-set (in R™) valued function
Fo(®) such that F,(t)cF,(t) (n=1,2,---) on E. Then F{)=Ilim

n->c0

sup F,(t) is measurable.
Proof. Since F,(t) CF,(t) on E, lim sup F,(f) exists and is a

compact set in R". F(¢) is measurable since F(¢) can be expressed

as follows.

oo

F(t) = Nr“jl ol U F.(0)

n=

on E.

Proposition 12. Let {F,()} (n=1,2, ) be a sequence of com-
pact and convex set (in R™) valued functions defined and integrable
on E, and suppose that there is an integrable function F,(t) (which
is a compact and convex set valued function) such that F,(t) CF,(2)
n=1,2,---) on E, then I”ig sup F,(t) is integrable and

lim sup S F,,(t)dtcg lim sup F.(¢) dt holds.

n->co



Control problems of contingent equation 91

Proof. By Proposition 2.1 [1] lim sup F,(¢) exists for each tEE.

Similarly lim sup S F,()dt exists, since
S F,,(t)dtcg Fy(ddt.
E E

Let x be any point in lim Supg F,(t)dt. Then there is a subsequence
n->co E
{F,(®)} such that

lim dist (%, SEF,,r(t) ) =0

n->o0

holds. By Proposition 1.3 [1] we can select a further subsequence
{F,»(£)} such that lim F,»({) =F(t) exists for each t€E. By Pro-

position 3.2 {1] we conclude that

lim Dist (F,» (1), F(#))=0.

Since
dist (x, SEF(t)dt)
<lim dist(x, SEF,‘,,@ dt> +lim Dist(SEF,,u(t) dt, SEF(t) dt),
and
lim Dist (SEF,,rr(t)dt, SEF(t)dt> —0
[2], then
dist(x, SEF(t)dt> —0
holds.
Hence

xES lim Fnr'(t)dtcg lim sup F,(¢)dt.

E n—>co

Remark. Proposition 12 also holds if the conditions F,(#) CF,(?)
are replaced by the following conditions; [|F,(#)|<M{#) on E for
some integrable scalar function M(%).
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3. Existence theorem for contingent equation

Theorem 1. Let the compact and convex set (in R™) wvalued
Sfunction F(t, x) be defined on a parallelepiped R(in R'XR™): t,<
t<ty+a, | x—x,| b, and measurable in t for each fixed x, and up-
per semi-continuous in x for each fixed t. Let there exist a scalar
Sunction M(t), integrable on I= [t t,+al, such that

|F(t, 2) | <M, S:’“M(t) dt<b

for all (1, x) ER.
Then there is an absolutely continuous function x(t) such that

dx(t)/dteF(, x(t))
for almost all t in I, and x(%,) = x..

Proof. Let D be a subdivision of [:#<t,<<---<< t,=f,+a. We
denote max (f,.,—1;) by o(D). Since F(¢, x,) is measurable on [£,, %],
1

0<i<k-—

we can select a measurable function f,(¢) such that f,(2) €F(, x,)
for each t€ [t,, t,].
For #,<t<t, we define

(D)= £,

and put
PO S Fo(Ddt,
Then
|2y — o] gg M@®dt<b
holds.

We define inductively {x;} and {f.(®)} ({=0,1, ---n—1) as follows.
Suppose that we have defined x; such that

| %i— | gg M(bdt,
and then for #,<t<{;, we define

x(t;D)=x.~+S Fi(Ddt

t
H
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and put x;,.,=x(l,1;D), where f;(f) is a measurable function such that
f:() eF(t, x,) for each te [t t,,1). Then
tie1
| 2ol < M@t

holds.

The function x(¢;D) has thus been defined for all f€1. By de-
fining y(¢;D) =x, for t€ [t liyy), 0<i<k—2, and y({;D)=x,4 for
1E [ti-,l]

x(t;D) €x(c; D) +S’ F(t, y(t;D))dt

holds for all t< [, t,+a].
Hence x(¢;D) is absolutely continuous, and

|2"(&; D) | <M (D), x(0; D) =x,,

hold independently of the choice of D.

Let {D,} n=1,2,---) be a sequence of subdivisions of / such that
{0(D,)} tends to zero as m—oo. Since {x(¢;D,)} is equi-continuous
on I and satisfies the same initial condition, {x(#;D,)} is a normal
family. Hence we can select a subsequence of {x(¢;D,)} (without
changing the notation) which converges to a function x(#) uniformly
on I, and

2" () [ <M @), x(0)=x,
hold.

From the equi-continuity of {x(¢;D,)} and the construction of
{y(t;D,)}, we conclude that {y(¢;D,)} also converges to x(¢) uniform-
ly on I

From the relation

x(t; D) €x, D)+ Ft, vt D))at
and the upper semi-continuity of F(¢, x) in x and Proposition 12
x() ex() +lim sup g F(t,y(t;D.))dt
cx() +S’ lim sup F(Z, y(t;D.))dt

cx(0) +S' F(, x(D)dt.
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Then
dx(t)/dteF(, x(1))
holds for almost all # in I and x(¢,) =x,.

Theorem 2. Let F(i,x) be a compact and convex set (in R™)
valued function defined on Ix R", and be measurable in t for each
fixed xER™ and upper semi-continuous in x for each fixed tel
Suppose that x-y<C(|x|*+1) (C>0) holds for every y such that
yeF(, x), where the dot denotes the scalar product, and that F(i,
x) carries every bounded set in IX R" into a bounded set in R™.

Then for every x,=R" there exists an absolutely continuous
vector function x(t) such that

dx(t)/dteF(t, x(t))
for almost all t in I, and x(t,) =x,.
Proof. We first prove this theorem under the assumption that

F(t,x) is bounded. Similarly as in the proof of Theorem 1 we define
{x(¢;D,)}, and {y(¢;D,)} such that

x(t:D,) €x(z, D) +S' F(, y(2;D,))dt.

Since F(Z, x) is bounded, {x(#;D,)} is a normal family and then
{x(¢;D,)} with {y(¢;D,)} can be assumed to converge to a function
x(¢) uniformly on I. From Proposition 12 we conclude that

x() Eex() +S’ F(, z(8)dL.

Hence
dx(t)/dteF(, x(1))

for almost all t=1, and x(¢,) = x,.

Next we denote (]x,]/*+1)exp(2Ca)—1 by H*(H=>0).

By taking a sufficiently large C, we can assume that H>1. Also
we define

F(, », |x|<H

F(t’x):{F(t,Hx/]x]), x| >H.
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F(t, %) defined as above can be verified to be measurable in ¢ for each
fixed x=R" and upper semi-continuous in x for each fixed f=1, and
is bounded on Ix R”. Hence there exists an absolutely continuous
function x(#) such that

dx(t) /dte F(, x(£))
for almost all {1 and x(Z,) = x,.

For F(t,x) the same relation as F(f, x), i.e., x-y<C(|x|2+1) for
every y& F (¢ %), holds. From this condition we can conclude that all
solutions of

dx/dteF(t, x) and x(t) =x,
satisfy |x(¢)|<H on I

Indeed if z()=|x(2)!12+1, then dz(?)/di<2Cz(1), hence z(¥)=<
(1%0]2+1) exp(2Ca),ie. |z(®)|<H. 1In |x|<H F(t x) and F(tx)
coincide. Hence a solution x(#) for

dx/dteF(t, x), x(t) =%,
is also that for
dx/dteF(t,x), x(t) =x,.

Consequently we have proved the existence of solutions.

Theorem 3. Let F(i,x) salisfy the condition in T heovem 2.

Then for every compact set K in R™ the collection of all solu-
tions x(t) of the contingent equation such that x(t,)) €K is compact
in the topology of the uniform convergence.

Proof. Let {x,({)} (n=1,2,---) be a sequence of solutions. We
must show that there exists a subsequence which converges uniformly
to a solution. Since

dx,(8)/dte F (i, x.(¥))
for almost all {1, it follows that

n(® - | F@t, nw)at

On the other hand {x,(¢)} is uniformly bounded and equi-contin-
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uous on I. Thus there exists a subsequence (without changing the
notation) which converges uniformly to some function x(#), and x(Z.)
€ K holds.

Further, since all the x,(¢) satisfy the same Lipschitz condition,
their limit x(¢) satisfies the same Lipschitz condition.

Hence x(%) is absolutely continuous.

By Proposition 12,

£(t) ~ %(:) Elim sup S F(, x.(D)dt
cS’ lim sup F(t, x,(£))dt
cSt F(, x(D)di

holds for all t< [r,t,+a].

Since x(%) is absolutely continuous,
dx(t)/dteF(, x(2))

for almost all {/1. This completes the proof of the theorem.

4. Existence of optimal control

In this chapter we shall consider the control problem for the con-
tingent equation and prove the existence of optimal control.

We shall make the following assumptions.
1) F(, x,u) is a compact-set (in R™) valued function defined in IX
Rx R,
2) F(t, x,u) is measurable in ¢ for each fixed (x, #) =R"XR’", and
continuous in (%, #) for each fixed f=1.
3) F(, x,u) carries every bounded set in /X R"X R” into a bounded
set in R".
4) Q(t, x) is a compact-set (in R") valued function defined in /X R"
and measurable in ¢ for each fixed x=R", and upper semi-continuous
in x for each fixed f /.
5) @, x) carries every bounded set in /X R” into a bounded set in
K.
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6) R x)=F x, QU x)={y;yeF({&, x,u), ucQ(, x)} is a com-
pact and convex set (in R™) for each (¢, x) €Ix R
7) For every t and x and u=Q(t, x), x-y<C(]x|*+1) holds for
every y such that ye F(¢, x, u), where the dot denotes the scalar product.
8) K is a compact set in R". K () is a compact-set (in R") valued
function defined in I, and upper semi-continuous in £.
9) f(¢, %) is a real function defined in /X R”, and is measurable in ¢
for each fixed x=R”, and continuous in x for each fixed {1, and is
bounded from below.

If #(¥) is a measurable function in R’, F(f, x, u(¢)) is measurable
in ¢ for each fixed x& R", and is continuous in x for each fixed f< /.

Therefore for each measurable function #(#) the system of equations

{dx(t)/thF(t,x(t),u(t)) for almost all f€1,
x(t) =%,

has an absolutely continuous solution x(#) for every x,=R", if F(i,x,
u) satisfies the assumptions stated above.

We say that x(¢#) is the trajectory corresponding to a control % (%)
(measurable in £ and €Q(, x(?)) on I) if x(¢) is an m-dimensional,
absolutely continuous function satisfying the above system of equations.

We say that a control #(t), defined for #,<<t<f, t<I, transfers
K to K(%) if one of the trajectories x(#) corresponding to #(f) satis-
fies the relations x(¢) €K and x(¥) €K (%).

We shall consider the problem of finding a control function % (%)

which transfers K to K(f) and which minimizes the cost functional
J@=\ ra xw)at,

where x(#) is one of the solutions corresponding to #(#), and ¢ rep-
resents a value of ¢ such that x(¢) € K(%).

Theorem 4. Suppose that the conditions stated above are sa-
tisfied. Also suppose that there exists at least one control u(t)
which transfers K to K(t) on L .

Then there exists an optimal control, i.e., a measurable func-
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tion uw*(t) for which one of the corresponding solutions, x*(t), with
initial condition x*(t,) K, attains K(t*) for some t* in I, and

inf (0 =79 =7t x*epa,

where, in addition, u* () €Q(, x*(1)).
Proof. Now consider the set of all the x(#) satisfying
dx(t)/dteF(&, x(0), u(?))

almost everywhere on I, x(¢,) €K and x(¥) € K(t) for some t&1, where,
in addition, #(?) €Q(¢, x(¢)) for some control #(#). Since one such
solution exists by hypothesis, this set is not empty. Consequently we
can select a sequence of trajectories {x,(¢)} on I, with

) =" 1t mat
decreasing monotonically to inf J(x), where £, represents a value of
t such that x,({) €K(#). x.(f) satisfy the following relations

dx,(t)/dteR(t, x,(t))

almost everywhere on I and x,({,) K. By the compactness of solu-
tions of the contingent equation, we conclude that

dx*(t)/dte R, x*(1)), x*(t) €K,

where x*(¢) is a limit function of a subsequence of {x,(?)}. Also we
can select a further subsequence (without changing the notation) such
that {f,} converges to some ¢* in [ since / is a compact interval. Fur-
ther, making use of the equi-continuity of {x,(#)} and the upper semi-
continuity of K(#), we conclude that x*(f,) €K and x*(*) € K(I*).
From Proposition 8 we can select a measurable function #*(?¢) such that

dx*(t)/dteF(t, x*(t), u*(t))

almost everywhere on I and #*(¢) =Q(%, x*(t)) on I. Finally

Iy =\" £t xmienat

approaches
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Si*f(t, x*())dt as m—oo and hence inf J(x)=J(x*). Thus

x*(t) on t<t<t* is optimal.
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