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On the spectra of Integra! operators
connected with Boltzmann and

Schrodinger operators

By

UCHIYAMA*

§1. Introduction

1.1. In this work we shall study self adjoint integral operators of the
form

(1. 1) (#/) (*) = F(*) •/(*) + \ K(x,
Jn

where F(#);>0 and the perturbation term K is, in general, an un-
bounded operator. Operators of this type appear rather often in ap-
plications. E. g., the so-called linearized Boltzmann operator and the
Fourier transformed Schrodinger operator are of this kind. The con-
tinuous spectra of these operators have been investigated by many
authors, e. g., Friedrichs [3] [4], and Faddeev [2], but it seems that
the discrete part of the spectrum has not been studied systematically.
Therefore we shall discuss chiefly the discrete part of the spectrum.

1. 2. Making use of Hermitian forms, Birman [1] investigated sys-
tematically operators of the form

(1.2) C = A + B,

where ^4;>0, and B is small relative to A. He applied the results to
the study of spectra of differential operators (mainly of the Schrod-
inger type). In §2 we shall study operators of the form (1.2), and
obtain some information on the essential spectrum and the negative
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part of the spectrum. Our results are similar to those of Birman [1] ,

but are stated in terms of operators rather than in terms of Hermitian

forms. In §3 we shall give criteria for the selfadjointness of the

operator (1. 1). It will be shown that the study of the negative part

of the spectrum of (1.1) reduces to that of the spectrum in ( — °°, —1)

of a bounded selfadjoint integral operator of the form

(i. 3) (G0/) (*) = \
Jn

This result is particularly convenient in showing the finiteness of the

discrete spectrum of (1. 1). In §4, without making use of the operator

(1. 3), we shall give a sufficient condition for the infiniteness of the

discrete spectrum. The result entails that in the neighborhood of XQ

satisfying V(Xo)=Q the behavior of V(#) and K(x, y) plays an im-
s^

portant role. The method is essentially the same as used by Zislin

[14] , the author [11] , etc. Finally, in §5 we shall apply these results

to the eigenvalue problems associated with the linearized Boltzmann

operator, the Schrodinger operator and the operator of the so-called

Friedrichs model.

It has been shown by Kuscer-Corngold [8] and Ukai [12] that

there are an infinite number of discrete eigenvalues of the Boltzmann

operator for the so-called mono-atomic gas model. But it seems to

the author that Kuscer-Corngold's treatment is not rigorous from the

mathematical point of view, and in Ukai's treatment, more strict esti-

mates are required. Furthermore, both of them apply to this problem

results from the theory of eigenvalue problems for ordinary differential

equations, but we assume no such knowledge. As for Schrodinger

operators, we shall give another proof of results obtained so far by

Birman [1], Mizohata-Mochizuki [9], the author [11], etc.

§2. Perturbation of discrete and essential spectra

2. 1. In this section, £> denotes an abstract Hilbert space.

Definition 2. 1. Let A be a selfadjoint operator in £>. /I is said
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to belong to the essential spectrum 0C(A) of A, if there exists a

sequence {^w}«=i,2> . CDC4)0 such that 11^,11 = 1, UH converges weakly
to 0, and lim||^4^M — Au»\\ = 0.2) The complement of a,(A) with respect

M-»oo

to the spectrum a (A) of A is called the discrete spectrum <rd(A) of
A, and a point belonging to ad(A) is said to be a discrete eigenvalue.

Then in terms of operators we shall show a result similar to
Birman [1] , Theorem 1. 2, which he has given in terms of Hermitian
forms.

Theorem 2. 1. Let A be a non-negative selfadjoint operator in
£>,3) B a symmetric operator, and D(A)=D(B). Let C = A + B be a
selfadjoint operator with domain Z)(C)=D(^4). If the densely defined
operator G4 + /)~1/lB(yl + /)~1/2 has a unique completely continuous ex-

tension Fl9 then
( i ) C is a lower semi-bounded operator, and

(ii)

Remark 2. 1. In Theorem 2. 1 the fact that G4+/)~1/2£G4 + /)-1/2

has a dense domain follows from the essential selfadjointness of 04 +
In fact, since we have (^ + ̂ /)1/2|Dc(yl + ̂ /)1/2|DW

/2, where D=\jEA(ri)$,s> we have only to show that (A +«=i
[D is essentially selfadjoint. Now for any /eZ?CA1/2), putting

, we have, as ^->oo, |[/n-/|[-K), and ||(^ + ̂ /)1/a|D/.-
2 = {~(/ji+fid\\EA(v)f\\2->(). Thus the minimal closed ex-j»

tension of (A + Aiy*\D is an extension of (A + Aiy'\ and so

Aiylz\D is essentially selfadjoint.

Proof. Since F^(A + IYllzB(A + iy^, Z?(4)cD(^1"), and
since Z>((^l+/)-1/25(^+/)-1/2) = (A + iyl2D(A), we have for any /e

1) Z)(^4) denotes the domain of A.
2) Here and in the sequel, j| || and ( , ) are used to denote the norm and inner

product in § as well as in Z,2(£) introduced in §3.
3) A is said to be non-negative if, for any f^D(A), (^4/,/)^0.
4) By A\D is meant the operator A with its domain restricted to DC.D(A).
5) £4GO denotes the right-continuous resolution of the identity associated with A.
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Since 7*\ is completely continuous, for any e>0 there exist a finite

number of elements {#>,•} ,-»!...# c§ such that

i-l

By the density of D(A) in £>, we can choose {&}f_i...wcZ?G4) satisfy-

ing

Thus

N\ F,||

Consequently, for any /eD(C) = Z)(yl), we have, with some constant

c(e) depending only on e,

If we choose e>Q small enough to satisfy 0<:3e<;l, we have assertion

(i).
Choosing A>1 large enough to satisfy — ̂ e(o(^4)n^(C),6:> we have

the resolvent equation

(2.1)

Here F* denotes the unique completely continuous extension of
2. Its existence can be seen as follows. Since 0<

for 0</*<°o, the spectral decomposition formula

6) p(A) denotes the resolvent set of A.
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yields that G4-M/)~1/2G4-f J)1/2 has a bounded extension, which equals

04+/)1/2G4 + ;t/)~1/2, a bounded operator. Thus the complete conti-

nuity of FI leads to the existence of completely continuous F\ in view

of

On the other hand, we can easily see that G4 + ^/)1/2(C+^/)~1 is a

closed operator defined over all of £>. Thus it is a bounded operator,

and the right side of (2. 1) is completely continuous. Then Weyl's

theorem yields ae ( (C + ̂ /) -1) = ae ( (A + U) -1) . Thus assertion (ii) holds.

(q. e. d.)

2. 2. Definition 2. 2. Let A be a selfadjoint operator in £. The

dimension S(A: ayU) of the range of the projection operator EA(b — fy

— EA(a) is called the total multiplicity of the spectrum of A in (a,

*).
The next lemma is well-known. In Birman [1] it plays a funda-

mental role.

Lemma 2. 1. Let A be a selfadjoint operator in £>. Let

be the upper bound ( + 00 permitted) of the dimensions of subspaces

M contained in D(A) such that for any element /^M(/=\=0), (Af,

/)<CO holds. Then we have

S(A: -oo,0)=

Proof. First, let S(A: — oo, 0) =n<+°o. Then we can choose

a set of elements {<pi}iI=ii...inc:D(A) satisfying A<pi = Xi<pi, ^,-<;0, and

* , <PJ) = da - Putting q> = S «,-^,- (S I ^ 1 =£ 0) , we have (^,^) = 2] /is- ^ |1=1 1=1 1=1
2

<0. Thus S(A: -oo, 0)<r(^4). If we assume r(^4)>5(^4: -ex,, 0),

there exists some q>^D(A) satisfying W = l, £"A (0 — 0)^ = 0, and (^,

. This is a contradiction, and, therefore, we have S(A: — oo, 0)

In case 5(^4: — oo,0) = + <x>, we may show in a similar fashion
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that -c(.A)^>n for any n9 so that r(A) = + 00. (q. e. d.)

28 3. Making use of the avove lemma, we have the following result,

similar to Birman [1], Lemma 1.3, where it is given in terms of

Hermitian forms.

Theorem 2. 2. Let A be a positive selfadjoint operator in §>,7)

B a symmetric operator with domain Z? (.4) =/?(/?), and C=A + B a

selfadjoint operator with domain Z?(C)=Z?C4). If R(B) c#G41/2),8)

and if the operator A~llzBA~llz has a bounded selfadjoint extension F0,

then we have

(2.2) S(C: -oo,0)=S(F0: -oo, -1).

Corollary 2. 1. If FQ is a completely continuous operator, then

C has the following properties:

( i ) C is a lower semi-bounded operator.

(ii) *.(C)=*.G4).

(iii) There exist at most a finite number of discrete eigenvalues

of C in (-oo,0).9)

Corollary 2* 20 Let the conditions in Theorem 2. 1 be satisfied.

If S(A + tB: —oo,0) is finite for any £( — °o<C£< + °o), then jF0 is

completely continuous.103

Proof of Theorem 2, 2, First, let 5(F0: -oo, -1) = w< + oo.

Then we can choose {^I}l-B=li...i8c§ satisfying F0(pi = ^i(piJ (y>i,<pj)=dij,

^< — l(s" = l, • • • , w). Moreover, because ^41/2D(^4) is dense in § (as

is seen by using the spectral decomposition formula and by Remark

2.1), for any e>0 we can find linearly independent

so that the inequality

(2.3) M1/8/,-dl^e (*' = !, -,»)

holds. Using (2. 3), we have

(2. 4)

7) yl is said to be positive if, for any f^D(A) (/=¥0),
8) i?(-4) denotes the range of ^4.
9) This corollary is similar to Birman [1], Theorem 1.4.

10) This corollary is also similar to Birman [1], Theorem 1.4.
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<| (CF0+/) (4"'/,-Pl), Vj-) \ + | ((F.+ /M'"/,, CA1"/,-?,)) I

Since D(^-1/25^-1/2) =^1/2D(^), Bg = All2F0A
ll*g for any

DG41'2). If we put f=fla,fi, S|c,|^0, then f<=D(A), and we
i=i 1=1

have by (2.4),

(2.5)

Choosing s>-0 small enough, we have (C/,/)<<0, since ^< — 1. This

shows, in view of Lemma 2.1, that S(C: — °°,0)^S(F0: — °o, —1).

Now, if we assume S(C: — °o, 0)>S(F0: — oo, — l), by Lemma

2.1 there exists a set of elements {/,-},-=i....,n+i such that {/,-} /=i,..., +i

C/M/J) ==8*j> and (C(S«••/*•))> (S0i/i))<0 for any {#,-}/=!,...,„
1=1 2=1

M + l

satisfying S l^ i l^O. We decompose All2f{ as follows:
1=1

^P5, where ^e^C-l-O)^ and ^t
(2)e(/-^0(-l-0))& Taking

account of 5(F0: — oo, — 1)=^ we can choose {<3:z}z-=i,...,M+i satisfying

f-^,-(1) - 0 and S | «,- 1 = 1. Then

a,/,), (S «i/i)) =

is a contradiction. Thus S(C: — oo, 0) =S(/V. — oo, —1).
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In case 5(F0: — oo ,— l) = + oo, for any n>0 we can similarly

choose an ^-dimensional subspace M such that for any element /eM,

/^O, (C/,/)<0 holds. This shows that S(C: -°o,0)>^. Then,

by Lemma 2.1, 5(C: — oo,0) = + °o. (q. e. d.)

Proof of Corollary 2.1. By the same method that was applied

in the proof of Theorem 2. 1 to F^ and Fl9 we can utilize the com-

plete continuity of FQ to show that Fl9 which is the unique bounded

extension of G4 + /)~1/25(yl + /)~1/2, is completely continuous. Then,

taking account of Theorem 2. 1 and Remark 2. 1, we have (i) and

(ii). The assertion (iii) is clear from Theorem 2.2. (q. e. d.)

Proof of Corollary 2. 2, By Theorem 2. 2, tF0 has at most a

finite number of discrete eigenvalues in ( — 00, —1), so that the spec-

trum of F0 in ( — oo, 0) U(0, oo ) is discrete. Thus F0 is completely

continuous, (q. e. d.)

Remark 2.2. In case that the inequality \\Bf\\<a\\Af\\ + b\\f\\

(a, i>0) holds for any f&D(A), we may replace in Theorem 2.2 the

condition R(B)dR(A1'2') by the condition that A\A~l/tD is essentially

self adjoint, where D = D(A-II2BA~112). In fact, since AIIZ\A-^D is es-

sentially selfadjoint, and is a positive operator, D is dense in £>. Thus,

examing the beginning part of the proof of Theorem 2. 2, we can

choose {fi} i-i.....n dA-ll2D satisfying (2.3), so that we have S(C: -oo,

0);>S(Fo:— oo, 0) in a similar fashion. On the other hand, we have

Bf=ALl2FQA1'2f for any/eDG4). In fact, since A\A-™D is essential-

ly selfadjoint, there exists {/„} H=Ii2i...c:A~ll2D such that ||/-/J->0

and \\Afn-Af\\-+Q. Then \\Bf-Bfn\\<a\\Afn-Af\\ + b\\f-fn\\-»Q

and \\A^2fn-A^ff= (A (/_/.),(/-/.) )->0. Therefore, Bfn =

All2F0A
ll2fn, FQ is bounded, and A112 is closed, and hence Bf=All2FQA1/2f.

Thus we can also show, in a way similar to the proof of Theorem

2.2, that S(C: -oo, 0)>S(FC: -co, -1) is a contradiction.
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§3. Perturbation of multiplicative operators by
integral operators

3. 1. Let Q be a (not-necessarily bounded) connected domain in the
m-dimensional Euclidean space Rm. In L2(J2) let us consider the
operator

(3. l) (#/) 00 =

= W) (*) + (#/) 00.

On this operator, here in the sequel, we impose the following condi-

tions.

Assumption 1. V(x) is a real-valued and continuous function

on Q. Let the domain of the multiplicative operator V be D(V) =

Assumption 2. inf
XCQ

Assumption 3. The integral operator K is generated by K(x, y)

), and is symmetric on D(K) =Z)(Vr).11>

If we set D(H") =D(F), -H" is a well-defined linear operator act-

ing in L2(£). In the following If denotes the operator thus defined.

3. 2. Lemma 3. 1. The operator V is selfadjoint, and

(3.2)

Proof. By Assumption 1 we can easily see that V is a selfad-

joint operator in Z,2(j2). The right-continuous resolution of the identity

(EVCO) for V is given as follows: For any <?(#)<

/ N IT / N , N f °> if
(3. 3) £V(yJ)<p(#) = -I

Then the fact that V(x) is continuous in Q and satisfies Assumption

2 leads to (3.2). (q. e. d.)

11) It seems that the condition K(x,y) = K(y,x} is independent of the symmetricity
of A" on £>(#) = #( F).

12) Here the case sup V(#) = °° is also permitted.
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Next, we prove a result useful in dealing with operators of the

form (3.1).

Theorem 3. 1. Suppose there exist a real number a such that

holds, and for any <z>0 there is some number c(a) satisfying

(3.5) \V(x}\«<a*\V(x}\*+c(a)\

Then

(i) H is a lower semi-bounded self ad joint operator in L2

(ii) ,.(#)=,.( 7).

Proof. By (3. 5) we can assume that the inequality | V(x) + 1 1 a

<az\ 70*;) |2H-c(#)2 with some constant c(0) holds. For any /e/?( V),

we have

\\Kf\\'=\dx\\ K(x,
J As J Jis

x

If we choose c>0 small enough to satisfy

=e2<l, there exists some c(e)>0 such that for any/eZ)(F),

With the help of a lemma of Kato [7] , one can show, by Lemma

3. 1, that H is selfadjoint.

On the other hand, we can assume that c(a) is non-increasing

for a>0. Then there exists a>0 large enough to satisfy — ̂ -^

and we have by Assumptions 2 and 3
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\\-J£J Q

, ,dxdy

Thus (F-i-/)"1/2^(F+/)"1/2 has a completely continuous extension.

Therefore, by Theorem 2.1, we have (ii). (q. e. d.)

As another direct application of Theorem 2. 2 we state the follow-

ing.

Theorem 3. 2. Let the set {#e£: V(x) =0} hasLebesgue measure

0, and the integral operator

(3. 6) (G(1/) 00 =

be bounded, selfadjoint in L2(^). If H=V+K with Z)(fl r)=D(V r) is

self adjoint, then S(^T: -c»>0) = S(Gc: -oo, -1).

Proof. We have only to check the conditions of Theorem 2. 2:

V is positive, because {#eJ2: F(#)=0} has measure 0; for /e

F1/2D(F) we have F1/2G0/-^F"1/2/, which implies that tf(#)c

.ff(F1/2); the other conditions are obvious, (q. e. d.)

§4- On the infiniteness of the discrete eigenvalues

4. 1. The following fact is useful in showing the infiniteness of the

negative part of the spectrum.

Lemma 401. Let CD be a subdomain of Q. Let Hw be the operator

formally defined by
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(4. 1) (ft/) 00 = F(*

Then for any/, ^eD(F.) = {/(*)

L*W,(Kuf,g)u=(f,Kug)», and

Moreover, if 77 and /£, are self adjoint operators with D(H} =

D(F)eL2(J2) and £(#„) =Z?(K) cL2(o)), respectively, then

(4.2) S(HW: -00,0)^5(^1 -°o,0).

Proof. We define 7(^)eL2(J2) by

7(*) = 0

7J, then/eZ?(V r)=Z?(A:). Thus Kf^L\&) yields #ffl/

eL2(o)), and ($£wf, g)w=(Kf,g') = (f, Kg) = (f, Kug)^ by Assump-

tion 3.

We prove (4.2). First let 5(^4: — °°, 0) = n< + °o. By Lemma

2.1, we can choose an ^-dimensional subspace McZ)(/4) such that

for any/eM(/^=0), (#„/,/X<0 holds. With f ^ D ( f f ) defined as

above, the subspace MdD(H) spanned by / for f^M is an ^-di-

mensional subspace of L202), and (Hf,f} = (Hwf,/}<*<$ for any /e

Af(/=^0). By Lemma 2.1 S(-H": —°°, 0)^^. In case ?z = °o, we ob-

tain S(H: ~-oo}0)^^ for any n in the same way. (q. e. d.)

Remark 4. 1. If ad® is a bounded domain and F(#) is bounded

on a), then with Z)(Zfu) =L?(o)), ^ is a bounded self adjoint operator

in L2(co). In fact, Vw is a bounded self adjoint operator in L2(a>), and

by Lemma 4.1 Jf^ is a bounded self adjoint operator.

Remark 4.2. If for some e(0<s<l) and some constant c(e)

depending only on e !I^£"II<>II Vg\\ +c(e)\\g\\ holds for any g^D(V^y

then H is a self ad joint operator in L2(^2), and Hw is a self ad joint

operator in L2(oj). In fact, for any /eZ)(K) we have

13) Here and in the sequel, we write (/,#)»=? f(x^g(x)dx and ||/||«=(/,/)i/2 for
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e!IK/!U + c(£)![/|U, from which, by a Lemma in
Kato [7], it follows that H<* is a self ad joint operator in L2(<w) with
domain

4. 2. Here is a sufficient condition for the infiniteness of the discrete
eigenvalues of H in ( — °Q, 0).

Theorem 4. 1. Let Hbe a selfadjoint operator in L2(j2). Assume
that for some point #0ej2 and some domain 00 = {x: x belongs to
a cone whose vertex is XQ and \x — XQ\ <r0} CJ2, there exists real

numbers i/>0, ft, ri> 0, (i = l, • • - , JV), ft', r5, * (i = l, -,#'),
<f. (£ = 1, ..-, JV), e'>0, and functions M(^,.y), and N(x,y} with

,x), N(x,y) =N(y, x}, such that:

(4.3) O^FOO^cltf-tfo

(4. 4) JT(^, y) = M(x, y) + N(x, y} ;

where Re(M(^j))<-S^U-3;]3 ' lx-xQ \^ \y~x0 \^ y for 1^-^0 |<
z=l

]jy — XQ\ and jce<w, jye<w,

Re(JV(^,.y))^constSI^-J'l0/ #-*ol7 ' ' ^-^ol8 ' ', for l^-jto1=1
<H3> — ̂ ci and ^:e<», ^eoj;

(4.5) ft + n + 5,- = ̂ -w (/ = !, • • - , JV) and

(4.6) inf jcf |«|'k(*)
SEfffe) I Joi

where o5= {x:x = xr — xQ, x'^co} and IF(a3) = {#(#) eL2(oj) : j|^||3 =1,
for a. e. ^ed)} ; and

(4.7) min /* =
^(TeCHa,) A€ff e(F)

Then there exists at least one negative discrete eigenvalue of H.
Moreover, if we assume that

(4. 8) K»\x, y) = \ K(x, z)K(z, y) \ dz
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is a kernel of an integral operator which is bounded in i2(ft>), and

that there exist real numbers ft", r/', tf'0" = l, • • • , N"), and e">0 such

that

(4.9)
=1

for \x — x0\ <L\y — x0\ and x^co, y<=:a), where

(4. 10) min W +

then there exist an infinite number of negative discrete eigenvalues

of H.

4. 3. Proof. First let the conditions (4. 3) -(4. 7) be satisfied. Ac-

cording to Remark 4. 1, Hw is a bounded self adjoint operator in L2(o>).

By (4.6) we can choose some function Jfi(#) such that

(4.11) c\ \x\*\g£x)\*dx
Js

-ZSd\ ( \x-y\
i=l J w J w

and

(4.12) J£i(#)l2rf* = l, tiW^O for a. e. ^^55, and

Setting

(4.13) ^W=/"/8ft(to) (/>!) and £,(*)=£i(*-*o),

we have

(4.14) f \gM\*dx = l, g,W^:Q for a. e. jre®, and ^/(^)=0 for

r^tThen

(4.15)

and by (4. 4) and (4. 5) ,

(4. 16) (Kagl, g,-)a = 2\ \
JcoJoi
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1=1 Ju> J 5
1*1 <bl

+ const
z=lJ

\*\<\y\

\ \\
Jco JtS

\x-y\B>\x\i-\y\*'g1(.x')g1(.y')dxdy + caiLst
\*\<\y\

Therefore, if we choose / large enough, by (4. 5) and (4. 11) we have

(4. 17) (#«£!, gi )«,

= -kJ-* + const /-c*+€0<0.

By (4. 7) and the inequality (4. 17), there exists at least one negative

discrete eigenvalue of H^ . Now it follows by (4. 7) and by Lemma

4. 1 that H has at least one negative discrete eigenvalue.

4. 4. (Proof of Theorem 4. 1 continued) Now let the condition (4. 3)

-(4. 10) be satisfied. We assume that there exist p negative discrete

eigenvalues of Hw. Call them {Ak} *=!,...,/,, and denote the associated

eigenfunctions by {0>*00}*=i,...,j (these form an orthonormal system

in L2(co)). Setting

(4.18) »/(^)=^/(^)-Sj9ciVW, where

we have

(4.19) (fl,,pO« = 0 (* = !,•", />

By the orthonormality of {#>*} *=!,...,#, we have

(4.20) (^^^O^^^^O.

On the other hand, since /U^O, and

we have

(4. 21)
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where the constant is independent of /. By (4.3), just as (4.15)
was obtained,

(4.22) H Ktfflli^ const /~2*.

Since by (4. 8) we can make use of Fubini's theorem, it follows from
(4.9), (4.10) and Lemma 4.1 that

(4.23) \\K«gl\\l=(K«K«ghg}«

<\ \ K«\x,y)gM
Jco Jo)

Therefore, by (4.17) and (4. 20)-(4. 23),

(4.24) CKofl/,t>f)M<0 for large />0.

The relations (4.7), (4.19) and (4.24) show that at least

negative discrete eigenvalues of Ha exist. Then by mathematical
induction, an infinite number of negative discrete eigenvalues of HM

therefore exist. Thus, by (4. 7) and Lemma 4. 1, H has an infinite
number of negative discrete eigenvalues, (q. e. d.)

§5. Applications

5. 1. Theorem 5. 1. The Boltzmann operator H which appears in

the mono-atomic gas model for the neutron scattering problem in an
infinite homogeneous medium is given by

(5. 1) (#/) (*) = 700/00 + K(x, y-)f(y-)dy
Jo

= ( 17)00 + (*/) 00 (*e(o,oo)),
where

(5.2) VW

(5. 3) K(x, y~) = - bff2 [e-v«*-**> {I(0X - O>) ± I(ffx

-» {1(0 y - £x) +

for

(5.4) -=
V n J°



On the spectra of integral operators connected with Boltzmann 117

Here M and b are positive constants 0 = ~ — 7=, and C = - / --
2y M 2V M

Then we have the following results:

(i) If the operator H has the domain D(H)={<p: (l + #)<?e

L2(0, °°)}, H is a lower semi-bounded selfadjoint operator in L2(0, °°).

(ii) If we put 0=

(5.5) *.

(iii) /f has an infinite number of discrete eigenvalues in ( — °°,

/o.">
To show the above theorem we make use of the next lemma.

Lemma 5.1. For F(#) and K(x,y) given by (5.2) and (5.3),

we have

(5. 6) V(x) = v+cx2 + TFOO, where c = ~£-
•3 V K

(x) | <const

(5.7) V(x) is continuous in (0, oo), monotone increasing with

(5. 8) I K(x, y} \ <e-^
2^2j for some £ >0, (0<jc, ;y< + oo) ,

(5.9) K(x,y)=K(y,x), and K(x,y) is a real function, and

(5.10)

where d = -^Lb(0-O= /-^ and |?(*,jO | < const
Vn M3lzVn

for 0<^<3;<1.

Proof. The assertions (5.6) — (5.9) are easily verified. The

relation (5. 10) obtains from the fact that for

[er»dt\
Vn L IJ J J

By-£x 6y + £x

<?'«»-*> tierltdt-\ertldtV\

14) Shizuta [10] has shown that #>0, and that 0 is a simple eigenvalue of H.
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-
•/*

where 7 = +=_ + c"=^— _. (q. e . d.)

5.2. Proof of Theorem 5.1. Set F(#) = V(x) — p,. Assumptions 1
-3 of (3.1) (with H for the H of (3.1)) are satisfied by H= V+
K, and ^-(0,oo)c^1. By (5.7), £>(F) = {<?• (l-f*)<?el,2(0, oo)}.
By (5.8), with ^ = l+e(l>s>0), for any a>0 there exists c
such that 1 FW a<^2 F(^)l2 + c(a)2, and

r
J o J o

. „ , ~
(F(3/)+l)a Jo (l+3/)a

Therefore, by Theorem 3. 1, assertions (i) and (ii) follow directly.
Now, by (5.6), for any ?>0 there exists 5(0<5<1) such that 0<
yOO^Cc+fl)*2 for Q<x<8. Then (4. 3) — (4. 6) of Theorem 4.1
follow from Lemma 5. 1 (#0=0, ®= (0, 5) CJ2= (0, oo) c^1, v = 2, ft = 0,
r< = l, ft = 0, e' = 2, w = l). In fact, putting #00=1 (*eo>) in (4.6),
since for a sufficiently small

(4. 6) is satisfied. The relation (4. 7) is easily verified by using
Lemma 3. 1 and Theorem 3. 1. Finally, since from (5. 10) follows

, we have with

<const | \ zzdz + \ zxdz + \ xydz\

<const {x3 + x ( y2 + #2) + jcy + xy2} .
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For e" = l these results entail (4. 8) — (4. 10). Therefore, since Theorem

4. 1 implies that H has an infinite number of negative discrete eigen-

values, assertion (iii) is completely proved, (q. e. d.)

5. 3. As another application of our method we consider the negative

discrete eigenvalues of the Schrodinger operator in

Definition 5. 1. Let A and B be symmetric in a Hilbert space

& and £>G4)c£>CB). If G4/, /):>(£/,/) for any /e 0(4), A^>B.

The following fact is well-known.

Lemma 5. 2. If A^>B and both operators are selfadjoint in £>,

then we have S(B: -oo, 0)^5(^4: -°o,0).

Proof. Let MdD(A) be an ^-dimensional subspace of £> such

that for any/eM(/^0), G4/,/)<0 holds. Then for any /eAf(/=£

0), CB/,/)<0. By Lemma 2.1, Lemma 5.2 follows, (q. e. d.)

We consider the Schrodinger operator which involving external

magnetic field, which can be written in the form (5. 11) below.

Theorem 5.2. Define LQ by

(5.11)

where

(5.12) ^OOe^O?3) and 00(*)eLL(iP) are real valued func-

tions,1^ and

(5.13) i*00, -= — #*(#) and #0(#) converge uniformly to zero as

Then:

(i) If the domain of L0 is 5)i2(^?3), L0 is a lower semi-bounded

selfadjoint operator in Z,2(£3).16)

15) /(dOGE-S^C/?3) means that /(#) has continuous derivatives of first order in R3,
3 Q-f

and sup |/(#)| + 2] sup —^—(#) <C + °°.
x£R$ k = l x€R3 dXfc

16) ffltf^R*} is the completion of the space C"(.£3) with the norm

where C"(j?3) is the space of all C°° functions with compact support.



120 fun Uchiyama

(ii) *.(£,)= [0,°°).

(iii) (a) If there exist «>0 and J?0>0 such that for all

(where oinf (4^ *|2!^(*) *dx({ [ -g^gty dxdyY], a>=
\ g€W(a>) ( Jco \Ja>Jco \X—y\ J )

R3:\x\<l} and WM = {g^L2M : W« = l, ^W^O for a. e.

a)}), then LQ has an inl5nite number of negative discrete eigen-

values.

(b) If there exist o/(l>a:'>0) and qz(x^L2(R3) such that

*), and if r3 is either a kernel

of a completely continuous self ad joint integral operator in LZ(R8) or
is a bounded selfadjoint integral operator with norm smaller than 4n2,

then LQ has at most a finite number of negative discrete eigenvalues.1"0

Proof of Theorem 5. 2. Assertion (i) is clear by results of
Ikebe-Kato [5] or Jorgens [6] . Assertion (ii) is also clear by a result

of Jorgens [6] . We shall show that assertion (iii) (a) holds.
For any

(5. 14)

+

Let

and

(5.16) LI= — A +#iOO,

17) #2(0 denotes the Fourier transform of #2(», which is given by (5.17).
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so that (l + as)L1>Lo. With D(LJ=£)12(R
S), L± is self adjoint in

Z,2(723). On the other hand, the Fourier transform

(5. 17) (F/) (?) s/(?) si. i. n
£->oo

3

(where /(*)eZ,2CR3) and #•? = ][]#.•?<) is a unitary transformation on1=1
. And for any /e^X^3), /(f ) e L1 0?3) • Indeed,

: (l+|H2)7(f)eL2CR3)}, so that

By the definition of q^x), we have q1(x)^L?(K1'). Let C#i/)(f) =
. Then for

(5. 18)

It follows easily that Assumptions 1-3 of (3. 1) (with .Hi as fi") are
satisfied for .fiTi and Q = R*, and that -Hi is a self ad joint operator with
the domain D(fli) - {/eL2(J?3) ; (1+ j? |2)7(f) eL2(J?3)}. We have

(5. 19) lim ^ = lim 2 n e ^ i r \ ^ 9 sin <?^v y 2 2

I f lJ
BQ —1 J?g

S sir~-lim 2 [sinr dr— 11111—r—j\ Uf .

R

Since li
r 2 '

0

for
o

Since fcOOe/W), ftWeLLC^*). And for |f-

(5.20)
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(where \p(£—y)\ <const) .

It is clear that H± satisfies conditions (4. 3) — (4. 6) of Theorem 4.1

with #o=0, j/=2, &=-!, n = fc = 0, w = 3, e' = l, and o>=

<!}. As for (4.7), in view of the inequality

(1+ if 12)(1 + h|2) J*3j*3 (1+

i) = [0, oo ) and tf.(-Hi,«) = [0, 47r2] by Theorem 2.1 and Lemma

3. 1. Conditions (4. 8) — (4. 10) are satisfied for e" = l, since by (5. 20),

for

Thus f/i has an infinite number of negative discrete eigenvalues, and

hence the same is true for Llt In view of Lemma 5.2 and (ii), (iii)

(a) follows.

Now we shall show that assertion (iii) (b) holds.

With

(5.21) !*=- A+#2(#),

the relation L<^>(l — a)L2 follows in a way similar to (5.14). With

L2 is self adjoint in L2(R^. Therefore, if we define
r"1/)(f) for /e^)l2(^

3), H2 is selfadjoint in

and

(5.22)

holds for /e 5^2 (IP). Thus by Theorem 3.2 or Corollary 2.1, there

exist at most a finite number of negative discrete eigenvalues of H2

and, hence, of L2. Thus in view of (ii) and Lemma 5.2, we have

(iii) (b). (q. e. d.)

Remark 5. 1. If there exist «*'(1><*'>0) and Rro>0 such that

for all i
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-. / M0 \^y
1 — CL a

then the conditions of Theorem 5.2 (iii) (b) are satisfied. In fact,
set

(5.23) ..; ; l a

const
\x\m

Then #2(#) satisfies the conditions of Theorem 5. 2 (iii)(b). Indeed,
we have similarly to (5.19).

const (f dr , f sin r -, 1 ̂  const

1 0

Since ^2(*) eL2(J?3) cLioc(j!?
3), for j f — ?

/^. \ i ̂ ^ const(5.24)

Setting

R'6 -R3 If! <1 lui <l Ifl >l |r?l <l |f| >l M >l

By (5.24) and the fact that 02(

, and

If I ^ hi £l hi >l ^3

Thus GO is a completely continuous operator in Z,2(J?3) with kernel
GoO^jO of Hilbert-Schmidt type, and the assertion is proved, (q. e. d.)

5. 4. Finally we consider the so-called Friedrichs model.
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Theorem 5. 3. Let

(5. 24)

where

(5. 25)

for
Then:

( i ) With £(#) - {/eL2(0, oo) ; */(*) eL2(0, oo)}, H defines a
lower semi-bounded self adjoint operator in L2(0, oo).

(ii) *.(#)= [0,oo).

(iii) There exist at most a finite number of negative discrete
eigenvalues of H.

Proof. In this case £=(0, °o) dR\ For any /eZ?(/T),
L2(0, oo ) because, by (5.25),

Thus, if D(H) is taken to be the domain of ^T, K is a symmetric
operator in L2(0, oo). Then Assumptions 1-3 of (3.1) are satisfied
by H. If OL satisfies K^<C2, then for any a>0, we can choose a
c(tf)>0 so that x*<^a2x2 + c<ia)2 for all
Also by (5.25),

y) | 2 r dx

Now Theorem 3. 1 and Lemma 3. 1 imply the truth of assertions (i)

and (ii). Setting GQ(x,y)= , we have
V x y y

II <**•
oJo xy Jo i xy

*(̂ ^ /i
xy

dy
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But we also have \K(x,y) | <Iconst | ;y | * for 0<#, y<l by the first
and third relations in (5.25). Hence, the following estimates hold:

and

. , r
#) Ji v .

XI +30

Thus GO is completely continuous. Corollary 2. 1 and Theorem 3. 2
now lead to the required result (iii). (q. e. d.)

Remark 5. 2. The spectrum of the above operator has been in-
vestigated by Faddeev [2] . He introduced a Banach space consisting
of Holder-continuous functions, and used it to show the above results.
But in studying the discrete spectrum, we may make use of the above
method to by-pass the introduction of such a Banach space.

Theorem 5. 4. Let

(5.26)

where
I K(x,y)-K(y,x)

(5'27)

Then;

(i) With domain D(H) = {/(*) ; (1+ |*i2)/ (^) eZ,2C£*)}, H

defines a self ad joint operator in L2(^?w) ;

(ii) *.(#)= [0,°o);

(iii) There exist at most a finite number of negative discrete
eigenvalues of H.

Proof. Here, £ = Rn. Assertion (i) is clear because (5. 27)

implies that K is a bounded selfadjoint operator. And Assumptions

1-3 of (3. 1) are also satisfied. We set
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where {G^s},^...it are integral operators with kernels

G (4) / Af /t]\
o f R\-^y y) —

0

0

0

O, JO

otherwise,

\x\>R>\y\

otherwise,

otherwise,

1*1,
otherwise .

Then

1?» 5» |*| <^R \y\ <R

And for any

const
Rn

const f . / f |/(^)|2^ \ /C djy , f rfj>
R* } \] (l+\x-y\)"+a J\] \ y \ z } (l+\x-

R' R» |,| SI *"

const f I rs,,\ i 2 j ^ f rf* ^- const2j^f
dy\ (l+

Rn Rn

In a similar fashion we have

l|G^/!|l2c,»

and !!G^/I!^.

Let McL2(£") satisfy H/H^^.^C for any /eM For any 5?>0 there

exists an ,?? large enough to satisfy IKG^ + G^+GSO/IUw^. But,

because G^i is completely continuous, there exists a sequence of ele-

ments {/.}»_,.«... cAf such that lim||G^/4-G^/m|[L2(JSO=0. Since
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lim||G0/* —Go/JUzc*")^?* application of the diagonal method gives a
*,»Z-»oo

subsequence {/*,} c {/*} such that {GGfkp} is a Cauchy sequence.

Consequently, G0 is a completely continuous operator in L2CR"), and

so by Corollary 2.1 and Theorem 3. 2 statements (ii) and (iii) hold,

(q. e. d.)

Remark 5. 3, Ushijima [13] has investigated the spectra of the

operators of the type given in Theorem 5.4. But for the discrete

spectrum he has only shown that <r.(/O R ( — °°, 0) =§.

In conclusion, the writer wishes to express his sincere gratitude

to Professor T. Ikebe for his kind advice.
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