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1. Introduction

In this paper we discuss an algebra of one-parameter families of

bounded operators mapping the space L2 of square integrable vector

valued functions into itself. As we know, the algebra of pseudo differ-

ential operators by Calderon-Zygmund and its extensions are very useful

devices to obtain the energy inequality for the Cauchy problem of non-

symmetric hyperbolic systems of differential equations [1] [2] [4] [6] [7].

Analogously we introduce the algebra of one-parameter families of

bounded operators for the purpose of getting some local energy inequality

to assure the stability of a finite difference scheme for regularly non-

symmetric hyperbolic systems [3]. The authors are greatly indebted

to the advice of Prof. S. Matsuura particularly for the formalism in

section 3. We wish to thank him for this advice.

2. An example

In the theory of pseudo differential operators, we have a special

operator denoted by A which is the Fourier transform of the multipli-

cation operator |f| in L\ where f means a real vector (&, ••• ,?„) in

Rl. This operator plays an important role in the theory of differential

equations with variable coefficients. In that case the commutator

a{oC)A — Aa(x), where a(x) is a smooth bounded function, is a bounded

operator in the L2 sense. While in the L2 theory of finite difference
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schemes with variable coefficients, a commutator <z(#)T— T#(#), where
T is a translation operator defined by Tu(x~) =u{x + he) (h is a

positive number, e is some unit ^-vector), have the property that it is

a one-parameter family of bounded operators with norm 0(/z). This

property corresponds to the boundedness of operators in the theory of

pseudo differential operators. Now we ask what is a family corres-

ponding to the operator A. Maybe there are several families corres-

ponding to this operator. Here we consider one example which is

defined in the following way:

(i) Ah = 3^\smh$\3

where 2 means usual Fourier transformation and sin hS means a vector

(sin A?!, sinAfo, • • • , sinfe), |sin&?| means, of course, the absolute

value of this vector.

We shall show first this family of operators has a similar property

to that of T. We assume that a(z') is smooth and is equal to a con-

stant for large x\. Then we can prove that a(x}Ah — Aha(x} is a

family of bounded operators with norm O(h). Because, for every

square integrable function u putting #i(#) =#(#) — ̂ (°°)), we get

= \0i(?— ?) |sin/ty!#Gp)<i?— \«i(?— v) I si

i(f — y) [ [s in^j — jsinAf | ]u(7?~)dy.

\ i 4 ( f - ^ ) l |sinAi?— sinfc

cos

3o An algebra of one-parameter families of operators

Definition . A one parameter family Hh of bounded operators
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mapping L2 into itself is called a "null scheme" if it satisfies the

following inequality. (And we denote the set of all null schemes by

3Z0).

(2) \\Hh\\=0(ti).

Next we consider the set JC of pxp matrix valued functions k

defined for x in Rl and f in R\ with the following properties

i) k is homogeneous of degree zero in ?.

ii) each k is independent of x for | x \ >R ; R is a fixed positive

constant.

iii) *(*,£) belongs to C~(Kx (Rl- {0})).

The set <JC forms an algebra of matrix valued functions by pointwise

addition and multiplication.

Now we associate a one-parameter family of operators Kh with

each function &eJC by the following formula:

(3) /fAK = l.i.

where A(?) = C*i(?)> ^(f)> '"> ^»Cf)) is a real valued vector function

which satisfies the following two conditions:

(0)
;/->co

The existence of the limit in the mean in (3) is based on the following

estimate (4) and the expansion in lemma 2 below (see (10)).

(4) |[^|!^sup|Z?f*(^f)|.
x€R"
f6u
|0U>»

with a? a fixed compact in jf?£— {0}, m an integer depending only on

the dimension n of the space, C a constant.

Now we consider the algebra of one-parameter families of bounded

operators mapping L2 into itself generated by Kh defined above. We

denote this algebra by £P and we call it the algebra of "pseudo difference

schemes."
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Next we need to define an operator Ah (of which one example was

stated in section 2) by the following:

(5) Ak = 3-*\l(h?)\3.

Definition o A family Kh which belongs to 3> is called "negli-

gible" if AhKh and KhAk belong to 3?0. The set of all negligible

schemes is denoted by 32.

Lemma 1. // 000 belongs to JC, then [000» Ah] =

— Aha(x) is a null scheme.

Proof is completely similar to the proof for the case ^00=

which is stated in section 2. We only used the condition (a) of

In fact, for all u^Ll, there exists a constant C

Lemma 2. (P. D.

Every k in JC can be expanded in a series

(6) k(x, f) =

<* varying over all multiindices so that the series, as well as the

differentiated series with respect to x or ?, converge uniformly.

For the proof see [4] . Therefore we see that the following finite sums

of special kernels are dense in JC with respect to the topology of

C'C^xCEl-iO})):

(7) 'ff 0« (*) k« (?) , ka (£) , aa (*) e JC.
a;

Here we can assume that ^a(f) are scalar ones according to the

lemma 2.

We try to compute the corresponding families Aa and Kha. in 3?

for the kernels 0aOO and &»(?)> then we get

(8) ^la^ =

(9) Kkau=

Consequently we can express the family Kh associated with general

element &(#,£) in JC in the following manner:
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(10) Kh

because of the continuity of mapping JM: JC-^£P with respect to Cm

topology (see (4)).

Now we state a lemma:

Lemma 3, If K}! is a family in 9? assocaited with k in JC,

then the commutator [Kk9 Ah] is a null scheme,

Proof. First we remark that if |( [Ki"\ Ak] \\<Ch with C indepen-

dent of n, and if K^->Kh (w->H-oo) with respect to the operator

norm, then [Kh, Ah] belongs to 370- Therefore it suffices to prove

this lemma for the case of K^ associated with the finite sum:

We have already

but we also have

k- for some constant M

because using the fact that the support of #iaOO are contained in a

fixed compact

Here we can take k large enough since ala{x}^C^. Then we get

i [K?\ Ah] t\<Ch

with C independent of n.

Now we state another important lemma

Lemma 4. If a(x} and &(f) ar^ m JC, then the commutator

[A, Kh] of A and Kh is negligible.
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Proof. For every u^U,, we have

!U [A, Kt] u\\ = |

S = Lipshitz constant of |f!&(£) for |

The proof is same for [.A, -8^]^*.
Thus we get the following:

Theorem 1. The set 3? is a two sided ideal in 3>*

Proof o For every element Nh in 32, we will show that any product
HhNh and NkHh belong to Jl taking Hh in S. Because Hh is formed
by addition and multiplication from fininite number of families Kh

associated with k(x, f) in JT. Then it is sufficient to show that any
product KhNh and NhKh belong to 32. On the other hand by the
lemma 3, [Kh, Ah] e32c, therefore we get

NhKhAh - ( JV^) Kh + Nh [Kh , A.] e 320 .

This means KhNh and NhKk are negligible. c.q.f.d.
Now we state the

Theorem 20 The mapping JM from <K onto 3? is a homomor-

phism with respect to addition and multiplication modulo 32.

Proof . The hornomorphisrn with respect to addition is evident.
For multiplication we only need the following:
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Lemma 5. // ki and kz are in JC, then ki-k2 = ks also belongs

to JC. If we denote Klh, K2hJ K^K2h the associated family with

ki, k2, ks respectively, then we have

KihK2h — KM ° K 2k G: 57 .

Proof of lemma 5. We can assume as usual that ki and k2 are

some finite sums of type (7), because of lemma 2. We put

Then we get

k3 = S aa (*) be (*) ̂ S (f ) *?0
} (f )

05,3

and

Therefore we have

BBK8? - K£Bd Kff.

If we prove the commutator [B^ K$] Is negligible then the proof of

lemma 5 will finish. But this is the simple consequence of lemma 4.

Of course, by the proof of lemma 4, we get

with C determined only by the Lipshitz constant of /l(£) and \£\kt(x, f)

and the C1 norm of &,•(#,£) in x (i = \, 2).

Corollary,, // Jf1/z and K2h are the same families in lemma 5,

and Mh is K^K^k, then KhAl— KuAhK2hAf, is a null scheme,

Proof.

MhAl - KIflAhK2hAh = (MhAh - KuAkK2k) Ah

= (Mh- KlhK2h~) Al + Ku [Ah , K2h] Ah e 3?0 .

Proposition, The homomorphism in theorem 2 is a *-homomor-

phism.
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Proof. If k is in JC, then k* is also in JC, we denote Kh and
Kl associated family with k and k* respectively. We can prove K?

adjoint of Kh is equal to Kf modulo the negligible schemes 37. The

proof of this fact can be proved by the same kind of reasoning as in

lemma 5.
Now we prove the

Theorem 2'. The homomorphism Jttfrom JC onto £P is an iso-

morphism modulo 37.

Proof . We are making use of the trick by P. D. Lax [4] . We
suppose that there exists a non zero element k in JC whose associated

family in 3? is negligible. Then for k*k, and also for the rotation in
? of k*(x,g*)k(x,£), the same is true. By the integration with respect
to the invariant measure over the whole rotation group. We have

a non negative matrix valued function $00 whose associate family Sh

is negligible. Therefore Ahs(x)9 s(x}Ah are null schemes.

On the other hand, because s(#) is a non zero positive semidefinite
matrix, we can assume that there exists a component $,•;(#) *2^>0 in

some open set Q. If we take a scalar function u(x') which belongs to
, then we get

But we can put sil(x}u(x}=v(x} for any function of .2)00), then we
have

which means for some constant

Ahv

Consequently by the Lebesgue theorem, we have

that means
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which is a contradiction.

Now we state a theorem which is important for the later appli-

cation.

Theorem 3* If p(x,£) is positive definite and belongs to JC,
then the associated family Ph satisfies the following inequality for

(11)

Proof o We can find a non singular matrix function r(#, <?) in JC

such that

Then using corollary of lemma 5, lemma 2, and lemma 3, we get

12. c.q.f.d.

Now we specialize the vector function /l(f) for the later use. Let

us consider a constant coefficient finite difference scheme Djk which

approximates the partial derivative — — with accuracv 1. Let us write
oXj

this scheme Dy* = SC/TJ, Tju(x)=u(xi9 • • - , Xj + h, ••• xn~). Then we/
can use — T-SC/e'^', as a 4/(?) if SC/e1'^' is pure imaginary for real

i i i

g. In fact by the consistency we can prove

4^--»e, for hi on

and ^(?)=-^-2]Cl
/^' is analytic in f. Since all derivatives with re

^ /
spect to ? are bounded, we have

Consequently, we get

U

where C is a constant independent of f,
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4. Calculus of difference schemes

Let Sk be a family of usual scalar difference operators of the

following form:

(12) S^Sft/OOT' (finite sum}
3

where £/(*) is Cm and constant for \x\>R and Tj=T{^T(* ..... TV-,
Ts

ppu(x^=u(x-T-jphep) (g,= (0"-01,0-"0)). As we have shown in
section 2, TJ

P* commute with #,00 modulo 570 and of course Ah com-
mutes with Tj* in usual sense. Thus we have the following.

Lemma 6B Z^ KhAh be the family corresponding to k^K, then
KhAhSh—ShKhAh is a null scheme.

Proof. We use Lemma 1 and Lemma 3 and Lemma 4.

j e

b,W T'ae ( *) Kh, Ah

= a, (*) KH (Ah be(x}-beAh^)T'

+ a, (*) (KH b, (*-) - b, («) Ku Ah T>

+ be(x) (aj(x) T'- T'a,

We can write:

= a, (*) b. O) Kh, AhT°= a; (x) be (x) T'KH A,,

h (mod Wo)

5. Application

The stability of Friedrielis9 scheme for regularly hyperbolic
systems.

Let us consider the system of equations with variable coefficients

fi o\ Q^ XT' A f*^ ^
I 10 } —T-. / i slj(X) —rdt j=i dxj

ivhere A^x) are given smooth bounded NxN matrices and equal to
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constant for large x while u is an unknown JV-vector. We assume

that (13) is a regularly hyperbolic system, that is to say, that the

matrix S Aj(x')$J = A(x, ?) have only real distinct eigenvalues for all
j

real ?= (fi, •••,?„) and every pair of eigenvalues /**(#, ?) anc* /•«<?(#>?)

satisfy the following condition: there exists a positive constant d such

that

(14) ! fip (x, f ) - ^ (*, f ) | ̂ rf for all x e 5", f e S""1

Then we know that there is a nonsingular smooth matrix N(x,

whose determinant is bounded away from zero for all x^R", f

and that it is a diagonalizer of A(x, f), i.e.

(15) D(Z, fi=N(x, &A(x, ftN-^x, f)

Nov/ we consider the numerical solution of the Cauchy problem for

this system. Among useful finite difference schemes, we consider here

exclusively one which is called Friedrichs' scheme. Replacing —— by

by

and k are space and time mesh length respectively and we denoted

S ffie ( /y _J_ X* j~\ I fi ( /v R /^N \
\l/lf \^^v ~T~ Uj , If ) ~\ (A/ \^j\> if j , If J f

u(x,t}=^^- (dj = hej9 Cj is a unit w-vectors
2^

y = l, • • • ,^ ) , we can write down the Friedrichs' scheme for the system

(13) as follows: for every

(is) M(*,f+Ao=i:

Or denoting X = -y-, we have

(17) u(x,t + k) = Sku(x,t), where Sh is defined by
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C-ION c .. ^ f u(x + dj, f) + u(x-d}, f)
(18) - - -

Now we state the stability theorem.

Theorem 3* // U|<- .— , then the scheme (17), (18) is
v n /j0

stable in the sense of Lax-Richtmyer, Here JUQ is max j/^(#, ?)|.
p=I, — ,N

lej<i
X€R"

Proof of the theorem. First we remark that the stability means

for any m positive integer, \\SkU(x, 0)|[<lC|[w(#, 0)|[, where C is a
constant independent of m and A and mh<LT.

To show this inequality it is convenient to introduce a new norm

which is equivalent to the usual L2 norm. First we explain its const-

ruction and equivalence.

i) Construction of a new norm.

Let Hh be a bounded operator corresponding to h(x,£) =

N*(x,$)N(x,S) which is a strictly positive definite function for x^Rn,

feS""1 and belongs to JC, Then we can show for any u with small
fixed support, (3leHhu,uy is positive definite. Because

(19)

I/o/;: operator corresponding to h(x0,£)

H1Jh: operator corresponding to hu(x9g) such that

h (x, f ) - h (XQ, f ) + S (*' - x$) hu (x, f ) .

Naturally <R.e(Hoku, u)^d^u\\z, then if we take the diameter of that
fixed support very small, we can show (although Hljh doesn't belong

to the operator family discussed in §3.)

We get

(20)
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We fix now a partition of unity {q?p} such that S^ = l. BecauseP
of the assumption about -4,00, we consider only a finite partition of
unity. If we take the maximum of diameter of the support of <pp

sufficiently small, then

(21) \M*a =

is equivalent to the L2 norm. For the inequality |[w||jy<[c|[wjl is evident
by the boundedness of Hh. The inverse inequality results from (20)
by summing up the inequality (20) for <p}u.

Now we can say that it suffices to prove

(22)

for the stability of (17). But to establish (22), we only have to show

(23) 3le(Hh

because the left hand side of (22) is

and

| (Hh q>j Sh u, & Sh uy — (Hh Sh cpj u, Sh & u) |

j Sh — Sh cpi) u, <pj Sfl u) + (Hh Sh & u, (<PJ Sh —

ii) Proof of (23). Putting v = <pjU, we'll show

(24) 3le<HkS>v, Skvy^(l + 0(K»9le(Hkv, t;>

that means

(25) &e«Hk-SfHkSJv, vy^-O(h~) \\v\\2.

Now we can write Sh and S* in the following form (here we take
=sin? as in the section 2)

Sk =
(26)

Sf = Ef-tiA*Qt.

Where Ek = 3^\ I • S cos h?J 1g and Qk is a family corresponding to
L j-i n J
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C. NOW we put Pt = Hk-S?HkS» and we get, using

(26),

where

Then we have P/z(1) = 0 (mod 370) . In fact using Lemmas 3, 4, 5 and

the fact that Q^Hh = H^QhJ we get

= -Hi, Gft 4i -EA = -Hi Qft -E
1/,

= -Hi; -Eft Qh Ah = -EA -HA Q;<

Furthermore by Lemmas 3, 4 and Theorem 1,

And we have also

So that
p = lf ( T F* F ^ n^offoO /f2
jTA - I2;^l - l^/; J&/J - ^f/i0^n;,0Hf/;^l//o

The Fourier transform of I—E*Eh is expressed by

and

^ ~ COS fa*_ i _i Cy , j >k
J_ I

= — 1 sin fe ]2 + -A-S (cos fe - cos /£,
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Hence we can write using a notation TJk= T,+ T/"1 — Tk— T/f1 and

lemma 6:

because of the fact

where S)h is the pseudo difference scheme corresponding to D(#, ?).

Applying the Theorem 3 for the operator N}Q( — Jl^o^joJV* whose
\ n I

symbol satisfies the condition of this theorem, we get using the fact

n

n
*v,v\

That means (25), and consequently (22) that was to be proved.

Remark. This method works as well in proving the stability of

another scheme. For example, the modified Lax-Wendroff scheme of

accuracy 2 which proposed recently by Richtmyer [7] , can also be

proved to be stable under the same assumption of the coefficients as

in (18). This scheme can be written as

(27) SAu=

Essential feature of these schemes is that they are both polynomials

of the same matrix Qk that comes from the original system (18). It

might be possible to give a general theory for this kind of schemes.
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