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An algebra of pseudo difference schemes
and its application

By

Masaya Yamacurr* and Tatsuo Nocr**

1. Introduction

In this paper we discuss an algebra of one-parameter families of
bounded operators mapping the space L* of square integrable vector
valued functions into itself. As we know, the algebra of pseudo differ-
ential operators by Caldéron-Zygmund and its extensions are very useful
devices to obtain the energy inequality for the Cauchy problem of non-
symmetric hyperbolic systems of differential equations [1] [2] [4] [6] [7].
Analogously we introduce the algebra of one-parameter families of
bounded operators for the purpose of getting some local energy inequality
to assure the stability of a finite difference scheme for regularly non-
symmetric hyperbolic systems [3]. The authors are greatly indebted
to the advice of Prof. S. Matsuura particularly for the formalism in
section 3. We wish to thank him for this advice.

2. An example

In the theory of pseudo differential operators, we have a special
operator denoted by 4 which is the Fourier transform of the multipli-
cation operator |&| in L} where & means a real vector (&, ---, &) in
Ri. This operator plays an important role in the theory of differential
equations with variable coefficients. In that case the commutator
a(x)A4—da(x), where a(x) is a smooth bounded function, is a bounded
operator in the L? sense. While in the L* theory of finite difference
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schemes with variable ccefficients, a ccmmutater a¢(x) T— Ta(x), where
T is a translation operator defined by Tu(x)=u(x+he) (h is a
positive number, e is some unit z-vector), have the property that it is
a one-parameter family of bounded operators with norm O(%). This
property corresponds to the boundedress cf operators in the theory of
pseudo differential cperators. Now we ask what is a family corres-
ponding to the operator 4. Mayke there are several families corres-
ponding to this operator. Here we consider one example which is

defined in the following way:
¢)) A, =S| sinhs|F
where & means usual Fourier transformation and sin/%é means a vector

(sin kg, sinhé,, ---, sinhé,). |sinké| means, of course, the absolute
value of this vector.

We shall show first this family of operators has a similar property
to that of 7. We assume that a(x) is smooth and is equal to a con-
stant for large |x|. Then we can prove that a(x)4,—A,a(x) is a
family of bounded operators with normm O(%). Because, for every

square integrable function # putting @,(x) =a(x) —a(e=)), we get
Fla(x)d,— dra(x)lu
=F[a,(x) d,— Ara,(x) 1t

—ae— 1sinmlaan- (.= 1sinne iy

:Xczl@—n) [Isinliy| — |sinke| 16 () dy.

I @) 4= ()]l < {1 due—) | simig—sin g (2 |

= (ae—n 1 2sinn- 5P loos LELD | i) 1)
<i{16.e=n 16218 v,
= IPXCIRHI A

3. An algebra of one-parameter families of operators

Definition. A one parameter family H, of bounded operators
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mapping L* into itself is called a “null scheme” if it satisfies the
following inequality. (And we denote the set of all null schemes by
TIly).

(2) [H.]|=0h).

Next we consider the set K of pXp matrix valued functions &
defined for x in R; and € in K} with the following properties
i) k is homogeneous of degree zero in &.
ii) each k is independent of x for |x|>FR; R is a fixed positive
constant.
iii) k(x, &) belongs to C=(Rix (Ri— {0})).
The set K forms an algebra of matrix valued functions by pointwise
addition ard multiplication.
Now we associate a one-parameter family of operators K, with

each function ke K by the following formula:
(3 K,luzl.i.m.ge“"vk(x,A(hs))zi(s)dé ucl?

where 1(8) = (&), (&), -+, 1,(§)) is a real valued vector function
which satisfies the following two conditions:

(@) [2(8) =) | ZCl6—9], [2(&) |KM  for &, yER!
® lim A(Z@ =¢ for €ER:.

The existence of the limit in the mean in (3) is based on the following
estimate (4) and the expansion in lemma 2 below (see (10)).

& | Kul<sup| Dtk (x, &) .

E€w
|Bizm

with o a fixed compact in Ri— {0}, m an integer depending only on
the dimension # of the space, C a constant.

Now we consider the algebra of one-parameter families of bounded
operators mapping L* into itself generated by K, defined above. We
denote this algebra by & and we call it the algebra of “pseudo difference
schemes.”



154 Muasaya Yamaguti and Tatsuo Nogi

Next we need to define an operator 4, (of which one example was

stated in section 2) by the following:
(5) Ay=F2(hg) | L.

Definition. A family K, which belongs to P is called “negli-
gible” if A,K, and K, 4, belong to Jl,. The set of all negligible
schemes is denoted by Jl.

Lemma 1. If a(x) belongs to K, them [a(x), 4] =a(x)4,
—Aya(x) is a null scheme.

Proof is completely similar to the proof for the case 1,(x) =sinh¢
which is stated in section 2. We only used the condition (a) of 2,(£).

In fact, for all u=L?, there exists a constant C
[ [a(x), 4] ull <C[6:(&) [&] 1 [ull 2+ b, a:(x) =a(x) —a(oo).

Lemma 2. (P. D. Lax)
Every k in K can be expanded in a series

(6) k(x,8) = Zw Qu exp<i<a, %>>

a varying over all multiindices so that the series, as well as the
differentiated series with respect to x or & converge umiformly.
For the proof see [4]. Therefore we see that the following finite sums
of special kernels are dense in K with respect to the topology of

CH (R (Ri— {0})) -
% Se@h®, RO a®eX.

Here we can assume that k,(€) are scalar omnes according to the

lemma 2.
We try to compute the corresponding families A, and K,. in &P

for the kernels a,(x) and k.(£), then we get
® Awt=a.(x)u, uslL?
€©)) Kyou="k,Q(h&))Fu, usl?.

Consequently we can express the family K, associated with general
element %2(x,€) in KX in the following manner:
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(10} K :ZA(X Khtx

because of the continuity of mapping HM: K—%P with respect to C”

topology (see (4)).
Now we state a lemma:

Lemma 3. If K, is a family in & assocaited with k in K,
then the commutator [K,, 4, is a null scheme.

Proof. First we remark that if || [K™, 4,]{|<Ch with C indepen-
dent of n, and if K("—K, (n—>+oo) with respect to the operator
norm, then [K,, 4,] belongs to Jl,. Therefore it suffices to prove
this lemma for the case of K associated with the finite sum:

() = S a0 kO,
We have already
ll@a (%) 4s— Mo (%) [ <Al dia () [€] 2,
but we also have

la.(&) ISH!Lngi—J“— for some constant M

because using the fact that the support of a,,(x) are contained in a
fixed compact

J2.0@) el (§ 12 e a6 210 1)

<M sup | D% (x) |

E
Blsn+1

M
S afiapr

Here we can take % large enough since @, (¥) €Cy. Then we get
[ (K, 4] 11ZCh
with C independent of 7.
Now we state another important lemma

Lemma 4. If a(x) and k(&) are in K, then the commutator
[4, K,) of A and K, is negligible.
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Proof. For every u<L?, we have

4.4, K\ ul|=||(4,AK,— 4,K,A)ul
= igd(sﬂy) [2(hg) | [k(/l(hﬂ))—k(/l(hé‘))]ﬁ(n)dﬂu
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S=Lipshitz constant of |£!k(&) for |&]<1.
The proof is same for [A, K, 4,.
Thus we get the following:
Theorem 1. The set Il is a two sided ideal in P.

Preoof. For every element N, in J1, we will show that any product
H,N, and N,H, belong to J] taking A, in &. Because H, is formed
by addition and multiplication from fininite number of families K,
associated with £(x, &) in K. Then it is sufficient to show that any
product K,N, and N,K, belong to JI. On the other hand by the
lemma 3, [K,, 4,] €Jl,, therefore we get

KthzAh:Klt<NhAh) Efﬁo
N.K A= (N 4)K,+ N, [K,, 4] T],.

This means K,N, and N,K, are negligible. c.q.f.d.
Now we state the

Theorem 2. The mapping M from K onto P is a homomoy-
phism with respect to addition and multiplication modulo ITl.

Preof. The homomorphism with respect to addition is evident.

For multiplication we only need the following:
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Lemma 5. If k, and k, are in K, then k,-k,=k; also belongs
to K. If we denote K., K, KyoK, the associated family with
ki, k., ks respectively, then we have

th 2n thoKZhE J1.

Proof of lemma 5. We can assume as usual that 2, and %, are

some finite sums of type (7), because of lemma 2. We put
k= a.(x) ki (£), k2=2ﬁbs(x)ki?s’($)-

Then we get
k=2 a. (%) ba(x) kfa (E) RiB (£)

and
KMZZAaKh%), KZh:ZBBKh(B?)
@ B

Kmo 2h:ZAaBBKI$) h(Bz)
«,B

th 2/;3213AaKh%)BBKh(§)-
o,

Therefore we have
thI{Zh_ f{:lhoKZh = 2 Aa (BBKI.(;) - Kh(nlﬁ)BB> Ks‘i)-
@,B
If we prove the commutator [Bp, K] is negligible then the proof of

lemma 5 will finish. But this is the simple consequence of lemma 4.

G: course, by the proof of lemma 4, we get
[ [Be, 3] 4] <Ch

with C determined only by the Lipshitz constant of 2(¢) and |£]&,(x, &)
and the C! norm of %,(x,8) in x ({=1,2).

Corollary. If K. and K, are the same families in lemma 5,
and M, is KoK, then K. 4i— K, A,E 4, is a null scheme.

Proof.

M/ﬁ:— Kl/.-AnKZh/In - (M/lh — KllehI{Q}J Ay
= (Mh_thK2h>A?l+th [Aln th] Ak6370 .

Proposition. The homomorphism in theorem 2 is a *-homomor-

Dhism.
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Proof. If % is in K, then k* is also in K, we denote K, and
K} associated family with % and k* respectively. We can prove K"
adjoint of K, is equal to K} modulo the negligible schemes JI. The
proof of this fact can be proved by the same kind of reasoning as in
lemma 5.

Now we prove the

Theorem 2'. The homomorphism M from K onto P is an iso-
mor phism modulo Tl

Proof. We are making use of the trick by P. D. Lax [4]. We
suppese that there exists a non zero element %2 in K whose associated
family in & is negligible. Then for k%%, and also for the rotation in
& of B*(x,6)k(x,&), the same is true. By the integration with respect
to the invariant measure over the whole rotation group. We have
a non negative matrix valued function s(x) whose associate family S,
is negligible. Therefore 4,5(x), s(x)4, are null schemes.

On the other hand, because s(x) is a non zero positive semidefinite
matrix, we can assume that there exists a component s;;(x)=6>0 in
some open set L. If we take a scalar function #(x) which belongs to
D(R), then we get

[ is:, () u (%) [[=O ).

But we can put s;,(x)u(x)=v(x) for any function of 9D(£2), then we
have

[40(x)[[=0R)

which means for some constant B>0

A2 <Blal,  were).

Consequently by the Lebesgue theorem, we have

40| <B]vll, voe D(2)

that means

H??Q_UH;B o], voeD(@
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which is a contradiction.
Now we state a theorem which is important for the later appli-

cation.

Theorem 3. If p(x,&) is positive definite and belongs to K,
then the associated family P, satisfies the following inequality for
usli.

an Rel Py fru, uy=—0Ch) |lu]>

Proof. We can find a non singular matrix function 7(x, &) in KX
such that
p(x,8)=r*(x,&)r(x,£).
Then using corollary of lemma 5, lemma 2, and lemma 3, we get
(P, L, uy=L4,RER, A,ut, u) +O(h) |[ne]?
=<{R, A1, R, 4,10y +O(h) || ut)
=—0)ul

2

2

c.q.f.d.

Now we specialize the vector function 1(€) for the later use. Let
us consider a constant coefficient finite difference scheme D;, which
approximates the partial derivative —a?c—, with accuracy 1. Let us write
this scheme D,-,,z?C,Tj, Tyu(x)=u(x,, -, x;4+ 4, -+ %,). Then we
can use —}—E}C,e"gﬂ, as a 1;(&) if EIC,e"EJ" is pure imaginary for real

& In fact by the consistency we can prove

/I:(hé-) g,
R g for 20

and A(S):%ZI‘, C,e%' is analytic in & Since all derivatives with re
spect to &€ are bounded, we have

12,8 =4, | <C;l6—nl.
Consequently, we get

12(8) —2(n) | ZC|€—7]

where C is a constant independent of &, »
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4. Caleculus of difference schemes

Let S, be a family of usual scalar difference operators of the

. following form:
12) Si=>3b;,(x) T’ (finite sum)

where 5;(x) is C™ and constant for |x|>R and T7=T4{- T{----- T},
Thu(x)=u(x~+j, he,) (e,=(0---01,0---0)). As we have shown in
section 2, T commute with ¢;(x) modulo J/, and of course 4, com-

mutes with 7'} in usual sense. Thus we have the following.
Lemma 6. Let K, A, be the family corresponding to ke K, then
Ky 4,S,— S, K, 4, is a null scheme.
Proof. We use Lemma 1 and Lemma 3 and Lemma 4.
K, 4, S,,:JZ Z‘a, () K, 4,0.(x) T
S,,K,,Ah:; zc}b,-(x) Tia.(x) Ko s
a;(x)K,; 4,0,(x) Te—b,(x) T*a;(x) K,; 4,
=a;(x)K,;{4,0.(x)—b.A4,) T
+a;(x) (Kb, (x) —b,(x)Ky; 4, T
+b,(x%) (a;(x) T*— T°a;(x)) K,; 4, T, .
We can write:
a,(x)K,, 4,0.(x) Te=a,(x)K,,b,(x) 4, T
=0;(x)b.()K,, 4, T°=a;(x)b.(x) T°K,, 4,
=b,(x) Tea;(x)K,, 4, (mod Jl,)

5. Application

The stability of Friedrichs’ scheme for regularly hyperbelic

systems.
Let us consider the system of equations with variable coefficients

U _ < g ou
(13) o DAWgL

)

where A;(x) are given smooth bounded N X N matrices and equal to
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constant for large x while # is an unknown N-vector. We assume
that (13) is a regularly hyperbolic system, that is to say, that the
matrix Z‘,A (x)&;=A(x,&) have only real distinct eigenvalues for all
real £= (51, ---,&,) and every pair of eigenvalues u,(%,£) and p,(%,§)
satisfy the following condition: there exists a positive constant d such
that
(14) Lo (%, 8) — (%, 8)|=d  for all x€R", €S
<p¢Q> p: q:]-’ "ty N.

Then we know that there is a nonsingular smooth matrix N(x, &)
whose determinant is bounded away from zero for all xeR", s S",
and that it is a diagonalizer of A(x, &), i.e.
(15) D(X,8)=N(x,6)A(x, &) N7 (x,8)
(X, 5)' ]

|

i

ﬂN(x ).

Now we consider the numerical solution of the Cauchy problem for

this system. Among useful finite difference schemes, we consider here

exclusively one which is called Friedrichs’ scheme. Replacing %Zf— by

u(x, t+k)—u(x, £)/k and g;: by u(x-’ré,-,t)th'(x 8, 1) where

and % are space aad time mesh length respectively and we denoted

- >H{u(x+0;,0) +ulx—a6;, D}
u(x, t) =22 o - (80;=he;, e; is a unit n-vectors

j=1, -+, m), we can write down the Friedrichs’ scheme for the system
(13) as follows: for every us L]

u(x+0;,1) +u(x—20;1t)
(16) uixt+k)=3| -
u(x+0;,t) —ulx—0a;,1)
S RA(%) - ]

Or denoting lzi, we have

h
an u(x,t+k)=Su(x,t), where S, is defined by



162 Masaya Yamaguti and Tatsuo Nogi

(18) shuzz”{u(xwi, t)z—e;iu(x—aj, £)

j=1

A4, () u(x-+9;, t)—z-u(x—ﬁj, t) }

Now we state the stability theorem.

Theorem 3. If ]z|<1/ni , then the scheme (17), (18) is
Mo

stable in the sense of Lax-Richimyer. Heve u, is max |p,(x,£)].
Proof of the theorem. First we remark that the stability means
for any m positive integer, [Sru(x, 0)||<Clu(x, 0)|], where C is a
constant independent of # and % and ma<_T.
To show this inequality it is convenieat to introduce a new norm
which is equivalent to tke usual L? norm. First we explain its const-

ruction and equivalence.

i) Construction of a new norm.

let H, be a bounded operator corresponding to h(x, &)=
N*(x,&) N(x,&) which is a strictly positive definite function for x& R”,
¢S and belongs to K. Then we can show for any # with small
fixed support, {Re H,u, u) is positive definite. Because

A9 (Hat, uy=Hot, uy+ 33 (%' — 20) Hiy, 1)
H,,: operator corresponding to h(x,, <)

H,;,: operator corvesponding to hi;(x,&) such that

h(x, & =h(x,, ©) + 20— 2 by (x, ).

Naturally Re{Hyu, uy=d,|u||?, then if we take the diameter of that
fixed support very small, we can show (although H;; doesn’t belong
to the operator family discussed in §3.)

[ — x) Hipw, uy | Zellu]]
We get
(20) Rel Hyu, uy=d||ull’.
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We fix now a partition of unity {p,} such that >l¢;=1. Because

?
of the assumption about A;(x), we consider only a finite partition of
unity. If we take the maximum of diameter of the support of ¢,

sufficiently small, then
(21) lult=> RedH,p;u, o;u)

is equivalent to the L? norm. For the inequality [u|s< c|%] is evident
by the boundedness of H,. The inverse inequality results from (20)
by summing up the inequality (20) for ¢;u.

Now we can say that it suffices to prove

(22) 1Siulla<<(1+O0(m) l[ullx
for the stability of (17). But to establish (22), we only have to show
(23 Re<H, Sup;t, Sypuy < (L+0(1) Re<Hyp5u, ¢;u,
because the left hand side of (22) is
ZJ_ Relp; Hyp;Syu, Siuy

and
| {Hyp; Sith, 0; Syuty — (H,Sio;u, Sip;uy|

={H,(¢;Si—Sio)tt, 0; Ssne) +<{H,Si0;u, (0; S~ Siei) )|
=0 ull*.

ii) Proof of (23). Putting v=¢,;u, we’ll show

(24) RelH,S,v, S,v)<(1+0h)) ReH,v, v)

that means

(25) Re (H,— SiH, Sp)v, v)=— 0 |[v]".

Now we can write S, and SF in the following form (here we take
2(&) =siné as in the section 2)

Sh:E],"'_Z.AQ/,A),

(26)

Where E,,=5F"[I 'S %@]5 and @, is a family corresponding to
i=1
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EnA,-(X) lsjl e X. Now we put P,=H,—S¥H,S, and we get, using
5
(26),

P,=PO +1P® + 2P®
where
O=H,—~EYXH,E,

P®=4,QfH,E,—E¥H,Q, 4,
W0 = A, Qi H, QA
Then we have P"=0 (mod Jl,). In fact using Lemmas 3, 4, 5 and
the fact that Qo H,= H,oQ,, we get
4,QFH,E,=4,Q; H,E,=Q{H, 4, E,
=Q,0H, 4, E,=H,0Q, 4, E,
=HQ4,E=H@Q.FE, 4,
=H,E.Q4=E,H,Q. 4,.
Furthermore by Lemmas 3, 4 and Theorem 1,
PP=Qi4, H,Q, 4,=0Q H, 4,0, 4,
=Qo H, 4,0, 4,=0,°H,Q, 4;
=Q,0H,0Q, A4 .
And we have also
PO=H,(I-EFE).

So that
Ph j—I I—E: h>~Q£O‘H:20QI;A%-

The Fourier transform ol [— E}¥E, is expressed by

r(-(29))

1_( >3 cos k&, >2

7

and

E (cos h&;—cos hg,)?

2

_1_ 2 cos’h L
n n

E (cos hg;— cos hé,)®.
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Hence we can write using a notation 7Tj=7;+ T;7*— T,— Ty* and

lemma 6:
P=t s BT+ (L H— 2 Qe H. HoQ) 4
= ST HT (L B2 H0Q) 4,

because of the fact
‘;—H_Qg°-[{h°Qh:Nh#°<—%l——12=@i°gh>°Nh

where &), is the pseudo difference scheme corresponding to D(x, £).

i —/Ii@,,OQ,)oN,, whose

Applying the Theorem 3 for the operator le°<
symbol satisfies the condition of this theorem, we get using the fact

jf = Tik

Re(P,v, v) = R >\ (H, Tyo, Tuo)

n

+.£Re<N,,°< ! —mio@,,)oN,,v, v)

LI Tol—om ol

=—-0W)|vil
=—0(h) Re(H,v,v).

>

That means (25), and consequently (22) that was to be proved.

Remark. This method works as well in proving the stability of
another scheme. For example, the modified Lax-Wendroff scheme of
accuracy 2 which proposed recently by Richtmyer [7], can also be
proved to be stable under the same assumption of the coefficients as
in (18). This scheme can be written as

@0 S, u— {l+ 010, Ah(Eh+i—;—Qh A)}u

Essential feature of these schemes is that they are both polynomials
of the same matrix @, that comes from the original system (18). It
might be possible to give a general theory for this kind of schemes.
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