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Derivations of uniformly
hyperfinite C*-algebras

By

Shoichiré Sakar*

1. Introduction

Recently, the author [7] proved that every derivation of W*-alge-
bras is ineer. On the other hand, it has been known that there are
many examples of C*algebras having outer derivations ( [4], [5]).
However, those examples were constructed in the frame of general C*-
algebras.

In the present paper, we shall study derivations of uniformly hy-
perfinite C*-algebras which were introduced by Glimm [1] and are ap-
pearing in the quantum field theory.

The main result of this paper is as follows: every derivation of
uniformly hyperfinite C*-algebras is inner. Also, we shall show that
such algebras have many outer *-automorphisms.

2. Derivations of uniformly hyperfinite C*-algebras

Let A be a C*-algebra with the unit 1. 2 is called a uniformly
hyperfinite C*-algebra, if it has a sequence of type I, -subfactors {I0%;}
(n,<<+o0) as follows: (i) 1€ for all i; (i) W CTW,,.; (GiD)n,—
oo (§—o0); (iv) U is the uniform closure of U 9t

t=1

Let A be a uniformly hyperfinite C*-algebra, then 2 has the uni-
que trace ¢ with (1) =1, where 1 is the identity of .

Let {z, 9.} be the *representation on a Hilbert space 9. construc-
ted via r and let M be the weak closure of #.(2), then M is a hy-
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perfinite Il -factor and the mapping a—n.(a¢) (e=2) is one-to-cne, be-
cause 2 is simple ([1]). We shall identify U with =.(2).

In the following discussiors, we shall show that 2 has cnly inner
derivations. Let D be a derivation of 2, then by Theorem 2 in
[7], there exists an element ¢ in M such that D(x)=la, x] for
xeU. Put D*(x) = [a*, x] for x€¥, then D* is also a derivation of 2
(cf.[7]); hence it is enough to assume that a is self-adjoint.

By considering |la|/1+a, we can take a positive element @ of M
such that [a, x] =D(x) for x€U. Let €= {a|a=0, ac M and [a, x]
=D(x) for all x=}, then there exists an element & in € such that
(b, x]1 =D(x) for all x=¥U and #(b) =inf 7(@), where ¢ is the trace on

acC
M with (1) =1.

Lemma. Let & be an uniformly closed convex subset of the self-
adjoint portion M* of M generated by {u*bu| all unitary #u<2}. Then
d¥, &) =0, where d(¥, &) =inf |la— %]

ac@
kR

Proof. Suppose that d(2, £)>0, then there exists a bounded
self-adjoint linear functional f on M such that f() =0 and f(&)>¢
for some positive ¢(>0).

Let 9 be the compact group of all unitary elements of 9 un-
der the uniform topology, and let dyu; be the Haar measure on 0N
such that (M) =1.

Let M* be the group of all unitary elements of . The mapping
u—u*yu of M* into M is unifermly continuous for each yeM. For
each g€ M*, define g*(y) =g (u*yu) for yeM and ucM*, where M*
is the dual space of M. Then, the uniform continuity of the mapping
u—u*yyu implies that the mapping #—g* of M* with the uniform
topology into M* with the topology ¢(M*, M) is continuous.

Put 7,(3) = {1, F(9)du (@), then £,(v*3)=£,(3) for all vem;
and yEM. The sequence {f;} is bounded and the unit sphere of M*
is ¢(M*, M)-compact; hence {f;} is relatively o¢(M*, M )-compact.

Let f, be an accumulate point of {f.}, then fo(v* yv)=,fo(y) for
all veM® and y=M. Therefore f,(v*y)=,fo(v* yv*v) =f,(yv*) for
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veMm? and y=M; hence fo(xy)=f,(yx) for x€ Ulﬁm,- and ye M, be-
cause elements of 9%; are finite linear combinations of unitary elements
in M, for all 7; therefore f,(xy)=s,(yx) for x=2 and y= M.

Moreover, f(f)>>e and so f“(b)>>¢; hence f,(b)=¢ and so f, is a
non-zero bounded self-adjoint linear functional on M.

Let fo=f¢—f¢ be the unique decomposition of f, such that fg,
fo=0, [Ifl=lrsl+1fsll (et (2], [8]). Then fi=f, for all usA,
where 2* is the set of all unitary elements in 2l; by the unicity,
(fH*=fy and (fi)"=fi for all u=A*; hence fi(xy)=f7(yx) and
fo(xy)=fi(yx) for x=WU and ye M. Therefore we proved that there
exist two different states ¢y, ¢, on M such that ¢, (xy)=¢(yx) and
0. (xy) =(yx) for x&A and y= M, and moreover ¢,(b) #¢.(b).

Now let B be a C*-subalgebra of M generated by 2 and b. Let
2 be the set of all states ¢ on B such that ¢(xy)=¢(yx) for x=UA
and y&E®, then by the preceding discussions, 2 contains at least two
points; moreover £ is a ¢(B* B)-compact convex set, where B* is the
dual of B.

Let «» be an extreme point of 2, and let {zy, 4} be the *re-
peresentation of B on a Hilbert space 9yr constructed via «.

Let M (resp. ©) be the weak closure of my(B) (resp. =y ()) on
9y. Then by Theorem 2 in [7], there exists a self-adjoint element
c=9O such that z,(D(x)) = [¢, ny(x)] for x<A; hence ny(D(x)) =my
([6, x1) = [7s(B), my(x)] = [c, my(x)] for xEN; hence ny(b) —c Emy (A,
where 7y ()’ is the commutant of =y(A). Therefore =,(b) belongs to
the W*-algebra generated by O and my(b) —c; hence 9t is a W*-algebra
generated by O and =zy(6) —c¢, and so ny(6) —c belongs to the center

Z of M. Supposs that Z contains a non-trivial central projection z.

1 1
Put ' = zly, 1y> and " = - <n 1—z
ly, ly), where I, is the image of the identity 1 in £y, and <<, > is
the scalar product of 9.

Let 2 be a positive element of 2, then (k) =y (yH'*h'"?) =
Jr (W29 R*) =0 for y(=0) =B; hence by Proposition 1 in [6], 4-(yk)
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<[ Aly(y) for y(=0)>B; therefore there exists a positive element
d' in z(8B)" such that (yh) =<{ny(y)d'ly, ly) =L{my(¥)ny(R)1y, 1y) for
y<®B, where 7y (B)’ is the commutant of =y (B) on Dy.

Hence d'ly=ny(h)ly, because =y(B)l, is dense in Hy,. Now we

shall consider

v (yh) = ( iz SRz, Ly = — 5wy (W)se (W 2ly, L)

1If()

———Lmy (¥ zmg (W) 1y, Iy = ——Lmy (y) 2d'ly, 1)

xlﬁ( 4 (2)
<d 'mg (¥)2ly, 1y

w <Z>

s Cra(9) 22y, by = «1»< -

Ay () 2ly, d'ly) = ( () (o (y) 2ly, my (R) 1y

«lr()

xlr()

e ><7le<h>7fw(y>21w Ly ='(hy) for y&B.

Hence 4’2 and analogously "' €2; hence yr=+'=+" and so 2=1—2
=1, a contradiction. Therefore Z= (A1), where 1 are complex numbers.
Hence N=9O; therefore, we can define an *-isomorphism p of M

onto N such that p(x) =ny(x) for x=A, because yr=t on A
Now, let |[yl.=2(y*y)*? for yeM. For yeM and >0, there

exists an 7 such that [|y—d,||,<<e for some d;=9;(j==i); hence HSW
e yudyey )\ wrdudpy )=\, 0 yudpn () — (@)1=

Therefore
I¢C)1— s, w*yudsn ) [i<lle ()1~ (@)1l

gy vy 0 — e @V y—d s o< 2¢ for j=i.

Put yjzgsmu u*yudu;(u), then the sequence {y;} converges strongly to
#(»1 in M.

Let a=p"(wy(d)) and suppose that (d) #r(d) =<my(b)ly, ly), then
#(b) #7(a), because y—<{o(y)ly, ;) (yE M) is the trace on M and so
by the unicity, #(y) =<o(¥)ly, ly).
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la, x] = [0 (m(D)), ] = [0 (7 (), 7" (s ()]
=0 (Imy(B), mp (2)]) =07 (my ([B, x]))
= [b, x] for x=;

hence a<=E; therefore #(a)=%(b). Now suppose that #(a)>%(b),
and consider the *representation n: 0—b@nry(6) of B on the Hilbert
space 9Dy, then the weak closure z(A) of A on HD, consists of
all elements {y@Do(¥y) |y M}.

[0, 2] D [74(8), 7 ()] = D (2) Dy (D (x)) Ex ()

and so (bu—ub)PDry(bu—ub) =x(A) for u=W*; hence (u*bu—>b)PDny,
(u*bu—>5b) =z (N) for usWY*. Therefore,

{u*bu—b—7(b)1} D {my (u*bu—b) —<(b) 1}

= {w*bu—b—2(b)1} D {p(u*) p(@) p(u) —my(b) —7(b)1}
= {u*bu—b—2(b)1} B {p(u*au) — =y (b) —7 ()1} € (N).

Hence
{b,—b6—2(6)1} D {o(a;) —m(b) —2(b)1} Ex (W)
and so
E@1—b—t(D) 1} B (@) 1—n(b) — (D)1} Ex ().
Hence

—bD [ (@) 2B} 1—m(B)] Ex(W).

On the other hand, 6 (d) €x(A); hence 0P [{F(a) —¢(B)}1—mny
() +o(B)1 €x(A) and so {#(a@) —¢(d)}1+p(b) =ny(b); therefore |my
@)= lle®)i=1b], a contradiction. Hence, we have ¢(a)=nr(b)=
().

Therefore +-(b) =7(b) for all extreme elements 4» of 2; hence
o(0) =%2(b) for all p=L. This contradicts that ¢,(d) #¢,(b), and com-
pletes the proof.

Now we shall show the following theorem.
Theorem. Every derivation D of U is inner.

Proof. For uc*, b, u]l =bu—ubs; hence u*bu—bcU. For
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arbitrary ¢>>0, by the above lemma there exist an element ¢ =¥, finite
families of unitary elements {u,|n=1, 2, ---, m} in U and positive num-

bers {A,|7=1,2,---,m} such that %/hz 1 and i]ﬁx,,u,’fbu,,— a||<le. Therefore,
n=1 n=1
1b—{a-+ (b= hastbu} |
= ”i A,,u,jkbu,,'—'a”<g.
n=1

On the other hand, b— "Z /I,lu;“bu,,=§‘_. 2.(b—ufbu,) €U; hence a+ (b—
n=1

n=1

m

> Autbu,) €A and so b belongs to 2.

n=1

This completes the proof.
3. Concluding remarks

We can extend the definition of uniformly hyperfinite C*-algebras
to the non-separable case as follows: 2 is called uniformly hyperfinite
if it has a directed family of type I,, subfactors {Mt.} (@<= 1I, %<+
o) such that (i) 1€M, for all a= I[; (i)W CTWp if a<{p; (Gii) A
is infinite-dimensional; (iv) U is the uniform closure of dL_JH M.

Then, we can prove that every derivation of such algebras is in-
ner, because our proof is available for these algebras.

Finally we shall remark that uniformly hyperfinite C*-algebras have
outer *-automorphisms.

By induction, we shall define a sequence of unitary elements {u,}
of A such that u,=IM,.

Take an one-dimensional projection ¢, in 9%, and put #,=e;,— (1—
¢)). Now suppose that #,(:<j) are defined. Put D%..=DL:X (N
M., where ¢; is the commutant of P in 2.

Take an one-dimensional projection e;,; from MNP, and put
Vin=e— (1—e.1).

Then, define %;,,=u;0;,..

Next, by induction, we shall define a sequence of pure states {y»} on
M, as follows:

Take a pure state +», on I such that r(e;) =1. Such state is

unique, because M is a type I,,(m,<<+oo) factor. Now suppose that
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0;(1<j) are defined. Write 9t;..=PERQ(;MNIM;1). Take the unique
pure state &, on ;M. such that &;,,(e;;x) =1 and put rj =&
£;11, then +r;,; is pure on 9M;,, and clearly yr; i =+r; on M;. Therefore
we have the unique state ¢ on U such that ¢=+; on M; for all j.
Clearly ¢ is pure on .

Let {xs, Do} be the *representation of 2 on a Hilbert space 9,
constructed via ¢, then =, is faithful, because U is simple. For a
EM,; and m<n,

o (@* (tm—1.)* (Un— 1) @) = ¢ (@* (Un—u.)*@)

= (@* (1= Vsl -0)%a)

=0(@*a(1— VpiUmin-0,)%) (mM>1)

<o(@*a(1 = VmUm0.)*0*@) P (1 —Vmi1e - 0m) )
<4o((a*a)") (2= 20m,Vm.e-0,)"

=40 ((a*a)*)"* {2~ 2rmi1(Vmis) - 4fru (02D}

=0.

Hence {z,(#.)} is a Cauchy sequence in the strong operator topology.
Let u be the strong limit of {zs(#,)}, then # is a unitary opera-
tor on 9., because wp(u,) is self-adjoint.
Moreover, for d S (I;)

ure(d)u=strong—lim,ne (#,) ne(d) e (%,)

=1p (UiVe V) 7o (d) 7o (UsVpr V) Emep (W)

Hence #z,(A)uCA; therefore the mapping p:x—=3'(Une(x)u) (x=A)
is an *-automorphism of 2 such that o(P%,) CIM; for all 4.

Now suppose that there exists a unitary element vEU such that
o(x)=v*xv for all x=U. Then 7n,(V)ury(x) (me(V)u)*=n,(x) for
x<; hence no(v)u=2aI, where |1] =1, and I is the identity; there-
fore u=n, ().

Let zo(w) =u(we<A), then w is a self-adjoint unitary element in
A. For arbitrary >0, there exist an ¢ such that some self-adjoint w;
sm;

lw—w;||<<e for j=i.

On the other hand, for x;&9%;
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o (W)ne (X)) e (W) = tne (X;)u
=strong —lim,ne (#;) e (V1) - 1o (W) e (%) e (U;) o (Vs11) ++ o (V)

=np(U) e (X))o (U;) =mp (U;x5u;).
Hence (uw)x;(uw)=x; for all x,€9; and so u;wEN;, where M is
the commutant of 9% in UA; hence w=u,u;, where u; =N,
Therefore
llow —w, [l = lloa00; — wj !l = 1o — w00,
<e for j=i.
Hence

Hgmg*u}gdw(g) ~§§m7 gruw; 8dn(g)|

o, 187 W—w;)g lldn(g)

I

Iiui-—r(u,-w,-)llfgg
<e for j=i.

Since 7y (u;) =np(U) e (W) =ny(u,)u

=strong-lim v; 40;, -0, #; is
n

self-adjoint. Suppose that z,(u;) =1 for j=i, then =e(w)=wu=u; for
j=i. On the other hand u;+#u,, if j+##k, a contradiction; hence u;#1;
therefore there exists a non-trivial projection p in U such that #;=p
—({1—p). Then

[p—A—p) —r(uw)1|

=max{|1—c(uw,) |, |1+c(uw;)|}=e.
Hence —e<l—t(uw;)=<<¢ and —e<{1-+7(u;w;)<e; therefore 22, a
contradiction.

This implies that #&7z,(A)——namely p is an outor *-automor-

phism of .
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