Derivations of uniformly hyperfinite C*-algebras

By

Shôichirô Sakai*

1. Introduction

Recently, the author [7] proved that every derivation of W*-algebras is ineer. On the other hand, it has been known that there are many examples of C*-algebras having outer derivations ([4], [5]). However, those examples were constructed in the frame of general C*-algebras.

In the present paper, we shall study derivations of uniformly hyperfinite C*-algebras which were introduced by Glimm [1] and are appearing in the quantum field theory.

The main result of this paper is as follows: every derivation of uniformly hyperfinite C^* -algebras is inner. Also, we shall show that such algebras have many outer *-automorphisms.

2. Derivations of uniformly hyperfinite C*-algebras

Let \mathfrak{A} be a C*-algebra with the unit 1. \mathfrak{A} is called a uniformly hyperfinite C*-algebra, if it has a sequence of type I_{n_i} -subfactors $\{\mathfrak{M}_i\}$ $(n_i < +\infty)$ as follows: (i) $1 \in \mathfrak{M}_i$ for all i; (ii) $\mathfrak{M}_i \subset \mathfrak{M}_{i+1}$; (iii) $n_i \rightarrow \infty(i \rightarrow \infty)$; (iv) \mathfrak{A} is the uniform closure of $\bigcup \mathfrak{M}_i$.

Let \mathfrak{A} be a uniformly hyperfinite C*-algebra, then \mathfrak{A} has the unique trace τ with $\tau(1)=1$, where 1 is the identity of \mathfrak{A} .

Let $\{\pi_{\tau}, \mathfrak{H}_{\tau}\}$ be the *-representation on a Hilbert space \mathfrak{H}_{τ} constructed via τ and let M be the weak closure of $\pi_{\tau}(\mathfrak{A})$, then M is a hy-

Received June 30, 1967.

Communicated by H. Araki.

^{*}Department of Mathematics, University of Pennsylvania and Research Institute for Mathematical Sciences, Kyoto University.

perfinite II_1 -factor and the mapping $a \rightarrow \pi_{\tau}(a)$ $(a \in \mathfrak{A})$ is one-to-one, because \mathfrak{A} is simple ([1]). We shall identify \mathfrak{A} with $\pi_{\tau}(\mathfrak{A})$.

In the following discussions, we shall show that \mathfrak{A} has only inner derivations. Let D be a derivation of \mathfrak{A} , then by Theorem 2 in [7], there exists an element a in M such that D(x) = [a, x] for $x \in \mathfrak{A}$. Put $D^*(x) = [a^*, x]$ for $x \in \mathfrak{A}$, then D^* is also a derivation of \mathfrak{A} (cf. [7]); hence it is enough to assume that a is self-adjoint.

By considering ||a||1+a, we can take a positive element a of Msuch that [a, x] = D(x) for $x \in \mathfrak{A}$. Let $\mathfrak{C} = \{a \mid a \geq 0, a \in M \text{ and } [a, x] = D(x)$ for all $x \in \mathfrak{A}\}$, then there exists an element b in \mathfrak{C} such that [b, x] = D(x) for all $x \in \mathfrak{A}$ and $\hat{\tau}(b) = \inf_{a \in \mathfrak{C}} \hat{\tau}(a)$, where $\hat{\tau}$ is the trace on M with $\hat{\tau}(1) = 1$.

Lemma. Let \Re be an uniformly closed convex subset of the selfadjoint portion M^s of M generated by $\{u^*bu \mid \text{all unitary } u \in \mathfrak{A}\}$. Then $d(\mathfrak{A}, \mathfrak{R}) = 0$, where $d(\mathfrak{A}, \mathfrak{R}) = \inf_{a \in \mathfrak{R}} ||a - k||$.

Proof. Suppose that $d(\mathfrak{A}, \mathfrak{R}) > 0$, then there exists a bounded self-adjoint linear functional f on M such that $f(\mathfrak{A}) = 0$ and $f(\mathfrak{R}) > \epsilon$ for some positive $\epsilon(>0)$.

Let \mathfrak{M}_{i}^{u} be the compact group of all unitary elements of \mathfrak{M}_{i} under the uniform topology, and let $d\mu_{i}$ be the Haar measure on \mathfrak{M}_{i}^{u} such that $\mu_{i}(\mathfrak{M}_{i}^{u}) = 1$.

Let M^* be the group of all unitary elements of M. The mapping $u \rightarrow u^*yu$ of M^* into M is uniformly continuous for each $y \in M$. For each $g \in M^*$, define $g^*(y) = g(u^*yu)$ for $y \in M$ and $u \in M^*$, where M^* is the dual space of M. Then, the uniform continuity of the mapping $u \rightarrow u^*yu$ implies that the mapping $u \rightarrow g^*$ of M^* with the uniform topology into M^* with the topology $\sigma(M^*, M)$ is continuous.

Put $f_i(y) = \int_{\mathfrak{M}_i^u} f^u(y) d\mu_i(u)$, then $f_i(v^*yv) = f_i(y)$ for all $v \in \mathfrak{M}_i^u$ and $y \in M$. The sequence $\{f_i\}$ is bounded and the unit sphere of M^* is $\sigma(M^*, M)$ -compact; hence $\{f_i\}$ is relatively $\sigma(M^*, M)$ -compact.

Let f_0 be an accumulate point of $\{f_i\}$, then $f_0(v^* yv) = f_0(y)$ for all $v \in \mathfrak{M}^n_i$ and $y \in M$. Therefore $f_0(v^* y) = f_0(v^* yv^*v) = f_0(yv^*)$ for

168

 $v \in \mathfrak{M}_i^{*}$ and $y \in M$; hence $f_0(xy) = f_0(yx)$ for $x \in \bigcup_{i=1}^{i} \mathfrak{M}_i$ and $y \in M$, because elements of \mathfrak{M}_i are finite linear combinations of unitary elements in \mathfrak{M}_i for all i; therefore $f_0(xy) = f_0(yx)$ for $x \in \mathfrak{A}$ and $y \in M$.

Moreover, $f(\Re) > \varepsilon$ and so $f^*(b) > \varepsilon$; hence $f_0(b) \ge \varepsilon$ and so f_0 is a non-zero bounded self-adjoint linear functional on M.

Let $f_0 = f_0^+ - f_0^-$ be the unique decomposition of f_0 such that f_0^+ , $f_0^- \ge 0$, $||f_0|| = ||f_0^+|| + ||f_0^-||$ (cf. [2], [8]). Then $f_0^* = f_0^-$ for all $u \in \mathfrak{A}^*$, where \mathfrak{A}^* is the set of all unitary elements in \mathfrak{A} ; by the unicity, $(f_0^+)^* = f_0^+$ and $(f_0^-)^* = f_0^-$ for all $u \in \mathfrak{A}^*$; hence $f_0^+(xy) = f_0^+(yx)$ and $f_0^-(xy) = f_0^-(yx)$ for $x \in \mathfrak{A}$ and $y \in M$. Therefore we proved that there exist two different states φ_1, φ_2 on M such that $\varphi_1(xy) = \varphi_1(yx)$ and $\varphi_2(xy) = \varphi_2(yx)$ for $x \in \mathfrak{A}$ and $y \in M$, and moreover $\varphi_1(b) \neq \varphi_2(b)$.

Now let \mathfrak{B} be a C*-subalgebra of M generated by \mathfrak{A} and b. Let \mathcal{Q} be the set of all states φ on \mathfrak{B} such that $\varphi(xy) = \varphi(yx)$ for $x \in \mathfrak{A}$ and $y \in \mathfrak{B}$, then by the preceding discussions, \mathcal{Q} contains at least two points; moreover \mathcal{Q} is a $\sigma(\mathfrak{B}^*, \mathfrak{B})$ -compact convex set, where \mathfrak{B}^* is the dual of \mathfrak{B} .

Let ψ be an extreme point of \mathcal{Q} , and let $\{\pi_{\psi}, \mathfrak{H}_{\psi}\}$ be the *-reperesentation of \mathfrak{B} on a Hilbert space \mathfrak{H}_{ψ} constructed via ψ .

Let \Re (resp. \mathfrak{O}) be the weak closure of $\pi_{\psi}(\mathfrak{B})$ (resp. $\pi_{\psi}(\mathfrak{A})$) on \mathfrak{H}_{ψ} . Then by Theorem 2 in [7], there exists a self-adjoint element $c \in \mathfrak{O}$ such that $\pi_{\psi}(D(\mathbf{x})) = [c, \pi_{\psi}(\mathbf{x})]$ for $\mathbf{x} \in \mathfrak{A}$; hence $\pi_{\psi}(D(\mathbf{x})) = \pi_{\psi}(\mathbf{x})$ $([b, \mathbf{x}]) = [\pi_{\psi}(b), \pi_{\psi}(\mathbf{x})] = [c, \pi_{\psi}(\mathbf{x})]$ for $\mathbf{x} \in \mathfrak{A}$; hence $\pi_{\psi}(b) - c \in \pi_{\psi}(\mathfrak{A})'$, where $\pi_{\psi}(\mathfrak{A})'$ is the commutant of $\pi_{\psi}(\mathfrak{A})$. Therefore $\pi_{\psi}(b) = c \in \pi_{\psi}(\mathfrak{A})'$, where $\pi_{\psi}(\mathfrak{A})'$ is the commutant of $\pi_{\psi}(\mathfrak{A}) - c$; hence \mathfrak{A} is a W*-algebra generated by \mathfrak{O} and $\pi_{\psi}(b) - c$, and so $\pi_{\psi}(b) - c$ belongs to the center Z of \mathfrak{R} . Suppose that Z contains a non-trivial central projection z. Put $\psi'(y) = \frac{1}{\psi(z)} \langle \pi_{\psi}(y) z l_{\psi}, l_{\psi} \rangle$ and $\psi''(y) = \frac{1}{1 - \psi(z)} \langle \pi_{\psi}(y)(1-z) l_{\psi}, l_{\psi} \rangle$, where l_{ψ} is the image of the identity 1 in \mathfrak{H}_{ψ} , and <, > is the scalar product of \mathfrak{H}_{ψ} .

Let *h* be a positive element of \mathfrak{A} , then $\psi(yh) = \psi(yh^{1/2}h^{1/2}) = \psi(h^{1/2}yh^{1/2}) \ge 0$ for $y(\ge 0) \in \mathfrak{B}$; hence by Proposition 1 in [6], $\psi(yh)$

Shôichirô Sakai

 $\leq \|h\|\psi(y) \text{ for } y(\geq 0) \ni \mathfrak{B}; \text{ therefore there exists a positive element} \\ d' \text{ in } \pi(\mathfrak{B})' \text{ such that } \psi(yh) = \langle \pi_{\psi}(y)d'l_{\psi}, l_{\psi} \rangle = \langle \pi_{\psi}(y)\pi_{\psi}(h)l_{\psi}, l_{\psi} \rangle \text{ for } \\ y \in \mathfrak{B}, \text{ where } \pi_{\psi}(\mathfrak{B})' \text{ is the commutant of } \pi_{\psi}(\mathfrak{B}) \text{ on } \mathfrak{H}_{\psi}.$

Hence $d'l_{\psi} = \pi_{\psi}(h)l_{\psi}$, because $\pi_{\psi}(\mathfrak{B})l_{\psi}$ is dense in \mathfrak{H}_{ψ} . Now we shall consider

$$egin{aligned} \psi'(yh) &= rac{1}{\psi(z)} \langle \pi_{\psi}(yh) z l_{\psi}, \, l_{\psi}
angle = rac{1}{\psi(z)} \langle \pi_{\psi}(y) \pi_{\psi}(h) z l_{\psi}, \, l_{\psi}
angle \ &= rac{1}{\psi(z)} \langle \pi_{\psi}(y) z \pi_{\psi}(h) l_{\psi}, \, l_{\psi}
angle = rac{1}{\psi(z)} \langle \pi_{\psi}(y) z d' l_{\psi}, \, l_{\psi}
angle \ &= rac{1}{\psi(z)} \langle \pi_{\psi}(y) d' z l_{\psi}, \, l_{\psi}
angle = rac{1}{\psi(z)} \langle d' \pi_{\psi}(y) z l_{\psi}, \, l_{\psi}
angle \ &= rac{1}{\psi(z)} \langle \pi_{\psi}(y) z l_{\psi}, \, d' l_{\psi}
angle = rac{1}{\psi(z)} \langle \pi_{\psi}(y) z l_{\psi}, \, \pi_{\psi}(h) 1_{\psi}
angle \ &= rac{1}{\psi(z)} \langle \pi_{\psi}(h) \pi_{\psi}(y) z l_{\psi}, \, l_{\psi}
angle = \psi'(hy) ext{ for } y \in \mathfrak{B}. \end{aligned}$$

Hence $\psi' \in \mathcal{Q}$ and analogously $\psi'' \in \mathcal{Q}$; hence $\psi = \psi' = \psi''$ and so z = 1 - z=1, a contradiction. Therefore $Z = (\lambda 1)$, where λ are complex numbers.

Hence $\mathfrak{N}=\mathfrak{O}$; therefore, we can define an *-isomorphism ρ of M onto \mathfrak{N} such that $\rho(\mathbf{x}) = \pi_{\Psi}(\mathbf{x})$ for $\mathbf{x} \in \mathfrak{A}$, because $\psi = \tau$ on \mathfrak{A} .

Now, let $||y||_2 = \hat{\tau}(y^*y)^{1/2}$ for $y \in M$. For $y \in M$ and $\varepsilon > 0$, there exists an i such that $||y-d_j||_2 < \varepsilon$ for some $d_j \in \mathfrak{M}_j(j \ge i)$; hence $||\int_{\mathfrak{M}_j^n} u^*yud\mu_j(u) - \int_{\mathfrak{M}_j^n} u^*d_jud\mu_j(u)||_2 = ||\int_{\mathfrak{M}_j^n} u^*yud\mu_j(u) - \tau(d_j)\mathbf{1}||_2 \le \varepsilon$. Therefore

$$\begin{aligned} &\|\hat{\tau}(y)1 - \int_{\mathfrak{M}_{j}^{u}} u^{*}yud\mu_{j}(u)\|_{2} \leq \|\hat{\tau}(y)1 - \tau(d_{j})1\|_{2} \\ &+ \|\int_{\mathfrak{M}_{j}^{u}} u^{*}yud\mu_{j}(u) - \tau(d_{j})1\|_{2} \leq \|y - d_{j}\|_{2} + \varepsilon < 2\varepsilon \text{ for } j \geq i \end{aligned}$$

Put $y_j = \int_{\mathfrak{M}_j^u} u^* y u d_{\mu_j}(u)$, then the sequence $\{y_j\}$ converges strongly to $\hat{\tau}(y)$ 1 in M.

Let $a = \rho^{-1}(\pi_{\psi}(b))$ and suppose that $\hat{\tau}(b) \neq \psi(b) = \langle \pi_{\psi}(b) l_{\psi}, l_{\psi} \rangle$, then $\hat{\tau}(b) \neq \hat{\tau}(a)$, because $y \rightarrow \langle \rho(y) l_{\psi}, l_{\psi} \rangle$ ($y \in M$) is the trace on M and so by the unicity, $\hat{\tau}(y) = \langle \rho(y) l_{\psi}, l_{\psi} \rangle$.

170

Derivations of uniformly hyperfinite C*-algebras

$$[a, x] = [\rho^{-1}(\pi_{\psi}(b)), x] = [\rho^{-1}(\pi_{\psi}(b)), \rho^{-1}(\pi_{\psi}(x))]$$

= $\rho^{-1}([\pi_{\psi}(b), \pi_{\psi}(x)]) = \rho^{-1}(\pi_{\psi}([b, x]))$
= $[b, x]$ for $x \in \mathfrak{A}$;

hence $a \in \mathbb{C}$; therefore $\hat{\tau}(a) \geq \hat{\tau}(b)$. Now suppose that $\hat{\tau}(a) > \hat{\tau}(b)$, and consider the *-representation $\pi: b \rightarrow b \oplus \pi_{\psi}(b)$ of \mathfrak{B} on the Hilbert space $\mathfrak{F}_{\tau} \oplus \mathfrak{F}_{\psi}$, then the weak closure $\overline{\pi(\mathfrak{A})}$ of \mathfrak{A} on $\mathfrak{F}_{\tau} \oplus \mathfrak{F}_{\psi}$ consists of all elements $\{y \oplus \rho(y) \mid y \in M\}$.

$$[b, x] \oplus [\pi_{\psi}(b), \pi_{\psi}(x)] = D(x) \oplus \pi_{\psi}(D(x)) \in \pi(\mathfrak{A})$$

and so $(bu-ub) \bigoplus \pi_{\psi}(bu-ub) \in \pi(\mathfrak{A})$ for $u \in \mathfrak{A}^{u}$; hence $(u^{*}bu-b) \bigoplus \pi_{\psi}(u^{*}bu-b) \in \pi(\mathfrak{A})$ for $u \in \mathfrak{A}^{u}$. Therefore,

$$\{u^*bu - b - \hat{\tau}(b)1\} \bigoplus \{\pi_{\psi}(u^*bu - b) - \hat{\tau}(b)1\}$$

= $\{u^*bu - b - \hat{\tau}(b)1\} \bigoplus \{\rho(u^*)\rho(a)\rho(u) - \pi_{\psi}(b) - \hat{\tau}(b)1\}$
= $\{u^*bu - b - \hat{\tau}(b)1\} \bigoplus \{\rho(u^*au) - \pi_{\psi}(b) - \hat{\tau}(b)1\} \in \pi(\mathfrak{A}).$

Hence

$$\{b_j - b - \hat{\tau}(b)1\} \bigoplus \{\rho(a_j) - \pi_{\psi}(b) - \hat{\tau}(b)1\} \in \pi(\mathfrak{A})$$

and so

$$\{\hat{ au}(b)1\!-\!b\!-\!\hat{ au}(b)1\} \oplus \{\hat{ au}(a)1\!-\!\pi_{\psi}(b)\!-\!\hat{ au}(b)1\} \in \overline{\pi(\mathfrak{A})}.$$

Hence

$$-b \oplus [\{\hat{\tau}(a) - \hat{\tau}(b)\} 1 - \pi_{\psi}(b)] \in \overline{\pi(\mathfrak{A})}.$$

On the other hand, $b \oplus \rho(b) \in \overline{\pi(\mathfrak{A})}$; hence $0 \oplus [\{\hat{\tau}(a) - \hat{\tau}(b)\} 1 - \pi_{\psi}(b) + \rho(b)] \in \overline{\pi(\mathfrak{A})}$ and so $\{\hat{\tau}(a) - \hat{\tau}(b)\} 1 + \rho(b) = \pi_{\psi}(b)$; therefore $||\pi_{\psi}(b)|| > ||\rho(b)|| = ||b||$, a contradiction. Hence, we have $\hat{\tau}(a) = \psi(b) = \hat{\tau}(b)$.

Therefore $\psi(b) = \hat{\tau}(b)$ for all extreme elements ψ of \mathcal{Q} ; hence $\varphi(b) = \hat{\tau}(b)$ for all $\varphi \in \mathcal{Q}$. This contradicts that $\varphi_1(b) \neq \varphi_2(b)$, and completes the proof.

Now we shall show the following theorem.

Theorem. Every derivation D of \mathfrak{A} is inner.

Proof. For $u \in \mathfrak{A}^{u}$, $[b, u] = bu - ub \in \mathfrak{A}$; hence $u^{*}bu - b \in \mathfrak{A}$. For

Shôichirô Sakai

arbitrary $\varepsilon > 0$, by the above lemma there exist an element $a \in \mathfrak{A}$, finite families of unitary elements $\{u_n | n = 1, 2, \dots, m\}$ in \mathfrak{A} and positive numbers $\{\lambda_n | n = 1, 2, \dots, m\}$ such that $\sum_{n=1}^{m} \lambda_n = 1$ and $\|\sum_{n=1}^{m} \lambda_n u_n^* b u_n - a\| < \varepsilon$. Therefore, $\|b - \{a + (b - \sum_{n=1}^{m} \lambda_n u_n^* b u_n)\}\|$

$$= \|\sum_{n=1}^{m} \lambda_n u_n^* b u_n - a\| < \varepsilon.$$

On the other hand, $b - \sum_{n=1}^{m} \lambda_n u_n^* b u_n = \sum_{n=1}^{m} \lambda_n (b - u_n^* b u_n) \in \mathfrak{A}$; hence $a + (b - \sum_{n=1}^{m} \lambda_n u_n^* b u_n) \in \mathfrak{A}$ and so b belongs to \mathfrak{A} .

This completes the proof.

3. Concluding remarks

We can extend the definition of uniformly hyperfinite C*-algebras to the non-separable case as follows: \mathfrak{A} is called uniformly hyperfinite if it has a directed family of type $I_{n_{\alpha}}$ subfactors $\{\mathfrak{M}_{\alpha}\}(\alpha \in \Pi, n_{\alpha} < +$ $\infty)$ such that (i) $1 \in \mathfrak{M}_{\alpha}$ for all $\alpha \in \Pi$; (ii) $\mathfrak{M}_{\alpha} \subset \mathfrak{M}_{\beta}$ if $\alpha \leq \beta$; (iii) \mathfrak{A} is infinite-dimensional; (iv) \mathfrak{A} is the uniform closure of $\bigcup_{\alpha \in \Pi} \mathfrak{M}_{\alpha}$.

Then, we can prove that every derivation of such algebras is inner, because our proof is available for these algebras.

Finally we shall remark that uniformly hyperfinite C*-algebras have outer *-automorphisms.

By induction, we shall define a sequence of unitary elements $\{u_i\}$ of \mathfrak{A} such that $u_i \in \mathfrak{M}_i$.

Take an one-dimensional projection e_1 in \mathfrak{M}_1 and put $u_1 = e_1 - (1 - e_1)$. Now suppose that $u_i(i \leq j)$ are defined. Put $\mathfrak{M}_{j+1} = \mathfrak{M}_j \otimes (\mathfrak{M}'_j \cap \mathfrak{M}_{j+1})$, where \mathfrak{M}'_j is the commutant of \mathfrak{M}_j in \mathfrak{A} .

Take an one-dimensional projection e_{j+1} from $\mathfrak{M}'_j \cap \mathfrak{M}_{j+1}$ and put $v_{j+1} = e_{j+1} - (1 - e_{j+1})$.

Then, define $u_{j+1} = u_j v_{j+1}$.

Next, by induction, we shall define a sequence of pure states $\{\psi_i\}$ on \mathfrak{M}_i as follows:

Take a pure state ψ_1 on \mathfrak{M}_1 such that $\psi_1(e_1) = 1$. Such state is unique, because \mathfrak{M}_1 is a type $I_{n_1}(n_1 < +\infty)$ factor. Now suppose that

 $\varphi_i(i \leq j)$ are defined. Write $\mathfrak{M}_{j+1} = \mathfrak{M}_j \otimes (\mathfrak{M}'_j \cap \mathfrak{M}_{j+1})$. Take the unique pure state ξ_{j+1} on $\mathfrak{M}'_j \cap \mathfrak{M}_{j+1}$ such that $\xi_{j+1}(e_{j+1}) = 1$ and put $\psi_{j+1} = \psi_j \otimes \xi_{j+1}$, then ψ_{j+1} is pure on \mathfrak{M}_{j+1} , and clearly $\psi_{j+1} = \psi_j$ on \mathfrak{M}_j . Therefore we have the unique state φ on \mathfrak{A} such that $\varphi = \psi_j$ on \mathfrak{M}_j for all j. Clearly φ is pure on \mathfrak{A} .

Let $\{\pi_{\mathcal{P}}, \mathfrak{D}_{\mathcal{P}}\}\$ be the *-representation of \mathfrak{A} on a Hilbert space $\mathfrak{D}_{\mathcal{P}}$ constructed via φ , then $\pi_{\mathcal{P}}$ is faithful, because \mathfrak{A} is simple. For a $\in \mathfrak{M}_i$ and m < n,

$$\begin{split} \varphi(a^*(u_m - u_n)^*(u_m - u_n)a) &= \varphi(a^*(u_m - u_n)^2a) \\ &= \varphi(a^*(1 - v_{m+1}v_{m+2} \cdots v_n)^2a) \\ &= \varphi(a^*a(1 - v_{m+1}v_{m+2} \cdots v_n)^2) \quad (m > i) \\ &\leq \varphi(a^*a(1 - v_{m+1}v_{m+2} \cdots v_n)^2a^*a)^{1/2}\varphi((1 - v_{m+1} \cdots v_m)^2)^{1/2} \\ &\leq 4\varphi((a^*a)^2)^{1/2}\varphi(2 - 2v_{m+1}v_{m+2} \cdots v_n)^{1/2} \\ &= 4\varphi((a^*a)^2)^{1/2}\{2 - 2\psi_{m+1}(v_{m+1}) \cdots \psi_n(v_n)\}^{1/2} \\ &= 0. \end{split}$$

Hence $\{\pi_{\varphi}(u_n)\}\$ is a Cauchy sequence in the strong operator topology.

Let u be the strong limit of $\{\pi_{\mathcal{P}}(u_n)\}\)$, then u is a unitary operator on $\mathfrak{P}_{\mathcal{P}}$, because $\pi_{\mathcal{P}}(u_n)$ is self-adjoint.

Moreover, for $d \in \pi_{\varphi}(\mathfrak{M}_i)$

$$u_{\pi_{\mathcal{P}}}(d)u = \operatorname{strong} - \lim_{\sigma} \pi_{\mathcal{P}}(u_{n}) \pi_{\mathcal{P}}(d) \pi_{\mathcal{P}}(u_{n}) \\ = \pi_{\mathcal{P}}(u_{1}v_{2}\cdots v_{i}) \pi_{\mathcal{P}}(d) \pi_{\mathcal{P}}(u_{1}v_{2}\cdots v_{i}) \in \pi_{\mathcal{P}}(\mathfrak{M}_{i}).$$

Hence $u_{\pi_{\mathcal{P}}}(\mathfrak{A})u \subset \mathfrak{A}$; therefore the mapping $\rho: x \to \pi_{\phi}^{-1}(u_{\pi_{\mathcal{P}}}(x)u)$ $(x \in \mathfrak{A})$ is an *-automorphism of \mathfrak{A} such that $\rho(\mathfrak{M}_i) \subset \mathfrak{M}_i$ for all *i*.

Now suppose that there exists a unitary element $v \in \mathfrak{A}$ such that $\rho(x) = v^*xv$ for all $x \in \mathfrak{A}$. Then $\pi_{\mathfrak{P}}(v)u\pi_{\mathfrak{P}}(x)(\pi_{\mathfrak{P}}(v)u)^* = \pi_{\mathfrak{P}}(x)$ for $x \in \mathfrak{A}$; hence $\pi_{\mathfrak{P}}(v)u = \lambda I$, where $|\lambda| = 1$, and I is the identity; therefore $u \in \pi_{\mathfrak{P}}(\mathfrak{A})$.

Let $\pi_{\mathcal{P}}(w) = u(w \in \mathfrak{A})$, then w is a self-adjoint unitary element in \mathfrak{A} . For arbitrary $\varepsilon > 0$, there exist an i such that some self-adjoint $w_i \in \mathfrak{M}_i$

$$||w-w_j|| < \varepsilon \text{ for } j \ge i.$$

On the other hand, for $x_j \in \mathfrak{M}_j$

Shôichirô Sakai

$$\pi_{\mathcal{P}}(w)\pi_{\mathcal{P}}(x_{j})\pi_{\mathcal{P}}(w) = u\pi_{\mathcal{P}}(x_{j})u$$

= strong - lim_o $\pi_{\mathcal{P}}(u_{j})\pi_{\mathcal{P}}(v_{j+1})\cdots\pi_{\mathcal{P}}(v_{n})\pi_{\mathcal{P}}(x_{j})\pi_{\mathcal{P}}(u_{j})\pi_{\mathcal{P}}(v_{j+1})\cdots\pi_{\mathcal{P}}(v_{n})$
= $\pi_{\mathcal{P}}(u_{j})\pi_{\mathcal{P}}(x_{j})\pi_{\mathcal{P}}(u_{j}) = \pi_{\mathcal{P}}(u_{j}x_{j}u_{j}).$

Hence $(u_jw)x_j(u_jw) = x_j$ for all $x_j \in \mathfrak{M}_j$ and so $u_jw \in \mathfrak{M}'_j$, where \mathfrak{M}'_j is the commutant of \mathfrak{M}_j in \mathfrak{A} ; hence $w = u_ju'_j$, where $u'_j \in \mathfrak{M}'_j$. Therefore

$$\|w-w_j\| = \|u_ju_j'-w_j\| = \|u_j'-u_jw_j\|$$
<\varepsilon for $j \ge i$.

Hence

$$\begin{split} &\|\int_{\mathfrak{M}'_{i}}g^{*}u_{j}'g\,d\mu_{j}(g)-\int_{\mathfrak{M}'_{j}}g^{*}u_{j}w_{j}g\,d\mu_{j}(g)\|\\ &=\|u_{j}'-\tau(u_{j}w_{j})1\|\leq \int_{\mathfrak{M}'_{j}}\|g^{*}(w-w_{j})g\|d\mu_{j}(g)\\ &\leq \varepsilon \text{ for } j\geq i. \end{split}$$

Since $\pi_{\mathcal{P}}(u'_{j}) = \pi_{\mathcal{P}}(u_{j})\pi_{\mathcal{P}}(w) = \pi_{\mathcal{P}}(u_{j})u$ = strong-lim $v_{j+1}v_{j+2}\cdots v_{n}, u'_{j}$ is

self-adjoint. Suppose that $\pi_{\mathcal{P}}(u'_j) = 1$ for $j \ge i$, then $\pi_{\mathcal{P}}(w) = u = u_j$ for $j \ge i$. On the other hand $u_j \ne u_k$, if $j \ne k$, a contradiction; hence $u'_j \ne 1$; therefore there exists a non-trivial projection p in \mathfrak{A} such that $u'_j = p - (1-p)$. Then

$$\begin{aligned} \|p-(1-p)-\tau(u_jw_j)\| \\ = \max\{|1-\tau(u_jw_j)|, |1+\tau(u_jw_j)|\} \leq \varepsilon. \end{aligned}$$

Hence $-\varepsilon \leq 1 - \tau(u_j w_j) \leq \varepsilon$ and $-\varepsilon \leq 1 + \tau(u_j w_j) \leq \varepsilon$; therefore $2 \leq 2\varepsilon$, a contradiction.

This implies that $u \notin \pi_{\mathcal{P}}(\mathfrak{A})$ —namely ρ is an outor *-automorphism of \mathfrak{A} .

REFERENCES

- [1] Glimm, J., On a certain class of operator algebras, Trans. Amer. Math. Soc. **95** (1960), 318-340.
- [2] Grothendieck, A., Un resultat sur le dual d'une C*-algèbre, J. Math. Pures Appl. 36 (1957), 97-108.
- [3] Kadison, R., Derivations of operator algebras, Ann. of Math. 83 (1966), 280-293.
- [4] Kadison, R., E. Lance and J. Ringrose, Derivations and automorphisms of opera-

174

tor algebras, II, to appear.

- [5] Miles, P., Derivations on B*-algebras, Pacific J. Math. 14 (1964), 1359-1366.
- [6] Sakai, S., A Radon-Nikodym theorem in W*-algebras, Bull. Amer. Math. Soc. 71 (1965), 149-151.
- [7] ——, Derivations of W*-algebras, Ann. of Math. 83 (1966), 273-279.
 [8] —, The theory of W*-algebras, Lecture notes, Yale University, 1962.