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On some fundamental theorems
of contingent equations in connection

with the control problems

By

Norio KIKUCHI*

0. Introduction

While the ordinary differential equations corresponding to vector

fields, the contingent equations correspond to set-valued fields approxi-

mately known up to a given accuracy.

Hence in this case we have to deal with the more general theory

of differential inequalities.

On the other hand this problems arise in the control theory. That

is, assume that there are given the following relations,

where / is a mapping of [t0, tQ + a] xRnxRr into Rn and Q(t, #) is

a compact set in Rr for every (f, jc)e[^0 , to + a] xR" and u(f)^Rr

is a measurable function on [tQ, tQ + a]. A solution x(f) of this problem

also satisfies the following relation,

By using a suitable implicit function theorem, the converse problem

can be considered. Hence, first we consider the contingent equations

and investigate some fundamental theorems similar to those of the

differential equations and finally we apply these theorems to the control

problems.
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Our approach in this paper is mainly due to that of T. Wazewski's
papers [5], [6].

The author wishes here to express his thanks to Professor Masuo
Hukuhara for his warm encouragement. This paper is deeply indebted
to his papers [1] , [2] for the set-valued function theorems.

1. Notations and definitions

The notations used in this paper are the followings.
Let X be a metric space. The distance between two points #, y^X

is denoted by dist(#, y). The distance between a point x^X and a
set AdX is defined by

dist (x,A)= inf {dist (x, jO ; y e A} .

The distance between A and B^X is defined by

dist C4, B~)= inf {dist

For <5>0 and a set AdX we put

U(A, <5) = {# e X\ dist (#,

U(A, 8~)={x^ X; dist(jr, ,4)^} ,
and

C7(A -«) = (x^X- U(x, 8*) dA},
By

Comp(X), (resp. Conv(JT))

we denote the collection of all nonempty compact (resp. compact and
convex) subsets of X. For two A, .BeCompC^), the Hausdorff distance
between A and B is denoted by Dist (A, 5), where

Dist (A,B)= inf {<5>G ; U(A, 5) =3 B, U(B, a) => 4} .

This Hausdorff distance makes Comp(X) into a metric space.

For a set A in Jf we denote by bdry^4 the boundary of A.

We denote by Rm an M-dimensional Euclidean space with the usual

scalar product x-y for every x and y and the induced norm x\,

x-x, |#|^Q) and by / the compact interval [£„, 4 -t-0] in J?1.
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For a set A in Rm we put

where 0 is the origin of Rm.

A map F(t,x} defined on IxRm into Comp(J?wz) will be called

an orientor field. If F(t, #) reduces to a single point for every (£, #),

then we have to do with a vector field as a special case of an orientor

field.

Definition 1. A function F(£)eComp(Jf) defined on a topolo-

gical space T is said to be upper (resp. lower} semi- continuous at

tQ(tQ<E: T) if for every e>0 we can find some neighborhood of t0, say

F, such that

, 0

for all £e V. When F(£) is upper (resp. lower) semi-continuous at

every point of T, F(f) is said to be upper (resp. lower} semi-conti-

nuous on T. A function F(f) is said to be continuos at t0 (resp. on

T) when F(£) is upper and lower semi-continuous at t0 (resp. on T).

Definition 2. If a function -F(0 eComp(Jf) defined on a measur-

able space -E is such that, for every CeComp(^T), the set {t^E;

F(t}dC} is measurable, then F is said to be measurable on E.

Definition 3. For a sequence of subsets (in X} {Ak} (k = l, 2, • • • )

we define

lim intAk= {x<^X; lim dist(*, A) =0},

lim supAk= {x<= X\ lim dist(#, Ak*) =0} ,
-̂̂ °° k->o°

and

lim ̂  = lim inf Ak = lim sup Ak ,
k->ao k->oo k-^oo

when lim inf Ak = lim sup Ak .
k-3>oo k->oo

It is known [1] that these sets

lim inf Ak , lim
£->oo k-^oo

are closed.
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Let F(^)eConv(i?m) be defined and measurable on a measurable

set E. We denote by \F\(f) a scalar function |F(OI- If 1^1(0 is

integrable on E, then the Lebesgue integral \ F(£)dt has been defined
JE

and some properties similar to those of a vector valued Lebesgue

integral have been investigated in [2] . In this case we say that F is

integrable.

By mesbleCE) we denote the sets of all functions measurable on

E. The abbreviation a.e.t^E means almost every t in E.

We consider - the function N(t, %} defined on / X R* and in

Comp(J?") for each fixed (X #) such that N(t, x) carries every bounded

set in IxR" into a bounded set in R*.

On the function N(t, x') which satisfies the above conditions, the
following additional conditions will be imposed as needed.

Hypothesis U(iY). N(t, x) is measurble in t for each fixed
n and upper semi-continuous in x for each fixed t^L

Hypothesis H^N), N(f, #) is measurable in t for each fixed
H and continuous in x for each fixed t^L

Hypothesis ff2(-ZV)« N(t,x} is upper semi-continuous in (_t,x').

Hypothesis H3(N^0 N(t, x) is continuous in (t,x).

2e Propositions

In [3] , [4] we have proved the following propositions which will

be used in the following.

Proposition L Let jF(O^Comp(i?") be defined and measurable

on a measurable set E. Suppose that meas(IO<;c>o. Then there

exists a measurable function f(f) ^Rn on E such that

for every

Proposition 20 Let F(t, u^Comp(Rn) be defined on IxRr and

measurable in t for each fixed u^Rr and continuous in u for each

fixed t^L
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Let Q(O^CompCff r) be bounded and measurable on /. Let R(f)

denote the set F(t, 0(0) and y(f)^Rn be a measuralbe function such

that

y ( f ) ^ R ( f ) for every fe/.

Then there exists a measurable function u(f) such that u(t}^Q(f) and

y(f)^F(t,u(f)} for every *e/.

Proposition 30 Let {-F*(f)} (& = 1, 2, •••) be a sequence of com-
pact and convex set (in Rn~) valued functions defined and integrable

on E, and suppose that there is an integrable function -

such that

0 (A = l,2,-) on E,

then limsupFft(0 is integrable on E and the relation
k->oo

limsupl Fk(t)dtd\ lim supFk(t)dt
k->o° JE JE k->°o

holds.

Proposition 4, Let F(t, jc)eComp (-/?") be defined on /xi?" and

measurable in ^ for each fixed x^R" and upper semi-continuous in AT

for each fixed fe/. Then F(t, x(f)} is measurable in f for each

measurable function x(

We cite the fundamental Theorem which was proved in [1] by

defining the topological degree of a compact and convex set valued

function.

Fundamental Theorem,, Let F(O^Conv(J?M) be defined on a

closed set E of Rm. Then there exists a monotone decreasing

sequence of {Fft(0} (fe = l, 2, •••) such that each Fk(f)^Conv(Rn^ is

continuous on E and Fk(f) converges to F(f) and F(f) is contained

in the interior of Fk(f) for each t^E and k.

Remark0 If F(t} is bounded on E, then Fk(f) can be assumed

to be bounded on E.



182 Norio Kikuchi

3. Contingent equations

Let x(f)^Rn be a function defined on an interval /ci?1. Let

t0^J and put

.
t TO

A set MdRn is said a contingent derivative of #(0 at £0 and is

denoted by Z)*#(£0), when, for t-*tQ,

and when M consists of c^R" for which there exists a sequence {tk}

such that

By abs. cont(/) and cont(/) we denote the sets of all functions

absolutely continuous and continuous on each compact set contained

in the interval /, respectively.

We introduce two (equivalent) definitions of a trajectory of an

orientor field F(t, *) .

Definition 4e (of Marchaud). A function x = x(f) defined on an

interval / will be called a trajectory of F(t, x} if

for almost every

Definition 5. (of Wazewski). A function x = x(f) defined on an

interval / will be called a trajectory of F(t, #) if

jc(0^abs. cont(/),

dx(f)/dte:F(t,x(f)') for almost every Je/.

Theorem 0. Suppose that F(t, ^)eConv(^M) satisfies H(F).
Tte^ Definition 4 and 5 are equivalent.

Proof. Assume that x(f) satisfies the relation of Definition 4.

Let L be a compact interval of /. As x(f) is continuous, x(f) is

bounded on L and there exists CeComp(j??K) such that D*x(tyc:

F(t,x(f)}dC for almost every t^L. Hence we conclude that x(f)
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satisfies a Lipschitz condition and therefore x(f) is absolutely continuous

on L. A derivative dx(f)/dt exists almost everywhere in /. Con-

sequently the relation

holds for almost every t in /.

Next assume that x(f) satisfies the relation of Definition 5. As

F(t,x(f)} is measurable on / by Proposition 4, the relation

holds for every every r,

Therefore

holds for almost every r,

Definition 6. Let ^4eComp(J?B) and r, Te

By T(A, T, F) we denote the family of trajectories of F such that

x(r)^A, by Z{Ay T, F) the union of the graphs of functions belonging

to T(^,r,F).

By S(A,r,F, T) we denote the set Z(A,T, F)H {t=T} . When

T is equal to t», we write briefly T(A,F), Z(-4, F) and SCA,F, T)

for T(^,r,F), Z(^,r, F) and S(^,r,F, T) respectively.

4. Some fundamental theorems of contingent equations

In this chapter we consider only the function F(t, %} defined on

IxR" and in Conv(J?B) for each fixed (t, x} such that for every

~) there holds

and F(t,x) carries every bounded set in IxRn into a bounded set in

R\

1°. In this section we consider the case when F satisfies Hypo-

thesis H(F).
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In [4] we have proved the following theorems.

Theorem 1. Suppose that F satisfies Hypothesis H(F). Then

for every x^Rn there exists a trajectory (on /) in T(x0,F).

Theorem 2. Suppose that F satisfies Hypothesis H(F). Then

for every A^Comp(R"^), T(A, F) is compact in the topology of the

uniformly convergence.

Further we can prove the following theorems.

Theorem 3. Let A be in Comp(^). Then the section S(A, F, r)

is in Comp(j??K) for every re/.

Proof. All trajectories x(f) of F through A are contained in a

bounded set.

Indeed, if *(f) = \x(f) |2 + 1, then

hence

.e.

Hence the section S(A,F,T) is a bounded set for each

In order to show that each section is closed we assume that

{xk} dS(A, F, r) (& = 1, 2, • • • ) , where xk-*x0. Since xk<^S(A,F, r),

there is some trajectory ^(0 of F through xk(t^)^A and xk(r)=xk.

By Theorem 2 we can assume that {^(0) converges uniformly

on / to a trajectory x(f) of F. Since A is closed, xk(t^)-^x(t^)^:A9

so ^0=^(T)e5(^4, F, r). Hence S(A,F,r) is compact in J?M.

For each A<E:Comp(Rn) we consider the following mapping of /

into

Theorem 4. SA is continuous on I.

Proof. Let re/, then S(^,F,r)eComp(J?"). Also Z(A,F} is
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in Comp(/X#w), and then F(t, #) is bounded on Z(A, F). Let

For every e

holds for s, !

Hence S>i is upper semi-continuous on /.

Next we prove that SA is lower semi-continuous on /.

For every e>0

S(A, F, r+s + w) c U(S(A, F, r+s), e)

holds for all 5 and u, \u\ <OL.

If we put u=—s, we have

for 5, ] s 1 <C<z, which implies that 5^ is lower semi-continuous on /.

Hence the continuity of 5^ has been proved.

For each t^I we consider the following mapping of Comp(^v?K) into

Theorem 5. The mapping St is upper semi- continuous on

CompCl?") uniformly with respect to t.

Proof . Let ^4eComp(i?") and e be any positive number. We
want to find d>Q such that

for every compact set B, Dist (B, A)<3 and for every t on /.

U(A, 1) is a compact set and hence Z(U(A, 1), F) is also acorn-

pact set. Hence there exists a constant M>>0 such that

on

Consequently for every s>0 we can find a positive number ^

(sufficiently small)

?<min(l,e/2,e/2Af)
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such that for each re/

holds for every B, DistC-4, J?)<o? and every t on [r,

This T? can be taken independently of r.

Next we shall prove that there exists £>0 such that

holds for every -B e Comp OR") , Dist'CA, -B)<# and for every

Indeed, if this were not true, then for every k(k = l,2, • • • ) there

is a J3fceComp(J?w) and £/,e [£<,, t0 + l/k] such that

In other words, there exists a sequence {bk} , bk^Bk and a sequence

{tk} on / such that

and for some solution xk(f) through bk we have

Since i4e £7(^4, 1), we can select a subsequence of {^(0) which con-

verges uniformly to a trajectory x(f) of F. Without changing the

notation we let (xk(f)} converge to x(f) uniformly.

Furthermore, since / is a compact set, {tk} can also be assumed

to converge to some fe/. Since x(t^)^A can be verified, x(

holds for every t on /.

By Theorem 3

holds for sufficiently large A, and hence

Since {#*GO} is a normal family, {xk(tk}} converges to
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Consequently dist (#(£)* S*,-C4))^e/2 holds, which contradicts the

fact that

holds for every t on /.

Next we define the set

J9= {re(£0, £0 + 0] ; for every s>0 there exists <5>0 such that
S,CB)cE7(S,CA),e) holds for every 5, Dist (5, -4)<d and
every t on [£0, r]}.

As stated above this set is not empty.
Let T=supD(T>to), and we shall show that

If T<tQ
Jra, there exist a'(Q<a'<y) and T' such that

and
S(C, T',F,O

holds for every CeComp(J?w). Dist(C, Sr'CA))<o? and for every t on

Since Tr<T, we can find 5>0 such that

holds for every 5eComp(J?w)? Dist(5, ^4)<5 and for every t^[t0y T] .
Since we can take Sr'(-B) for C,

holds for every f on [t0, T' + af] r\L which contradicts the definition
of T.

to + a&D can be similarly verified.

Let .fir(O^Comp(J?K) be defined and upper semi-continuous on /.

We say that K(f) is attainable from A along trajectories of F if
there exists x = x ( f ) ^ T(A, F) such that x(t^^A and
for some
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Theorem 6. Suppose that K(f) satisfies the conditions stated
above. Also suppose that K(f) is attainable from A along trajec-
tories of F. Then there exists a trajectory Jc(f) along which K(f)

is attainable from A in the minimum time 1. Furthermore, if K(f)
is continuous on /, the point (t, # (O) is on the boundary of Z(A, F).

Proof. Consider the set of re/ such that

for some x(f)^T(A,F}. This set is not empty by hypothesis. Since
/ is compact, we can select a sequence {t,} (k = l,2, • • • ) from this set
such that {tk} converges to f— the greatest lower bound for this set.
Let xk(£)^T(A,F^) be a trajectory corresponding to tk.

From the compactness of T(A, F) we can assume that {#*(£)}
converges uniformly to Hc(t^^T(Ay F~).

Making use of the equi-continuity of T(A, F) and the upper
semi-continuity of K(f), we conclude that

x(to)^A and #(Oe/T(O.

In the case when K(f) is continuous, this point (t, #(O) is on

bdryZ(-4, F). Indeed, if (t, #(O) is an interior point of Z(A,F}9

there exists <5>0 such that

is contained in Z(A, F). By the continuity of K(f) we conclude that

{(#, -fiT(O); t^I} contains a point of U.

Hence there exists t^I (^i<O such that

for some X i ( f ) ^ T ( A , F), which contradicts the definition of t.

2°. In this section we consider the case when F satisfies Hypothesis
H.CF).

Theorem 7. Let A^Comp(Rn^ be a connected set. Then the

section S(A, F, r)eComp (jR") is a connected set for each
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Proof. Suppose that S(A, F,T) is not connected for some

and then S(A, F, r) can be expressed as the union of two disjoint

compact sets, i.e.,

S(A,F,*')=S1\jSt,

where Slt 52 are compact sets and S

Let At (i = l, 2) be the set

The sets Aly A2 can be verified to be compact by the compactness of

T(A, F). Since A is connected and A = Ai\JAz, we can find a point

p such that p^Alr\A2.

Let S; = S£nS(A F, r) (i = 1, 2), and Si and Sa are disjoint compact

sets. Hence dist(Si, SJ) =^>0.

Let JJ be the compact set

#= {jr; dist(jc, 50 = (1/2) J}

in the plane t = r. By definition of H

hold.

Let # = 0>f-(0 (i = l, 2) be a trajectory which passes through a point

p=(tv,x^), XQ^A and a point q{ of S[, respectively.

Let D be a subdivision of /:

Take fe/, S = ^(O, and then for some f0 f,-0^f<f,-0+1 holds. We

put ^-0 = ̂ . The set

can be verified to be in Comp(J?w) and measurable on /. Hence the

lexicographic maximum Mf-0(0 of C.-^f) is measurable and satisfies the

relation

for all if, tio

For t<Lt<Lti +1 we define
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and put

#10-1-1 = i^(/fo+1> t, %)'

We define inductively {#,-} and {#,-00} (i — i*> z*o + l» • • • , &) as follows.

Suppose that we have defined ~xt and then for ^-<^<it-+i we define

where M,-(0 is a measurable function which is the lexicographic maxi-
mum of the set

C, (f ) = {u ; dist (ri (0 , JX* , S,) ) - dist (^ (0 , «) } .

This function x(t,t,'x} can be verified to be continuous in (J, 3c) by
the continuity of F(Jt,x) in #. When #e/, ^ = ^2(O> we similarly
define jt(f, f", ^).

Here we define

Let {DJ (^ = 1, 2, • • • ) be a sequence of subdivisions of

£o<tf)<^)<"'<4*) = £o+^) such that a norm S(A) - max (tf^-t
Q^t<lk

tends to zero as ^-»oo.

Let x^tyt.lT) be the corresponding x(t,t,x) to A. A curve

is a continuous curve which connects two points <?i and q2. Hence
Bk(s*) must pass through H at some point <7* = (r, £*) .

Consequently we can find -l^s,^l (say, ^li^
such that

For fo^f^fo + fl'l5*! we define

1 (̂0 (
*w Uco
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and for

The function £A(0 thus defined is continuous on [£ 0 ,^o + #'] and the
relations

and

hold, where

can be verified to be a normal family.

From the construction of (yk(f)} we can assume that (x,k(f)} with.

)} converges uniformly to a continuous function x(f).

Since

F(t,yk(f)}dt
/o

\ li
J^o ^^

holds.

On the other hand this function x(f) is absolutely continuous since

all the 7,k(f) satisfy the same Lipschitz condition. Hence

hold for almost every f e [ f 0 , r ] .

Since xt(r)^H and H is a closed set, we conclude #(r)e.ff, which
contradicts the fact that HnS,=(/> (i = l,2).

Theorem 8. Every Q(^, #0 dm bdryZ(^4, F) c^^ be peripherally
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attainable from bdry^L, i.e., there exists a trajectory <p(0e T(A, F)

such that (£, 0>(0)ebdryZC4, F) for every t^ [ t 0 , t1].

Proof. Take t2 such that t0<t2<.ti. We first prove that there

•exists a trajectory <p(t} which connects the point (£2,<p(£2))ebdryZ(^4,F)

and OCk, #0- If C'(*2, ̂ Ck)) doesn't belong to bdryZ(A F) for some

trajectory ^(OeT( A F), £)' is an interior point of Z(yl, F). We

take an exterior point d sufficiently near Q. Let QQi be the segment

which connects Q and Qi. The cross section S(QQi, £1, F, £2) of

ti, F) by the hyperplane £ = £2 is a continuum by Theorem 7.

Therefore there is a trajectory which connects of S(A, F, £2) and

Since Q is a boundary point of Z(^4, F), for every positive integer &

we can find an exterior point Sk(ti, y&) such that y^ U(%i, l/k).

As stated above, we can find a trajectory <pk(f)^T(A, F} such that

belongs to bdryZ(^4, F) and (^,^(^)) belongs to Q5&.

By Theorem 2 we can assume that {^(0) converges uniformly to

p(OeTCA, F). Therefore this ^(OeT(^4, F) connects (f2 ,^(fc))e

bdryZ(A F) and Q.

Let D be a subdivision of an interval (£0, ̂ ) :

t = a.Q<^.(x.i<^c£2<^ • • • <C^jv = ^i .

As stated above, there is a trajectory <p(f) starting from Q such

that (OLN-I, <P(OLN--I)} belongs to bdryZ(^4, F) and similarly there is a

trajectory <p(f) starting from (0^-1, ^ (05^-1) ) such that (a^-2, ^(^^-2))

belongs to bdryZ(^4,F).

In this way we can find a trajectory <?(£) such that (akj ^(^))

(* = 1,2, — , JV-1) all belong to bdryZ(^4, F).

Take a sequence of subdivisions {Dk} (k = l,2, • • • ) such that every

division point of Dk is that of Dk+1 for all k and the maximum length

of subinterval of Dk tends to zero as k->°°.

Corresponding to Dk we can find a trajectory <pk(f) which has the

property stated above.

By Theorem 2 we can assume that fe(0) converges uniformly

to a trajectory <p(f)G:T(A,F} which connects A and Q.
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This (£,0>00) bel(>ngs to bdryZCA, F) for every *e [*„, *i] from
the construction.

3°. In this section we consider the case when F satisfies Hypo-

thesis H2(F).

Let F(t, ^)eConv(J?w) satisfy H2(F). Here we denote

by H2 (/7>0). By taking a sufficiently large C, we can assume that

H>1. We define

F(t *) =V ' J , x>H.

F(t, x} defined as above can be verified to be upper semi-continuous

in (t, x) and bounded on IxR".

Hence by the fundamental Theorem cited in Chapter 2 we can find

a sequence {Fk(t, #)} (A = l,2, • • • ) such that each Fh(t, ^)eConv(^?n)

satisfies H3(Ffe) and contains F(t, #) in its interior and (Fk(t, x^)}

converges to F(t, x} monotone decreasingly.

Theorem 9. Let {Ak} (k = l, 2, • • • ) be a sequence of Comp(J?n)

such that {Ak} converges to ^4eComp(J?w) monotone decreasingly.

Then the following relations

, F,, r) =S(A, F, r) for every

Proof. As F^t.K} (£=-1,2, • • • ) contains F(t,x) for every point

(t,x)GlxRm and ^ contains A then T(Ak,Ft) contains T(^4, F)

for each /?, and hence the relation

holds.
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00

Next we shall prove that every x(f) in {~\T(AkJF^) belongs to
00 k=l

T(A, F). Since x(f) belongs to fl 7XA, , F*) , the following relations

and

hold.
By Proposition 3 we conclude

x(t}-x(Q^Fk(t,x(f)~)dt for each k
J'o

elim sup Fk(t,
fe->°° Jf0

c \ lim sup Fk (t, x (0 ) dt
J^O £->oo

Therefore

dx(t^/dt^F(t,x(t^ a.e.
and

Hence x(f)^T(A,F} holds, which proves

For F(t,x) the same relation as F(t,x}, i.e., ^-
holds for every y<^F(t,x}. From this condition we can conclude that
all solutions of

dx/dt e F(/, JT) and x (to) e ̂ 4

satisfy |*(0 i^JJ on /. Indeed, if z(0 = |jc(0 |2 + 1, then dz(t}/dt
2Cz(f), hence z(0^(i^|2 + l)exp(2Ca), i.e. |*(OI^# In
F(t,x) and F(t,x} coincide. Hence a solution x(f) for

rfjic /rff e F(f , x} and jc (f 0) e A

is also that for

dx/dt e F(£, jt) and x (Q e ̂ 4.
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Consequently T(A, F) and T(A, F) coincide.

Hence we have proved that the relation

holds.
We can similarly prove the relations

and

Theorem 10. /,££ yleComp(-K") be a connected set. Then the
section S(Ay F, r)eComp(j??") is a connected set for every re/.

Proof. Let {Fk(t, #)} (k = l, 2, • • • ) be a sequence as stated above.
Then by Theorem 7 each S(A, F*,r) is a continuum for every re/.

00

On the other hand, by Theorem 9 S(A, F, r) = nS(^4, Ft, r), which^=1
shows that 5(^4, F, r) is a continuum.

Theorem 11. Every P on bdryZ(^4, F) £<w &g peripherally

attainable from bdryA

Proof. Let {Fk(t, x}} (k = \9 2, •••) be a sequence as stated
above. Since Z(A, Fk~) converges to Z(A, F) monotone decreasingly,
bdryZ(^4, Fft) is known to converge to bdryZ(^4, F), and hence we

can take a sequence of points {Pk} (k = l, 2, - • • ) , P&ebdryZ(^4, Ffe),
which converges to P.

By Theorem 8 there exists a sequence of trajectories (xk(f)} such

that (£,#*(£)) runs through only bdryZ(^4, FJ and connnects bdry^L

and P^ebdryZ(^4, FA). Since xk(f) can be verified to be a normal

family, we can assume that (xk(f)} converges to a function x(f)

uniformly. Since xk(f) is a trajectory of Fk(t,x)9 the following relation

holds.
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By the upper semi-continuity of F(t, x) in x and Proposition 3

we conclude that

lim sup F, 0
*o *-»«»

C

and since x(f) is absolutely continuous,

and

Hence we can find a trajectory x(f) which connects bdry^l and

P. Also Z(A, F,)IDZG4, F) for each k and (t, ^(O)

holds for every fe/.

Hence jr(0 does not belong to the interior of Z(A, F).

On the other hand, since x(f) belongs to T(A, F), (^,

bdryZ(^,F) holds for every t^L

Remark. Theorem 11 can also be proved similarly to Theorem 8

by using Theorem 10.

4°0 In this section we consider the case when F satisfies Hypo-

thesis H3(F).

Theorem 12. Suppose that x(f)^T(A,F^) is a trajectory
which lies on bdryZ(^4, F) for every t on I. Then dx(f)/dt is on
bdryF(£, #(0) for almost every t on L

Proof . Let dx(J}/dt belong to the interior of F(t,x(f)) for

some J on / and so belong to t/(F(£, #(O), — 3e) for some e>0.

By the continuity of F(t, x) in (t, x) there exists 5>0 such that

for every t and x, \t — T\<^d, 1^ —

Hence for every r sufficiently near t (r<CO» the set
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is contained in ZQ4, F).

On the other hand, from the differentiability of #(0 at t

holds for some £> sufficiently near £,

Consequently

, -20 (f-fc),

and hence j^(O belongs to the interior of Z(A> F), which contradicts
that jt(O is on bdryZCA, F).

Theorem 13. Suppose that F(t, x) has an interior point at
every point (t,x)<^IxRn. Then there exists a continuously differ-
entiable trajectory x(f) of F, i.e., for x(f)

holds for every t^I and

Proof . Let f(t,x) be a bary-center of F(t,x}. This function

x} is continuous on IxR".

Hence there is a continuously differentiate function x(f) such that

dx(f)/dt=f(t,x(f)*) holds for every t on /

and

This function satisfies the wanted relations;

dx(fi/dt=f(t,x(J)}^F(t,x(f)) for every t on /

and
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Remark* The method of taking out a bary-center of F(t, x)

has been used in [1] by defining the topological degree of a compact

and convex set valued function.

5. Control systems of contingent equations

Introduce the variable u= (HI, U2, • • • , ur}^Rr.

Let
F(Jt, x, u)

be"a mapping of IxRttxRr into CompCR") and

Q(t, *)

be a mapping of IxR" into CompCR')-
The variable u is called the control.

Definition 7. By a control system 5(F, Q) we mean a pair:
a field F(t,x,u) and a field Q(t,x). Q(t, x) is called the control
domain of 5(F, Q).

Definition 8. A function x = x(f) defined on an interval / is
said to be a trajectory of S(F, Q) if #(0^abs. cont(/) and if there
exists a control function ^(£) such that

dx (0 /<« e F(^, * (0 , a (0 ) *.*. f e /,

We shall make the following assumptions.
1) F(t,x,u) is measurable in ^ for each fixed (x,u)^:RnxRr and

continuous in (x,u) for each fixed t^I and F(t,x,it) carries every
bounded set in IxR"xRr into a bounded set in Rn.

2) Q(t,x) is measurable in f for each fixed x^R" and upper semi-

•continuous in x for each fixed £e/, and Q(t, x) carries every bounded
•set in IxR" into a bounded set in Rr.
3) R(t, x} =F(t, x, Q(t, ^)) is in Conv(i?") for each (t, x)^IxRK and

for every (t,x)^IxRH, x-y^CQx\2-^l') (C>0) holds for every
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The set R(t, x) will be called the control counter domain of

S(F,Q). We have an orientor field R(t, x) defined on IxR*, which

we will call the orientor field associated to the control system

By passing from a control system S(F, Q) (depending on the
control u) to the associated orientor field R(t, #) (independent of u),

a trajectory of S(F, Q) can be considered to be a trajectory of R(t, x).

The inverse problem consists of the following.
Suppose that we know a trajectory x = x(f) of an orientor field

R(t9 x) associated with a control system 5(F, Q). We would like to
find the corresponding control function u(f). To do this we have to
find a measurable function u(f) satisfying conditions:

a.e.

Proposition 2 answers to this problem.

We shall consider the control problem for the contingent equation.

Let ^eCompC-R"), and 7T(OeComp(J?") be defined and upper
semi-continuous on /. C(t, x) is a real function defined on Jx T(A, F)

and is continuous in (£,#). We say that a control u(f), defined for

tv<Lt<3, t^I, transfers A to K(f) if one of the trajectories x(f) cor-

responding to u(f) satisfies the relations x(to)^A and x(f)^K(f).

We restrict ourselves to the problem of finding a control function u(f)

which transfers A to K(f) and which minimizes the cost functional

where x is one of the solution corresponding to u(f) and t represents

a value of t such that

Theorem 14. Suppose that the conditions stated above are satis-

fied. Also suppose that there exists at least one control u(f) which

transfers A to K(f) on I. Then there exists an optimal control,

i.e., a measurable function u*(f) for which one of the corresponding

solutions, #*GO» with initial condition x*(t^<^A attains K(t*} for

some t* in I and
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inf C(f, *)=£(**,**),

where, in addition, u*(f)^Q(t, x*(f)').

Proof. Now consider the set of all the x(t} satisfying

dx (0 /dt &F(t,x (0 , u 00 ) a.e. t e /,
*Gf0)e.A and x(i^K(i)

for some 7e/, where, in addition, w(O^QGf, *(0) f°r some control

Since one such solution exists by hypothesis, this set is not empty.
Consequently we can select a sequence of trajectories (xtl(f)}(k = '\.y
2, • • • ) on /, with

decreasing monotonically to inf C(t,x), where tk represents a value of
t such that xk(f)^K(f). xb(f) satisfies the following relations

d x k ( f ) / d t ^ R ( t , x k ( f f t a.e.

and xk (to) e A. By the compactness of T(A, R) we conclude that

dx*(f)/dte:R(t,x*(ffi a.e.

where x*(f) is a limit function of a subsequence of {#*(£)}• Also since
/ is a compact interval, we can select a further subsequence (without
changing the notation) such that {tk} converges to some t* in L
Further making use of the equi-continuity of {#*(£)} and the upper
semi-continuity of K(f), we conclude that x*(t^)<E:A and #*(£*)e ./£(£*).

Also by the continuity of C(t, x), {C(tk, xk)} approaches C(t*9 ^*)
as k-+°°, and hence inf C(t, x) =C(t*9 x*).

By Proposition 2 we can select a measurable function u*(f) such
that

d x * ( f ) / d t ^ F ( t , x * ( f ) , u * ( f ) ) a.e. fe/,

and «*(O^G(^,^*(0) on /.
Hence u*(f) is an optimal control.
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Theorem 15. Suppose that the conditions stated in Theorem 14
are satisfied and further suppose that K(t}a is continuous on I.
We restrict ourselves to a time optimal problem, i.e., to the case

of C(t,x)=t. Then there exists an optimal trajectory x*(t) along
which K(f) is peripherally attainable.

Proof. By Theorem 6 the point (**, **(**)) in the proof of

Theorem 14 is on bdryZ(^4, R).

By Theorem 8 (£,#*(£)) can be assumed to be on bdryZ(^4, J?)

for every £e [tQ, t*].

The family of trajectories of S(F, Q) is denoted by {F, Q}. We

define the bang-bang kernel Q±(t, x) of control domain Q(t, x) by the

formula

QaCf, x) = {u; weQ(*, *), F(t, x, u) cbdry^Of, #)}.

Theorem 16. In addition to the conditions in Theorem 14, we
assume that R(t, x) is continuous in (£,#). Then there exists an
optimal trajectory x(t} which belongs to the family {F, QJ.

Proof. This theorem follows from the definition of {F, d} and

Theorem 12.
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