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On the decay for large |x| of solutions of
parabolic equations with unbounded coefficients

By

Takasi Kusano* **

1. Introduction

There is much current interest in the Cauchy problem for second
order parabolic differential equations with unbounded coefficients:

(A) Lu= Z a,;(x, t)u,,,,.+é b;(x, Du.,+c(x, DHu—u,=f(x,1).

i,j=1
For example, W. Bodanko [3] has proved the existence and unique-
ness of solutions #(x, ) =0(exp (a!x|*)) of the Cauchy problem for
(A), assuming that a;;=0(jx]|**), b,=0(]x2]) and ¢=0(]x]*) (from
above) for large |x|, 2€(0, 2]. Under similar assumptions D. G.
Aronsonn and P. Besala (1] have constructed a fundamental solution
of the equation L#=0 and solved the general Cauchy problem for (A)
by giving an explicit formula for the solution in terms of the funda-
mental solution obtained. See also G. N. Smirnova [8]. We also
mention a paper by P. Besala and P. Fife 2] in which the asymptotic
behavior for large f of solutions of such equations is investigated.
The main purpose of this note is to obtain an information about
the behavior of decay for large |x| of solutions of the Cauchy prob-
lem containing parabolic differential operators with unbounded coef-
ficients. It will be shown that an exponential decay property for large
x

of the initial data is preserved for the solutions of the linear
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homogeneous parabolic equation (A): Lu=0, provided a,;=0(]|%[*™"),
b;=0(|x]|) and ¢=0(1) (from above), 1= (0, 2], and also for the non-
negative solutions of the semilinear parabolic equation

(B) S (%, Dty + 30, (%, Dteey +F (%, £, ) — =0,
i,j=1 =1

provided that «;;=0(!x|>*?*), »,=0(]|x|) and that the nonlinear term
f(x,t,u) is majorized by a concave function F(¢,u) with F(¢, 0)=0.
The author wishes to thank Professor Masuo Hukuhara for his

valuable suggestions.

2. Statement of results

We begin by considering the linear homogeneous parabolic equa-
tion (A) (f(x,£{)=0). We assume that there exist positive constants
ki, ks, ks and 2 (0, 2] such that

@D 03 a,(x DSk (| 2P+ DEPES g,
@2 (6.0 D|Sk(LP D" (=1, ),
2.3 c(x, )<k,

for all (x,H)eE*"x [0, T] and ¢= (&, -, &) E". We say that a
function w(x, t) defined on E*X [0, T'] belongs to class E* for 1< (0, 2]
if there exist positive constants «, M such that

lw(x, )| < Mexpla(|x]*+1)*], (x,)eE"Xx [0, T].
We prove the following:

Theorem 1. Let u(x,t) be a regular® solution of (A) belong-
ing to class E* on E"X [0, T]. If theinitial function is such that

(2.4) lu(x,0) | < Myexp[—a,(|x|*+1)"*], x€E"

for some positive w,, M, then there exist, for each t< (0, T], posi-
tive numbers a,, M, for which

(2.5 lu(x, ) | < M, exp[—a(| x>+ 1], x€E"

1) By a regular solution we mean a function continuous on E%x [Q, T] whose first
time derivative and second spatial perivatives are continuous on E%X (0, T], and
which satisfies the given parabolic equation.
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In the Appendix we give an example which shows that in deri-
ving from (2.4) the estimate (2.5) for each f=(0,7] the assump-
tion (2.3) placed on c(x,?) is in a sense essential and cannot be re-
placed by a less restrictive one

(2.3%) c(x, <k (x| +1)M

under which the general theory of E*solutions of (A) is developed.
We now turn to the semilinear parabolic equation (B), for which
the conditions (2.1) and (2.2) are assumed to hold.
We assume that there exists a concave function F(Z,#) with
F(¢,0)=0 such that

(2.6) sup f(x, t, W) <F(t,w), (¢, w) [0, T] X E™.

Making use of the device due to I. I. Kolodner and R. N. Pederson
[5] we can prove the following:

Theorem 2. Assume that F, F,, F,, are continuous and that
F.<0 on [0, T} XE'. Let u(x,t) be a nonnegative regular solution
of (B) belonging to class E* and satisfying

2.7 0<u(x,0)< Myexp [—a,(|x|*+1)*?], x E"

for some positive constants w, M, Let u,(x,t) be a mnonnegative
regular solution of the linear homogeneous equation
Zlaii<x; t)”x.zj+2 bi (x, t>ux,—ut:0
i,7= 1=1
satisfying the initial condition u,(x,0)=u(x,0), x E".
Then, we have

(2.8) 0=u(x, O<m(x, Dexp| | (s, 00ds], (0 Ex (0, T1.
LJo 4

This establishes the desired decay property of u#(x, £), because,
according to Theorem 1, #,(x, t) behaves like its initial data for each
te (0, T].

We note that H. Fujita [{4] has obtained a similar result for a
class of semilinear parabolic equations of the form (B) but with a
different nonlinearity.
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3. Proofs
Proof of Theorem 1. Following M. Krzyzanski [6] we set
@1 u(x, 1) =v(x, exp[—a(®) (|x[*+D**+p@)],

where a(#)>0 and g(¢) are bounded C! functions for =0 to be speci-
fied later. Then, the new dependent variable v(x, ¢) satisfies the para-

bolic equation

'2' a;(x, t>v,,x,-+ﬁb,*<x, Do,+c*(x, Hv—0v,=0
1=1

2,j=1

where
b* (%, ) =b, (%, ) — 24a(t) 21 a;(x, D1,
c*(x, 1) =c(x, D) +2a2(D) (| 2 12+1>A—Zéla,.,.(x, £ 1%,
20— 2)a(®) (1x]*+ 1)“2—21%@,.(::, £ x.7;

—1a () (| £+ )M [0, (5, £) +b,(x, D )

+a' (&) (|2 [P+1DM—p' (D).
It is clear that there is a number %5, depending on the choice of
a(t), such that
0¥ (x,0) | <k (2P + 1) (=1, -+, m).
In view of (2.1)—(2.3) we have
3.2) c*(x, D x|+ DM [/ (8) + pi (B) +qa(D)]
+hs+ra(t)—F (1),
where we have set p=£~k1, g=kmnl, r=—Fka2(1—2).

If we define the C* functions by

[24) _
1 pant (¢=0)

L (g=0)

a(t) =
| (pant e —pas
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[kSt + Llog(l + pat) (g=0)
B(t) = I

Bi— T 1 ge” 0),
= gen F ant o —pan IV

and if we note that they satisfy the relations

a' (1) +paf(t) +qa(l) =0, k+ra(t) —p (1) =0,
we have from (3.2)

c*(x, )0, (x,H)eE"x [0, T].

Obviously v(x,t) belongs to class E* on E*"X [0, T] and satis-

fies the initial condition
[v(x,0)|=]u(x,0)|expla(|x[*+ D] <M, x=E"

(note that a(0) =« $(0)=0). Applying a maximum principle due
to W. Bodanko ([3], Theorem 2), we have |v(x, 1) | <M, on E*x [0, T].
Hence, by (3.1), we conclude that

lu(x, 1) | <Mexp[—a@® (|2[*+ 1D +p@)], (x,)eE"X[0, T],
from which the desired estimate (2.5) follows: M,= M, a,=a(t).
Proof of Theorem 2. We observe first that
(3.3) FG,u)<F,(t,0)u for (t,u)es[0, T1XE"

since F,,<0 and F(#,0)=0. Hence, the solution »(#; ) of the or-

dinary differential equation
v,=F(tv), v(0)=06>0

is majorized by the solution w(f; #) of the linear ordinary differential

equation
wt:Er(ts O)W, W(O) =0,
that is,
(3.4) v (t; O)<w(t; 6) =0 epr;F,,(s, O)ds], te (0, T1.

We compare the solution #(x, ) under consideration with the
function w(?¢; 6), noting that the former satisfies the differential ine-
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quality

(3.5) 32 008, Dtk + 326,05, Dt + F (1, 1) 0,20
and that the latter satisfies the linear parabolic equation

ﬁ (%, DW,,.;+ Z b, (x, Hw.,+ F,(t, 0)w—w,=0.
i,j=1 i=1

Taking 6= II€1§1X u(x,0) and applying a comparison theorem of W.
Bodanko ([3], Theorem 4), we obtain

ulx,H)<w(t; 0), (x,H)eE*x |0, T].

Hence the solution #(x, ) is bounded on E*X [0, T'], though assumed
of class E*.

We now consider the function #(x, £)=v(¢; u,(x, t)), the composi-
tion of v(¢; ) and u,(x,¢). Following closely I.I. Kolodner and R. N.
Pederson (5) (p. 358) we s=ze that #(x, ) satisfies the differential ine-
quality
(3.6) a0 E—!—Z b(%, i, +F (1, %) —5,<0.

i,j=1

Subtracting (3.5) from (3.6) we obtain the differential inequality

33 048, D) Ui+ 336,05, D U, + Fult, 0% (1, 0)) U= U0

i,]=

__satisfied by the difference U(x, t)=u(x,t)—u(x,t), where u*(x,?)

. lies between %(x,?) and u(x, ¢), and hence is bounded on E*X [0, T'].

s An application of a theorem of W. Bodanko ([3], Theorem 1) yields
the inequality

6.7 0=<u(x,t)=<u(xt), (x,t)eE"X {0, T],
since #(x, 0) =u(x, 0) initially. The inequality (2. 8) follows immedi-
ately from (3.7) and (3.4).
4. Appendix
The examples which follow are suggested by M. Krzyzanski [6].

Example 1. Consider the particular parabolic equation
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du+ (B %2+ Dth— s —0 (Au=éu,..,),

where 2>0 and [ are constants. The solution of this equation belong-
ing to class E* and satisfying the initial condition

u(x, 0):exp(—%lx|2), x€E" (a>>0: a constant)
is given explicitly by the formula
u(x, 1) =S V(x, t; y, 0)e><p<—~‘§—! y P)dy
En

in terms of the fundamental solution V(x,%; y,s) constructed by A.
Szybiak (see [6] and [7]):

¥

T sin2k(t— s)}_ 2

N\ r 2
Vix, t; 9, S)=)L -
Xexp[m—g(]xlzﬁ— |¥1®) cot2k(t—s) +k{xy) cosec 2k(t—3) +1(t—5)],

where <xy>=i %y, %, yeE | 0<<t—s<<T_.
=1

2k
An easy computation shows that
B k iz [_ k(acos2kt—ksin2kt) | 1o, 1,1
u(x, ) _[acsin2kt+k0082kﬂ exXp 2(asin2kt + kcos 2kt) | %]*4 lt_[’

n 7t
(x,0)cE ><<o, Ik')'

Let tozﬁtanﬂ‘z—. When {<<ty, the solution #(x,{) decays ex-
ponentially as |x|—>oco; on the contrary it grows exponentially as
| x| —oo when t°<t<74%'

Example 2. Consider the parabolic equation

du+ (—F | x|*+Du—u,=0,
where £>0 and [ are constants. We are concerned with the solution
of this equation satisfying the initial condition

u(x,0) =exp <%lx|2>, xeE™,

where « is a positive constant less than .. Making use of the fund-
amental solution constructed by A. Szybiak (see {6} and [7])
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W(x, t;y,s) :[—z—g—sinh 2k(t—s)]_%
X exp[~~§(ix!2+ ly]%) coth 2k (¢t—s) +k{xy)

% (sinh 2k (f—$))" + l(t—s)] (x, ye E*, 0<f—s<<oo),

the solution sought is expressed as

ux, )=\ W ;3,0 exo(-L 151 )ay.

Proceeding as in Example 1 we have

k n/2
VY=
(%, 0 ’: kcosh2kl—aesinh2kt]

S k(acosh2ki— ksinh 2k?) " jl . -
"exp[2<kcosh2kt—asinh2kt> & +12 |, (%, DEE"X (0, o).

a

Let #, be such that tanh2kf,= 5 Though the solution #(x, £)

grows exponentially for large |x| if #<{f,, it decays exponentially for
large |x] if t>1,.
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