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§ L Introduction

We have been interested in studying the local behaviors of (weak)

solutions of partial differential equations with discontinuous coefficients.
In particular in this paper we wish to obtain a Harnack inequality
for solutions of quasi-linear partial differential equations of second or-
der parabolic type and to derive interior estimates, one of which is
uniform Holder continuity for all bounded solutions of these equations.

The most remarkable result which ensures a Harnack inequality and

uniform Holder continuity of solutions of partial differential equations
with discontinuous coefficients was established by J. Moser [5] in 1964
for linear uniformly parabolic equations which consist of terms of se-
cond order derivatives. He extended his own method which had been

introduced by himself [2] [3] for uniformly elliptic equations in the

corresponding form. This method of J. Moser's was applied to derive
the Holder continuity of solutions of linear elliptic and parabolic equa-
tions by C.H. Kpy>KKOB [9] [10] [11] and also applied to derive a
Harnack inequality and Holder continuity of solutions of quasi-linear
partial differential equations of elliptic type by J. Serrin [13].

In this paper we are concerned with certain class of real quasi-
linear partial differential equations of second order parabolic type;

(1.1) div A(x, t, u, ux*)—ut = B(x, t, u, ux~).

Here, A(x,t,u,p) is a given vector valued function of variables
x= (#!, • • • , Xn), t, u and p= (plt • • • , />») . B(x,t,u,p} is a scalar valued
function of the same variables. ux and ut denote the gradient of the
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function u = u(x,t) with respect to x and t respectively, that is,

du 9u \ _ 3uu _ 9u \ d _
T' ' ~d^J and Ut

We assume that A(x,t,u,p) and J3(#, t,u, p) are defined for all

points (#, 0 in a "rectangle" domain R in (w + 1) -dimensional Eucli-
dean space and for all values of M and ^>. We denote by R the rec-
tangle domain;

where &, A and r are positive constants. If we denote by Qp the subset

in ^-dimensional Euclidean space;

{x; x=(xl9—,xj, \x,\<p, i = l, •-,»},

then we can express R in the following;

R=Qkrx(Q,kr2).

Furthermore we assume that the functions A(x,t,u,p) and B(x,

t, u, p) are to satisfy the inequalities of the form ;

(1-2)

where a is a positive constant and the coefficients b through g are

nonnegative measurable functions of (#, f) defined in the domain R,
all the following values of which are finite.

G 7_!L_ \_lzl. /P » , \I=e_
# x-£ a# I B , max (\ c 1-£ <z# 1 n ,

Q f e r / 0</<*»2 \JOAr /

(1.3) max( \ rf17^^)^"^, max (\ ^T^£" (3
0</<*r2 \jQ4r / 0</</?r2 \jQA r

m a x ( \ /^-^rf^)^^, max (\ g2~e d
0<^<//r2 \JeA r / 0</<Ar2 \jQAr

for 0<e<l.

Throughout this paper we denote by \\h\\(
s
R:> the following norm

of a measurable function h(x,t) in R = Qkr X (0, hr2) ;
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(1.4) |[/z||< f f ) = max(f \h(x, t) \'dx\».

Here, max (min) stands for essential maximum (essential minimum).
Similarly nonnegativity of a function h is used when the set where
/z<0 is of measure zero. \A(x,t,u,p)\ and \p\ in (1.2) should be
understood as the Euclidean length of n-dimensional vectors A(x, t, u, py

and p respectively.
In §2 we shall assert our main theorem (Theorem 1), that is, a

Harnack inequality for solutions of the equations (1.1) and derive two
corollaries as the consequences of Theorem 1. In §3 and §4 we shall
derive various estimates of solutions of the equations (1. 1) in order
to prove our main theorem. §5 contains the proof of Theorem 1.

The author would like to express his gratitude to Professor M.
Hukuhara for helpful advices.

§2. Our main results

Definition 1. A solution of the equation (1. 1) in the domain R
is a function u = u(x,£) for which the first derivatives us, ut and u
itself are square integrable in R and which satisfies

t + (f>x-A (%, t, u, «,) + <!>B(x, t, u, tO ] dxdt = 0\ \

for every infinitely often differentiate function 0(#, f) which for every
fixed t has compact support as a function of x.

Definition 2. A subsolution (supersolution) of the equation (1. 1)
in the domain R is a function u = u ( x , f ) for which the first deriva-
tives «„ ut and u itself are square integrable in R and which satisfies

(2. 1) [j-Ut + fa'A^x, t, u, ux) + 0-5(#, t, u,

for every nonnegative infinitely often differentiable function $(#, f)
which for every fixed t has compact support as a function of x. (See [5)].

To formulate our main results, we consider in the domain R three
subdomains ;

= l, • • • , n,
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(2.2) £+={(*, 0; \xl\
R~ = {(*, 0 ; \x,\ <klP, i = l, -, », fc

where, 0~<p<r, Q<k-L<k, 0<hr<h^<h+<h, and we suppose that

(2. 3) (kry- |[i||<5_
i-£

for some constant /I, where

2 + £
 ;

3

l+2e
3

n^6

n = l

n~2

2+a
3

4 + e
0

Theorem 1. Suppose that u = u(x,t} is a solution of the equation

(1.1) which is nonnegative in RrdR, then

(2. 4) max zt <,r {min u + L(p~)},
R- R+

where 7 is a positive constant which depends on n, a, A, e, ki h+, hr, h%

alone, and

(2.5) i(p)=p"lk!l^_+^ll/IIJ_.+ (pK!l^!IJ_)1/2.

Using Theorem 1, we can derive two corollaries which ensure cer-

tain interior estimates of solutions. In this case we can generalise the

form of the domain and denote by J2 a domain J20x(0, T), where J20

is an open domain in the ^-dimensional Euclidean space.

We introduce for a point (.y, s) a one-sided ^-neighborhood by the

inequalities ;

Xi-yi

Let J?s be a subdomain of J2 such that with (#, f)^Q also a 5-neigh-

borhood in Q. Furthermore we assume instead of (2. 3) and (2. 5) that

<2'6)

_ _ _
l-£ 2-£ 2-£

Corollary 1. If u = u ( x , f ) is a bounded solution of the equation
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(1. 1) in Q and \u\<^K, then for any two points (#, 0 and (3;, s)

there exist positive constants H and a. such that

(2.7) |M(^0-w(^5

where the constants H and <x depend on n, a, A, /JL, e, -K" and 5 alone.

(See [7]).

Corollary 2. Let £5 (defined above) be a convex subdomain of

the domain J2. If u = u(x,t) is a positive solution of the equation

(1. 1) in Q, then

for (#, 0> (jy> 5)ej25, £<s, where r is a positive constant depending

only on n, a, e and A, and

(2.9) L = f\\e\\^

(See [1]).

The essential contents of these results have been published before

by the auther [14] [15] in Japanese but some of them are improved

in this paper.

The proof of Theorem 1 shall be given according to the same

argument by J. Moser [5] using estimates of solutions described in § 3

and §4 but the proofs of Corollary 1 and 2 shall be given in the
following paragraphs.

The Proof of Corollary 1. Let Rf, R+ and R- be the domains

defined in (2.2) with k = l, ^ = 1/2, h+ = 3/4, Af-1/3 and fa = 1/2.

We choose p<Ld arbitrarily. For a solution v = v(x,£) which is non-
negative in R', we have

(2. 10) max v<j {min v + L ( p) }
R- R+

from (2. 4) in Theorem 1. If we normalize the solution v by the
mean value;

*r= i p-i \\ v(%
I J\. I JJ*-

then we obtain from (2. 10)
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(2. 11) min0 + Z,(p)^r~V".

Suppose that u = u ( x , f ) is a bounded solution in £} and we denote

M=maxu,
R'

m = minu
R' R-

Then

vl = M—u and v2 = u~m

are solutions of the equations

(2. 12) div Ai(x, t, u, «,) —ut = B{(x, t, u, «,), i = l and 2

respectively, where

A(#, ^, M, #) = -A(x, t, M-u, -p)
B^x, t, u, p} = -£(*, t, M-u, - j>)
^42(^, t, u,p)=A(x, t, u + m.p')
B2(X, t, U,fi)=B(x, t,UJrM,p').

These functions defined above satisfy the assumptions (1. 2) which are,

| A(*, t, u,p)\<a\ -p\ +c\M~u\ -^e

<La\p\ +c\u\ Jr(e-\-Kc')

etc.

As the assumption (2. 6) of the corollaries satisfy the condition

(2.3) with respect to the equations (2.12), for solutions v± = M—u

and V2 = u — m being nonnegative in R', the inequality (2.11) implies

that

M
m+

while

where L0 is a constant depending on d, /I, ,« and K alone. Therefore
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we have from (2.13)

(2.14) M+ - m+< (1 - r1) (Af- 01) + L</.

Denoting the oscillation M—m of M in R' = RP,P2 by <»(p), we may

write (2.14) in the form;

where 6 = 1 — r"1 and LQ are independent of p. Using the inequality

above with p = 2~vp(v = Q.l, 2, • • • ) , we obtain a recursion

and hence the iteration of the recursion (2.15) yields

i
r «£ v ( -j

(?C\ -4- o ^v^ f

for any integer v. Now we choose r sufficiently large so that

It follows from (2.16) that

(2.17) *(2

where 7-0 is a constant depending on n, a, e, /*, ^e, 5 and K alone.

We introduce for a point x' = (x, f) the following norm;

M . . . M M f111^^ ^ 1 .

It suffices to prove (2. 7) for t<.s in which case the inequality reads

(2.i8) i«c^)-«(y)i^^iii^-yiiia.
For i!I*'-/|[(>S, (2.18) is trivial since

\u(x')-u(y')\^K^2Kira\\\xr--y'\\\a.

For HI A;'—/||[^3, we choose an integer i^>0 so that

2^1<^!|l#'-

and from (2.17), we have

— «= ^

with «;=—Iog20. This proves (2.7).

The Proof of Corollary 2e Applying Theorem 1 to the rectan-
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gle domain;

with p<L23. We find that for a positive solution

hence making use of the notation (2.9), we have

(2. 19) «(0, 0) + L^r W*, 0 + £}

for a point (#, 0 such that

\xi\<-^-p,i = l, -~,n, t = -~--p\

where r is a constant depending on n, a, A, e and 8. While for two

points (0, 0) and (#, f) in J2a, we choose the points (xv, tv} such that

on the line, where

/O <~)f\\ X: ^- 1 t 1 2(2-20) _L_J_ <_,,_ = _,.

^ince

f __ t/N f/2 __
\x,\ \x,\/N= p/4 >

we can choose an integer N and p<£28 so that (2. 20) holds. There-

fore from (2. 20) we have

Applying (2.19) to the positive solution u(x,f) in the rectangle do-

main ;

, - - ,

we obtain

(2. 22) u («*, f )

for v=0, 1, • • • , JV— 1 and therefore
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by multiplying the inequalities (2.22). Choosing N as the smallest
integer satisfying (2.21), we have

T w(0, 0) +L ^AT , ^ ( \x\2 , ^ ,
- '

where r depends on w, a, ^, e and 5 alone. This proves (2. 8) .

§3. Estimates of solutions (I)

Inside the domain R we denote by Rpr a parallel rectangle subdo-
main;

{(*,0;(*,0e#, \xi\<Pli = l, -,n, -r<f<0}=QPx(-r,0).

Here, we transformed the coordinates in R such that the origin of the
transformed coordinates should be on the center of the upper side of
the rectangle subdornain RpT.

To obtain results in this section and the next one, we need a

useful inequality which has been known as Sobolev's Lemma;

Lemma 1. For a function w = w(x) with compact support in R"
whose derivatives dw/dx{(i = l, • • - , ri) eZ/(J?M), r<n, an inequality

(3. 1) M^^'-^^U^dw/dx^-

holds.

Proof- See [8] [15] .
To formulate estimates of solutions, we define for a function

w(x, tydxdt
JJjRpr

(3. 2) Dpr(^) = p'^y-'f f M;,(^,
JJ.ffpr

MpT(w) =p"K max \ (jr, f)zdx,
-r<t^o JQ/>

where «;! = (Qw/dxJ 2 4- • • - + (dw/dx.) 2.
As a consequence of Lemma 1, we have the following lemma;

Lemma 2* For a function w = w ( x , f ) the values (3.2) of which

exist, we have
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(3. 3) Hp

where

(3.4)

and f is a constant which depends only on n.

Proof 0 See [5].

Now, we shall introduce another parallel rectangle subdomain 7?*T

of the domain R, that is,

£?T= {(*, 0 ; (*, 0 eie, |*,.|<p, *=i, -, », o<*<r} =QPX (o, r).
Lemma 3. (1) If u = u(x,£) is a nonnegative subsolution of the

equation (1.1) in ^?pT, then

(3.5)

for y={w + I,(p)}*/2, /»! and #p

(2) If « = «(*,#) is a nonnegative supersolution of the equation

(1. 1) in £*„ then

for w(jr,0 = {«(^ ~0+^(p)}" /2; 0<^<1 and
(3) If u = u ( x , f ) is a positive supersolution of the equation

(1. 1) in Rpr, then

DP^
M^

for v= {u + L(p)}p/2
t ^?<0 and R^fCiR^. Here, r is a positive con-

stant which depends on n, a, A and e alone and

i-l P'2 + P2 (I P \"l T
' ^ f. r\

(3.8)
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The proof of Lemma 3 will be given later.

We denote u=\u\+L(p) for a solution (or subsolution or super-

solution) u = u ( x , f ) of the equation (1.1) in R and we introduce the

following norm;

pdxdtlP

D

for a rectangle subdomain D of Z?' and — oo </><-!- oo , where |Z)| is

the measure of D. It can be easily known that M(p, D) is increasing

as a function of p>$ and interpolates Af(°o, D) = max ^ and M( — °o?
D

D)=min w. See [15]. We aim at obtaining in this section the main
D

theorem as follows;

Theorem 2. (1) If u = u ( x , f ) is a subsolution of the equation

(1. 1) which is nonnegative in Rkp.w, then

(3. 10) M(oo, Rk'p,h^<rM(pf Rkpjtp^

for p^pQ>l, where r is a positive constant which depends on n, a, A,

e, k, k' , h, h' and p0 alone.

(2) If u = u(x, f) is a supersolution of the equation (1. 1) which

is nonnegative in 1?**̂ , then

(3. 11) M(p0, Rf,p,hep

for a <5>-0, where

4/3 ; » = 1 or 2

and r is a positive constant which depends on n, a, A, e, k, &', h, h' and

8 alone.

(3) If u = u ( x , f ) is a supersolution of the equation (1.1) which

is positive in Rkp,h^9 then

(3. 12) M(-0, £,P.,p0^rM(-oo, IWpa)

for any ^>0, where r is a positive constant which depends on n, a, I,

e, k, kf, h, h' and 3 alone.

The above inequalities (3. 10), (3. 11) and (3. 12) in Theorem 2

can be derived using the estimates (3.5), (3.6) and (3.7) in Lemma
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3 respectively, (c. f . [5], [15]) Now, we shall begin with proving

Lemma 3.

The Proof of Lemma 30 (1) From the assumption (1.2), we

obtain for u= u\ +L(p)
\A\<a\p\+cu

(3.13) \B\<b\p\+Iu

where we denote L(p) by (2. 5) and

While from the assumption (2. 3) we have

C°'
Now, for a nonnegative subsolution u in J?pT, we choose as a test

function of the integral inequality (2. 1)

(3. 16) </>=pup^2, p>l, u = \u\ + LGO,

where ^=^(#,0 is any function piecewise differentiable and vanish-

ing both on the boundary and in the exterior of J?pT except possibly

at t = 0. Then, from (3.13)

u,

— cu •

The right hand side of the inequality above can be expressed in terms
P

of v = u 2 as follows ;

x | v
2-2^v vx -

Therefore the definition of a subsolution (2. 1) implies that

(3. 17) t :
pa
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dxdt.

For the second term of the right hand side of the inequality (3.17),
we have

(3.18) ^a^\^x\v\vx\dxdt<^^^2vldxdt +

To estimate the third term of the same inequality (3.17), we assume
that n^3. By using Sobolev's inequality (3.1) with r = 2 in Lemma
1, and the condition (2.3), we have

^2v \vx\dx = b favy^vy-6 1 ^vx \ dx
J

6 n \ l-£ / -1 f» \ 8

b^
Qr

x 2

( i r \6 /2 /r* \ i
-4-\ +2v*dx) (\ (+vy,dx)

p JQP 1 \JR» I

2 t

, 1-e \ ̂ Xv2dx + — -/e\ ̂ 2fM^| .

Here, j-i is a constant depending only on n and L p, is an arbitrary
constant, which should be decided such that

2-e
Ti S—

that is,

where 7-2 is also a constant depending on n, A and e alone. Then, we
establish

(3. 19) ( { 2b^2v | vx \ dxdt<
Rpr
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The case of n = l or 2 is contained in that for n = 3 by ignoring two
or one variables. By the same arguments for the forth and the fifth

term of the right hand side of the inequality (3.17), we have

respectively

(3. 20)

(3.21)

Therefore by making use of estimates (3.18), (3.19), (3.20) and

(3.21), we establish from (3.17)

(3. 22) { { ( (^2) , +
jjRpr ( pa )

J dxdt

Now, we choose as ^ in (3.22) or (3.16) a function ty(x, f) =-
n

( | #,-|), where

r+r'

I 0

1

p-r
r

0

The inequality (3. 22) implies that

,-r or

(3.23) \\
JJXp'r'

Since -^ was not required to vanish on the upper boundary, we consider
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the rectangle domain

7, \x,\<p * = 1, -,0,
-T<t<-0, -r<-r'<-<

and choose 6 such that

\ v2dx ^-TT max \ v^dx.
JQp' r=-a^= Z -T'<*<rOjQP '

Then, we have

(2.24) m a x ? V2dx<2\ v2dx
-T'<*<Qj<?P' JQP' f = -<r

Inequalities (3. 23) and (3. 24) are nothing but (3. 5) for us to derive.

(2), (3). We can prove (2) and (3) of Lemma 3 by the same

arguments as that of (1) but for choosing as a test function of the

inequality (2. 1)

and

in the case of (2) and (3) respectively instead of the test function

(3.16) in (1).

The Proof of Theorem 2. (1) Setting v = upl\ p^pQ>l, for a

subsolution u of the equation (1.1), we apply Lemma 3 (1) with res-

pect to Rk'P,fi'p2^Rkp.b[#' Hence we have

X
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where r is a constant depending only on n, a, ^ and e. Applying
(3. 25) to the formula (3. 3) in Lemma 2, we obtain

(3. 26)

where

(3.27) ri^r^
p — l/ ( h — h

and 7- is a constant depending only on n, a, A and e. Now, we define

+ k'v

Hv = i2^piftvp2 (vvj

for v = 0, 1, 2, • • • . Then the inequality (3.26) implies a recursion
formula

(3. 28) Hv+,<r^Hl

whence the constant roo can be estimated in the form;

(3. 29) r^<rv+1

for some constant r depending on n, a, X, e, k, kr, h, hr and p0 alone

from the expression (3. 27) of the constant n° Iteration of the recur-
sion (3.28) and (3.29) gives

which implies that

- r- p MP°BV dxdt
Rk'p.k'P2 JJ^*'P,*'P3 /

"^"

Rewriting the inequality above by making use of the definition (3.9),

we have

(3. 30) M(psv, R^,n>^<rB~v-rp*"M(pQ, R».kt*).

When we let v tend to +°o in (3.30) and use the properties of the
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norm M(p, Z3) in the definition (3.9), we establish the inequality

(3.10) which is our result of Theorem 2, (1).

We shall be allowed not to prove Theorem 2, (2) and (3) since

we can derive the results (3. 11) and (3. 12) from the inequalities

(3. 6) and (3. 7) in Lemma 3 respectively by the arguments parallel

to that of (1). (See [5], [14], [15]).

§4. Estimates of solutions (II)

We denote by Rkp,^ll+Jl2^2 a parallel rectangle subdomain

in the domain R. Furthermore we define a parallel rectangle subdo-

main U and its subdomain £7+ and U" in the domain Rkp.on+tuw, a$

follows ;

17= {(*,*); l * i i <k'p, i = l,-,», -hi

where

For a real number 6, the following function $(<0 will be used in

deriving the last estimate in Lemma 4.

(V ~t~ ;
(4.D *GO= nt 0 ;

Lemma 4. If u = u(x,£) is a positive supersolution of the equa-

tion (1. 1) in J?ip,c*1+*2)P*, then

(4.2)

f o r z ; = — log {^ + L(p)} and C7+, U"aUc:Rkp^kl+kt^9 where x'=(x,f),

dxr = dxdt ahd r is a positive constant depending on n, a, A, e, ̂ ', &, AI

and ^2 alone.

Theorem 3. If u = u(x, f) is a supersolution of the equation

(1-1) which is positive in ^P,c/11+fi2)p2, then

(4.3)
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for subdomains C~ and CT of Rk
rp^+h(w such that

; *,-

C-={(x,t); \xt\

where 0<AJ</&I<Ai, 0</Z3</Z2</22, 0<&'<& and r and « are positive
constants depending on w, <z, ^, e, A', &, AJ, ̂ 2, AS, A± and h2 alone.

To prove Lemma 4 we need the following lemma;

Lemma 5, Let X#)^0 be continuous of compact support of
breadth B and such that the domains ^(#)2^const. are convex. Then
for any function /(#) for which / and /, are square integrable with
respect to p{x}dx one has

(4.4)

where

C=

The proof of Lemma 5 can be seen in [5] .

The Proof of Lemma 4. It suffices to give the proof for u^

and prove the inequality (4. 2) with 7 independent of 8. For a super-

solution u, we set

v=~ logu, u=\u\-rL(p)

and choose as a test function 0 in the inequality (2. 1) the following

one

0 = 0(*,0=»(M)~>002

where ^(#) is a function of compact support in x. Then using (3. 13)
which was derived from the assumption (1.2), we have

(4.6) (frUt +

\vx\
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Since the given u is a supersolution of the equation (1.1), we obtain

from (4. 6)

(4.7)
J Q f e p

i, tz)

> X ( f i , f 2 )

\v,

by integrating over Qkpx(ti, 4) in (2.1). Now we shall estimate

each term of the right hand side of the inequality (4. 7) by the same

arguments as that of the proof of Lemma 3 using Schwarz's or Holder's

inequality and Sobolev's inequality in Lemma 1.

For the first term of the right hand side of (4. 7) , we have

(4.8)

<^(^2vldxdt + 4a3{{^x dxdt.

For the second term, we have from the assumption (2. 3)

{ b^2 \vx\dx = [b^£^£ | ̂ vx | dx
jQkp J

« n \ l-£ / -Ib™d*r(-
0tfvl

l/2

Then, choosing a constant p. such as

we obtain

(4. 9)
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In the same way we obtain estimates for the third and the forth term

respectively as follows;

(4.10)

(4. 11) d~^2 dxdt

Therefore

(4.12) {( tfvdx
JJQkp

is derived by applying the estimates (4.8), (4.9), (4.10) and (4.11)
to the right hand side of the inequality (4.7).

We shall take for

where

.and denote

= v (*, 0 &z

Qkp

Then, we have

(4.13) ( ,
JQkp

for the first term of the left hand side of (4.12), and

(4.14) {\ ^2v2dxdt
J j Q f t p x C f i , * 2 )

{v(.x,f)-V(.f)}tdxdt

"by applying Lemma 5 to the second term of the left hand side of
(4.12), and furthermore we have
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(4.15) \\ {&~2|0~2-i/r2 + i/r?} dxdt
J J C * p X C * l , *2)

1 / k V 1

Since the right hand sides of both (4.13) and (4.14) remain un-

changed if v is replaced by v 4- const, we normalize v in U by taking

V(0)=0. Now we replace v and V by

w(#, 0=0(*>0-r*
(4.16)

where

then we obtain at last

(4.17)

from (4.12), (4.13), (4.14), (4.15) and the definition (4.16), where

2 k'
ri="F

Let Q,(0 be the set

for Q<t<hlp2. Note that

M;(^, 0 -

for any s>>0 and x^Qs(f) and W(0 is monotone decreasing with

W(ff)=Q. Then from (4.17) we have

for some ti<.t<t2 by the mean value theorem. Therefore we find

(4. 18)
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and when we denote the measure of a set by m{ ...... } and

m(s)=m{(x,f)<^U+', w(x,

we obtain from (4. 18)

From this estimate we can derive

(4.19) Cf ^~
JJ [7~;i;>0

where r is a constant depending on n, a, A, k, kr, h and h[ alone. Re-

placing t by — t and h{ by — k'2, we obtain from (4.19)

(4.20)

remembering the normalization F(0)=0. We have the result (4.2)

from (4.19) and (4.20).

The Proof of Theorem 3. We set

v=— logu, u=\u\+L(p')

for a supersolution u and denote the measure;

(4.21) f^=M(U\U^

m {*' EE U\ yr^ U~, v (*') -
\u+\\u-\

for any 5>0 and U+, U"dUc:RtPt^1+hz^ defined at the beginning of

this section. For a

with respect to the function $(<0 defined in (4.1) and the measure

At(s) defined in (4.21). The last inequality is true from (4.2) in

Lemma 4. Then, we have

(4.22) /iCs^rflCs)-1

for any s>0.

Now we shall define a family of rectangle subdomains;

Cv= {(*, 0 ; i x,
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c; = {(*, 0 ; 1 x, I
C,-=
C°={(x,f); \x,\

for v=0, 1, 2, • • • , where Af is an integer more than 2. From (4.22)

we have

(4. 24) M(Ct, C°) +M(C°, CiD^r-flCs)-1

for any subdomain in the family (4. 23), where r is a constant depend-

ing on n, a, A, k, kr, h[, h'2 and h'3 alone but independent of v, p and N.

The inequality (4. 24) holds also for any rectangle subdomain trans-

formed in parallel arbitrarily from that in the family (4.23), since

the class of equation (1.1) is invariant under the parallel transforma-

tions of coordinates. While since the left hand side of the inequality
(4. 24) is the average of

; v(zr)-v(yr)>s}
\C + \

over z'eC°, there exists a constant av for which

, m{yr

Note that for any £>>0, there exists an sQ>0 such that r-(2)(50)""1

Then if we set

we have

r ,
^4. ZD;

for v = 0, 1,2, • • - .

Now we define

with respect to domains of (4. 23) and

-1-

with respect to other subdo mains;
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Dt = { (x, 0 ; | *f | <k'P, hip

D^ = { (x, 0 ; | xt \ <kfp, - h',

for 0 < ha <. hi <C Ai, /&2 • We can derive the following lemma ;

Lemma 60 Suppose that

(4.28) MD<*, * = 0,1,2,-

for some constant d>Q sufficiently small. Then we obtain

(4. 29) q (s) <;# • exp ( - £s)

for any 5^1, where a and b are constants depending on n, d and h[

through h[ alone.

The proof of Lemma 6 can be seen in Appendix (see [6] ) . We

shall continue our proof of Theorem 3. Since the assumption (4. 28)

is equal to (4.25), we can use the result (4.29) of Lemma 6. Tail-

ing for a> = b/2s0, we have

(4. 30) -pA
I L>a

where ^+(s) in (4.30) denotes the first term of (4.26). In the same

way we obtain

(4.31) _
I I/O I

The inequalities (4. 30) and (4. 31) imply (4. 3) of Theorem 3 since

we can replace a parameter M to hf
s and we have

C0~|
co co

by remembering the definition v = — log u.

§58 The proof of Theorem 1

We are now in a position to prove our main theorem (Theorem 1).

For three subdomains (2.2) of R we introduce new subdomains;
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C-={(*,0; |*,.| <k'p, f = !,-,»,
J?*={(*,0; I*,- <**p,f = !,-,«,

for 0 <&!<&*<&'<& and 0 <Af <Aa" <fe </24 </*+ <A. Assume that

a given solution w^5>0. Applying Theorem 3 to it with respect to

C+ and C", we have from (4. 3)

(5. 1) MO, C-)^ M(-*, C+)

for some o:>0. Taking for d = a in Theorem 2, (3) with J?+cC+, we

have

(5.2) M(-<*,C+) ^rMC-oo,**),

and also for d = a in Theorem 2, (2) with J?*cC",

(5.3) M(^0,J?*)^rMO,C-)

where p0 is a constant more than 1 defined in Theorem 2, (2). Fur-

thermore from Theorem 2, (1) with R~dR*, we obtain

(5. 4) M(oo, £-)^rM(£0, J?*).

Then using the four inequalities (5.1), (5.2), (5.3) and (5.4), we

establish

M(oof £-)^rMX-°°, ^+),

where r is a constant which depends on n, a, A, kl9 h
+, hi and A2~ alone.

This inequality is independent of <5->0. This proves Theorem 1.

Appendix

We shall prove Lemma 6 in § 4, which was extended from F. John

and L. Nirenberg's Lemma [12] by J. Moser [5] [6] . Our proof is

also essentially the same as his [6J . Remark that some constant d>-0

is sufficiently small so as to satisfy three inequalities (A. 3), (A. 6)

and (A. 16) in the following paragraphs of our proof.

The Proof of Lemma 6, At first we shall subdivide DQ of

(4. 27) into JVW+2 congruent rectangle domains by subdividing the t

side into N2 and the remaining sides into N equal parts and denote

them by {A+}. In the v-th step, we obtain JV*""1"25 congruent subrec-

tangle domains denoted by {Df}. Corresponding to the domain Do
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in (4. 27), there exist three rectangle domains C0, C0
+ and C0~ in (4. 23)

and a constant 00 in (4.25). Similarly we associate three rectangle

subdomains Cv, C* and C~ in (4. 23) and a constant <j>v in (4. 25)

with each subdivided domains D* for v = l, 2, 3, • • • .

Proposition 1. (1) If an integer TV in (4. 23) satisfies the ine-

quality

then ATcDXi implies Cv"

(2) If ZVcZV-i then ^-^-^2.

The Proof of Proposition 1. (1) In order to obtain the result,

it is sufficient that an inequality

(A. 2) h'^ £&-&

should be satisfied in comparing the height of the t sides of rectangles

C ~ and C*-i. This inequality (A. 2) follows from the assumption

(A.I).

(2) If <fiv — <f)v-l>2, we would have

or

for all x'^CydCf-i. Therefore we have from the assumption (4.28)

of Lemma 6,

which is contradictory if the small constant d>0 satisfy

(A. 3) ^{l + N^W-W/W-h'J}-1.

Let s0^2. We select from {D?} domains for which fa

denote them by {D*} . The remaining rectangles are subdivided again.

Similarly at the y-th step we select the rectangles {D?} for which

<t>v — 00 ̂  -^0-
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We denote by C*, C~, Cv and $v the rectangle domains and the

constant which correspond to a selected domain Z)*. Let D=UC*.

Proposition 2. (1) sQ<<f>v — </>O^SQ + 2.

(2) For x'^Df-D, we have /(#') -00^50 + 1.

The Proof of Proposition 2* (1) The left inequality in (1) is

clear. The right one is derived from

0y — 0y-i<12 and 0^ — 00<lso

since the first inequality follows from Proposition 1 (2) and the second

one from the fact that D» has a rectangle Df-i^D? which was not

selected.

(2) For x'^Du—D there exists a sequence of rectangles {D+}

which were not selected and contain the point x1 \ that is,

(A. 4) Jc'eD

While there exists a point x'v^C^ for every D* such that

(A. 5) /OO-fc^l

since from, the assumption (4. 28) of Lemma 6,

m{xf^c:'j(%r}-^^i}<d\c: <\c;\
if the small constant d>0 satisfies an inequality

(A. 6) 8<1.

Therefore from (A. 4) and (A. 5), we have

which implies the result of Proposition 2 (2) since /(X) is a conti-

nuous function in R.

Proposition 3. Denote the set

by S. Then we have

(A. 7) |JD

where
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The Proof of Proposition 3* From the assumption (4. 28) of

Lemma 6, we have

(A. 9) \C-\<m{

since <f>v—f(xr)<^l implies that

/ (X) - 0o =/(*') - #v

Now, since the domains of {C~} are not always disjoint, we must
*

select out of {C~} a subset of rectangle domains {C^} such that

*
{CA~} are not overlapping with one another

and each rectangle of{C~} always overlaps
•X-

with some rectangle of {CA~} 0<^).

The rectangles Df can be grouped into those for which the corres-
•X-

ponding C~ overlap with CA (/l<»o These domains DA are contained
•&

in a rectangle which lies above CA and has a height less than

the height of CA . Noting that both {D+} and (Cv } are non-

overlapping and making use of (A. 9) we have

(A. io)

While if we take an integer v0 such that

for the fixed 50^2, we have begun to select the rectangles of {D+} in

fact from the v0-th step of the decomposition since

from the result of Proposition 1, (2). Therefore the domain (Cjf — D0
+)

•je
n ( U C A ~ ) is contained in the union of 7W congruent rectangles C*

which lie on the lowest position in {C*0} and hence
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(A. 11) !(C0
+-Do+)

NV*H

From (A. 10) and (A. 11) we obtain the inequality (A. 7) of Proposi-

tion 3.
Using the propositions above, we shall derive an estimate (4. 28)

of Lemma 6. Let s0 = s-fl for a s^l. Note that /(#')— 0o<s + 2

for X'^DQ—!) from Propoistion 2 (2) and /(#')— *o>s + 4 implies

for x'^D=UD+. Then we obtain

+ 4}

and furthermore from the assumption (4. 28) of Lemma 6 and the

inequality (A. 7) of Proposition 3 with s0 = s + l, we have

ri

Then we obtain

(A. 12) ^+(

where we denote

,,+r«

and

(A. 13) 7.,= _^H*«_.ri
iii n±

with n and 7-, in (A. 8).

Making use of the notation ^(5) in (4.26), we can derive a recur-
sion

(A. 14)
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from (A. 12) and by the same arguments for the the rectangle DQ.

Iteration of the recursion will yield the estimate (4. 29) of Lemma 6.

For 1^5^4, we have

where fc>0 is arbitrary. For s>4, setting s = 4a + s0 (<r; integer,

<I4) and using (A. 14), we have

(A. 15) <? GO-*? (4* + So)

Now we take for the small constant £>0 such that

that is,

(A. 16) d<—^— =|2+ f'lr'i" f'_t ' + 1"ty '

from (A. 13). For the fixed <5>0 we enlarge 7-3 in the equality (A. 15)

such that

if necessary. Then we obtain from (A. 15),

(A. 17) 9(s)^[r8a(l--20)-1]*-r,
where 7- is a constant depending on d and h^h* alone. (A. 17) im-

plies

q (5) <;#£-6(4cT+*o) = a - exp ( — fe) ,

where we set

This proves Lemma 6.
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