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On a Harnack inequality for nonlinear
parabolic equations

By

Mitunobu Kurizara

§1. Introduction

We have been interested in studying the local behaviors of (weak)
solutions of partial differential equations with discontinuous coefficients.
In particular in this paper we wish to obtain a Harnack inequality
for solutions of quasi-linear partial differential equations of second or-
der parabolic type and to derive interior estimates, one of which is
uniform Ho6lder continuity for all bounded solutions of these equations.
The most remarkable result which ensures a Harmack inequality and
uniform Holder continuity of solutions of partial differential equations
with discontinuous coefficients was established by J. Moser (5] in 1964
for linear uniformly parabolic equations which consist of terms of se-
cond order derivatives. He extended his own method which had been
introduced by himself [2] [3] for uniformly elliptic equations in the
corresponding form. This method of J. Moser’s was applied to derive
the Hoélder continuity of solutions of linear elliptic and parabolic equa-
tions by C.H. Kpyxxos [9] [10] [11] and also applied to derive a
Harnack inequality and Holder continuity of solutions of quasi-linear
partial differential equations of elliptic type by J. Serrin [13].

In this paper we are concerned with certain class of real quasi-
linear partial differential equations of second order parabolic type;

1.1 div A(x, t,u,u,) —u,=B(x, t,u,u.).

Here, A(x, t,u,p) is a given vector valued function of variables
X=(%y 1, %), L, u and p=(py, -, p.). B(x, ¢, u,p) is a scalar valued
function of the same variables. #, and #, denote the gradient of the

Received August 4, 1967.



212 Mitunobu Kurihara

function u=u(x,t) with respect to x and f respectively, that is,

_(ou Ou _ ou
u‘_<6x1’ ’Tx,,)and U, =——-:

We assume that A(x, t,u, p) and B(x,t, u, p) are defined for all
points (x,¢) in a “rectangle” domain R in (#-+1)-dimensional Eucli-
dean space and for all values of # and p. We denote by R the rec-

tangle domain;
{(x,8); x= (%, -+, %), |x:|<br,i=1, -, n, 0<t<<hr:},
where %k, & and 7 are positive constants. If we denote by @, the subset
in n-dimensional Euclidean space;
{#; 2=, -, %), |2:]<o, i=1, -, 1},
then we can express R in the following;
R=@Q,, % (0, hr).
Furthermore we assume that the functions A(x, ¢, u, p) and B(x,
t,u, p) are to satisfy the inequalities of the form;
|A(x, t,u, p) | <alp| +cluj+e
1.2) | B(x,t,u,p) |<b|p| +d|ul +f
p-A(x, tu, p)=a | p*—d|ul*—g,

where @ is a positive constant and the coefficients & through g are
nonnegative measurable functions of (x,#) defined in the domain R,
all the following values of which are finite.

” 1-€ n 1-&
max (S bi-¢ dx> * | max <S c1-¢ dx) n
Qrr Qkr

0t <lhr2 0<t<h 2
2 2-& m 1-€
1.3) max <S dre dx) *, max <S er-¢ a’x) ",
0t <hr2 Qkr 0t <lhr2 Qpr
n 2—-€ # 2-&
max (S fE dx> ", max <S ge dx> ",
0t hr2 Qir 0Lt hr2 Qpr
for 0<<e<<1.

Throughout this paper we denote by [[2]|%® the following norm
of a measurable function %#(x,t) in R=@Q,, X (0, hr?);
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(1. 4) 2] = max (SQ | h(x, ) |‘dx>”’.

0t hr2

Here, max (min) stands for essential maximum (essential minimum).
Similarly nonnegativity of a function % is used when the set where
h<<0 is of measure zero. |A(x,t,u,p)| and |p| in (1.2) should be
understood as the Euclidean length of #n-dimensional vectors A(x, £, u, p)
and p respectively.

In §2 we shall assert our main theorem (Theorem 1), that is, a
Harnack inequality for solutions of the equations (1.1) and derive two
corollaries as the consequences of Theorem 1. In §3 and §4 we shall
derive various estimates of solutions of the equations (1.1) in order
to prove our main theorem. §5 contains the proof of Theorem 1.

The author would like to express his gratitude to Professor M.
Hukuhara for helpful advices.

§2. Our main results

Definition 1. A solution of the equation (1.1) in the domain R
is a function u=u(x, ) for which the first derivatives u., #. and u

itself are square integrable in R and which satisfies
SSR (pu, + .- A(x, t, u, u,) +¢B(x, t, u, u,)] dxdt=0

for every infinitely often differentiable function ¢(x, ) which for every

fixed # has compact support as a function of x.

Definition 2. A subsolution (supersolution) of the equation (1.1)
in the domain R is a function u=u(x,¢) for which the first deriva-

tives u., #. and u itself are square integrable in R and which satisfies
2.1) SS (6t +6un A, £, 1, ) + ¢ B(x, £, u, )] dxdt< (=)0

for every nonnegative infinitely often differentiable function ¢(x, £)
which for every fixed ¢ has compact support as a function of x. (See [5)].

To formulate our main results, we consider in the domain R three
subdomains;

R={(x,8); |x:| <kp,i=1, -, n, 0<<t<<hp.}
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(2.2) Ri={(x,0); |x:|<<kwp,i=1, -, n, B*o<<t<<hp’}
R={(x,0; |x| <k, i=1, -, 0, hio*<<t<<h;p'}
where, 0<p<7, 0<lky<<k, 0<<hi<<hy<<h"<<h, and we suppose that

2.3 (k)" 'lb"R?z , (kr)e IICH‘R’ (kr)~ Hdl"” =1,

for some constant A, where

‘ e ;o n=3 { e ;0 n=3
J 24¢ 242
;o n=1 ; n=
p— 3 n K:J 3 n=1
1+2¢ _ d+¢ | _
3 ;o n=2 3 ;) n=2.

Theorem 1. Suppose that u=u(x, ) is a solution of the equation
(1.1) which is nonnegative in R'CR, then

2.4) max % <y{minu-+L(p)},
2 o
where r is a positive constant which depends on #,a, 4, ¢, & h*, hi, hs
alone, and
2.5) Lp)=0" IleH‘ e IlfH( +(p lgl!(’%)m-
2—

Using Theorem 1, we can derive two corollaries which ensure cer-
tain interior estimates of solutions. In this case we can generalise the
form of the domain and denote by 2 a domain £2,X (0, T), where £,
is an open domain in the z-dimensional Euclidean space.

We introduce for a point (y,s) a one-sided d-neighborhood by the
inequalities;

Ixi_yil<67 Z:]-) '"’ny —52<t_3<0.

Let £; be a subdomain of 2 such that with (x, {) €2 also a é-neigh-
borhood in . Furthermore we assume instead of (2.3) and (2.5) that
Hbl!“’?x i “CH("’ HdH"’) <

(2.6)
IeH“’B. , IlfH“” llgll‘z"i <un

Corollary 1. If u=u(x,t) is a bounded solution of the equation
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(1.1) in 2 and |u|<K, then for any two points (x, {) and (3, 8) €85,
there exist positive constants H and « such that

2.7 lu(x, ) —u(y, ) |SH(Jx—y| + =5

where the constants H and « depend on #, 4,2, #,¢, K and & alone.

(See [71).

Corollary 2. Let 2; (defined above) be a convex subdomain of
the domain 2. If #u=u(x,¢) is a positive solution of the equation
(1.1) in £, then

u(x, t) +L Jx—y[® | s—t
2.8) 10g7(y,s)+L gr{ s—t T # +1}

for (x, %), (y,s) €8, t<s, where r is a positive constant depending
only on #,a,¢ and 2, and

(2.9 L=5’”llell‘;{€ 1S @l H;R_i’% )

(See [1]).

The essential contents of these results have been published before
by the auther [14] [15] in Japanese but some of them are improved
in this paper.

The proof of Theorem 1 shall be given according to the same
argument by J. Moser [5] using estimates of solutions described in §3

and §4 but the proofs of Corollary 1 and 2 shall be given in the
following paragraphs.

The Proof of Corollary 1. Let R, R* and R~ be the domains
defined in (2.2) with k=1, k=1/2, h*=3/4, hi=1/3 and h;y =1/2.
We choose p=<{§ arbitrarily. For a solution v=v(x,¢) which is non-
negative in R’, we have

(2.10) max v<r {rrll?in v+L(p)}

from (2.4) in Theorem 1. If we normalize the solution » by the
mean value;

_ 1
u —TRTISSR— v(x, ) dxdi < max v,

then we obtain from (2.10)
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2.1 minv+L(p) =7
e
Suppose that #=u(x, ) is a bounded solution in £ and we denote
M=maxu, M*=maxu
R R+
m=min %, m"=min u.
R’ R-

Then
vi=M—u and v,=u—m
are solutions of the equations
(2.12) div A, (x,t,u,u,) —u,=B,(x,t,u,u,),i=1 and 2
respectively, where
A(x, tu, p)=—A(x, t, M—u, —p)
B,(x,t,u,p)=—B(x,t, M—u, —p)
A (x, t,u, p)=A(x, t, u+m, D)
B,(x,t,u, p) =B(x,t, u+m, p).
These functions defined above satisfy the assumptions (1.2) which are,
|Ai(x, t,u, p) | <a| —p| +c|M—u|-+e
<aipi+clu|+(e+Kc)
| B.(x, 8, u, p) |<b|p| +d|u| + (f+Kd)
p-A(x, t,u, p)=a| —pl*—d| M—ul*~g
=a|pl*—-2d|u|*— (g+ K*2d),
etc.

As the assumption (2.6) of the corollaries satisfy the condition
(2.3) with respect to the equations (2.12), for solutions v;=M—u
and v,=wu—m being nonnegative in R’, the inequality (2.11) implies
that

M—M*+ L) =y (M—u)

2.13
@13 m*—m+L(p) =77 (" —m)
while
L(p)=0"le+Kcl|"s +ollf+Kd|" + (o llg+K2d[% )
1-& 1-€ 1-€

ngZ—IL 0y

where L, is a constant depending on &,4, « and K alone. Therefore
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we have from (2.13)
(2.19) M —m* <A —7r) (M—m) + Ly~
Denoting the oscillation M—m of # in R'=R, . by w(p), we may
write (2.14) in the form;

w(270) <fw(p) + Lo,
where §=1—7"" and L, are independent of p. Using the inequality
above with p=27p(v=0.1, 2, ---), we obtain a recursion

(2.15) 0 (2719 <0w(2779) + Loy(279)¢
and hence the iteration of the recursion (2.15) yields
v i—1
(2. 16) w(20) <8 {w@) s z(ﬁ) }
1=1

for any integer v. Now we choose 7 sufficiently large so that
0<<(@9)*=2¢Q—y")'<1.
It follows from (2.16) that
2.17) 0 (278) <670,
where 7, is a constant depending on #, a, ¢, 4, #, 6 and K alone.
We introduce for a point x'=(x, %) the following norm;

o max{| x|, -, | x|, vV —t} ;<0
Il = | o
If suffices to prove (2.7) for £<Cs in which case the inequality reads
(2.18) lu(x) —u(y) | <H|lx"—y" ][
For [« —y'l[>d, (2.18) is trivial since

lu(x’) —u(y) | <2K<2K5=||x"—y"[[*.
For |[|x'—y'|[<5, we choose an integer »>>0 so that

27 o< lx"—y' <27

and from (2.17), we have

lu(x) —u(y) | <07r= 2“"”70_&_"”]6*;%“[”— 7o
with @= —log,6. This proves (2.7).

The Proof of Corollary 2. Applying Theorem 1 to the rectan-
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gle domain;

lx;l<%o, i=1, -, m, —%02<l‘<%p2

with p<{25. We find that for a positive solution
u(0, ) =<r{u(x, 1) +L(o)},

hence making use of the notation (2.9), we have

(2.19) u(0,0) +L<y{u(x,t)+L}

for a point («,¢) such that

!x,i<—i— p’izl, LELR /8 t:_zl_,pz’

where r is a constant depending on #,a,4,¢ and 8. While for two
points (0,0) and (x,?) in £, we choose the points (x7, *) such that

x'=yx;/N, i=1, ---,n, t'=yt/N

on the line, where

E7 T T SIS S
2.2 N <4 o N 50
Since

t  t/N = 0*/2 —2,,

Ixil B ]xs]/N_— P/4
we can choose an integer N and p<{2§ so that (2.20) holds. There-
fore from (2.20) we have

_t 2t 8|x|?
(2. 21) N——p‘z/—z—> 62 y N> f .

Applying (2.19) to the positive solution #(x,?) in the rectangle do-

main;

I X:i— x I <%pw 1= 1’ R, — %02<t_ tv<%pzv
we obtain
(2.22) w(r, )+ L<r {2, ¢ + L}

for »=0,1, -+, N—1 and therefore
u(0, 0) + L<¢"{u(x, £) + L}
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by multiplying the inequalities (2.22). Choosing N as the smallest
integer satisfying (2.21), we have

u(0,0) +L . { |x*? ¢ }
IOg_—u(x, DL <N-logr<r 7 -4 po +1

where y depends on #,a, 4, ¢ and & alone. This proves (2.8).

§3. Estimates of solutions (I)

Inside the domain R we denote by R, a parallel rectangle subdo-
main;

{(x,0);(x, D ER, |x,|<<p,i=1, -, n, —r<<t<0} =Q, X (—r, 0).

Here, we transformed the coordinates in R such that the origin of the
transformed coordinates should be on the center of the upper side of
the rectangle subdomain R,..

To obtain results in this section and the next one, we need a

useful inequality which has been known as Sobolev’s Lemma;

Lemma 1. For a function w=w(x) with compact support in R*
whose derivatives ow/ox;(i=1, ---,n) €L’ (R"), <n, an inequality

- -1 2
By lwll, wr <G = T |ow/ox, ¢

holds.
Proof. See [8] [15j.

To formulate estimates of solutions, we define for a function
w=w(x, 1),

H,.(w) :p"‘r'lgg w(x, t)*dxdt
Rpr
(3.2) Do(w) = prSS w,(x, £)*dxdt
Rpr
M, (w) = ¢~ max S (%, O)dx,
—T<t<0JQr
where w?= (0w/0x,)*+ - + (dw/0x,)"
As a consequence of Lemma 1, we have the following lemma;

Lemma 2. For a function w=w(x, ¢t) the values (3.2) of which

exist, we have
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3.3) H,.(w®) <y M(w)** {H-(w) + Dr (w)}
where

B 1+2/n ; n=3
G “{ 5/3;n=1,2

and 7y is a constant which depends only on 7.

Proof. See [5].

Now, we shall introduce another parallel rectangle subdomain R
of the domain R, that is,

R ={(x,0); (x,) ER, |x;|<<p,i=1, -+, n, 0<<t<<c} =@, % (0, 7).

Lemma 3. (1) If u=u(x, ) is a nonnegative subsolution of the
equation (1.1) in R,., then

Dpl-rl (1}) g,rplll(l*'&) <_§.€_1_>20pr (7))
(3.5)
MP,T, (’1)) gTPU(HE) <_’£‘1_>§FH,JT (’U)

for v={u+L(p)}?? p>1 and R,.'CR,.
(2) If u=u(x,?) is a nonnegative supersolution of the equation
(1.1) in R, then
3 DY (2, e
D, (v>gr{(1_p> +(125 0H,q(v)

My () <r | < 2 ) +(2 L2 o)

for v(x,t) = {u(x, —t) +L(p)}*?; 0<<p<<l and R, CR,.
(3) If u=u(x,t) is a positive supersolution of the equation
(1.1) in R, then

(2.6)

Dy () <r(1+[p|") 0 Hx(v)

My () <r(1+ |p|*)¥H,(v)

for v={u-+L(p)}*"? p<<0 and RyvCR,. Here, y is a positive con-
stant which depends on #, @, 2 and ¢ alone and

ot ot () (5)
v {rir' Ty }(_H( - )

3.7

(3.8)
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The proof of Lemma 3 will be given later.
We denote %= |u| +L(p) for a solution (or subsolution or super-

solution) #=u(x, ) of the equation (1.1) in R and we introduce the
following norm;

(3.9) M(p, D)= (—]—%I—Sgnﬂf’dxdt>w

for a rectangle subdomain D of R’ and —oco<pp<{+oo, where |D]| is
the measure of D. It can be easily known that M(p, D) is increasing
as a function of p>0 and interpolates M (oo, D) —max « and M(— oo,
D)=n}13in u. See [15]. We aim at obtaining in this section the main

theorem as follows;

Theorem 2. (1) If u=u(x, ) is a subsolution of the equation
(1.1) which is nonnegative in R,,,», then

(3 10) M(oo, Rk'p,h’nz)g')‘M(p: Rkp,h;z?)
for p=p,>1, where r is a positive constant which depends on #, a, 4,
e, k, k', h, W' and p, alone.

(2) If u=u(x,t) is a supersolution of the equation (1.1) which
is nonnegative in RS ;. then
(3- 11) M(Po, R;k’p,h/p2>§TM(6) Rkp,mﬂ)

for a >0, where

0 =

1+{/n) ; n=3
{ 4/3 ;n=1 or 2
and y is a positive constant which depends on #,a, i,¢, &, k', h, i’ and
0 alone.

(3) If u=u(x,t) is a supersolution of the equation (1.1) which
is positive in Ry, », then

(3 12) M('_5: Rkp,h:ﬂ)gTM(—OO; Rk’p.h’;#)
for any >0, where r is a positive constant which depends on #, @, 2,
e, k, k', h, i’ and & alone.

The above inequalities (3.10), (3.11) and (3.12) in Theorem 2
can be derived using the estimates (3.5), (3.6) and (3.7) in Lemma
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3 respectively. (c.f. [5], [15]) Now, we skall begin with proving
Lemma 3.

The Proof of Lemma 3. (1) From the assumption (1.2), we
obtain for %= |u| + L(p)

|A|<aip|+cu
(3.13) |B|<b|p| +du

p-A=a|p|* —du?
where we denote L(p) by (2.5) and
t=c+L(p) e

d=d+L(p)"f+L(o)g.
While from the assumption (2.3) we have
ollelZo"llell + L(p)ol[el <a+1
ol d<p |l + Lo | fIl+Lo) %0l gll <a+2.
Now, for a nonnegative subsolution # in R, we choose as a test
function of the integral inequality (2.1)

(3.16) ¢=pu’y’, p=>1, u=|ul+L(o),

(3.14)

(3.15)

where »=+-(%, ¢) is any function piecewise differentiable and vanish-
ing both on the boundary and in the exterior of R, except possibly
at t=0. Then, from (3.13)

o+ ¢.- A+¢B

= pu Tt u a7 p(p— w7 uL |y

—dwp(Hp— 1)U —a|u.| 205 ||

= CU- 2P0 r [ re | — b | U | pUTIY

—da- put YR,
The right hand side of the inequality above can be expressed in terms
of v 277% as follows;

— (), — g +4—1’;—a1~ R —dp(p—1)yv?

—4ay [V | 0] 0. | — 2T [, | 07— 2000 [ V.| — d PtV
Therefore the definition of a subsolution (2.1) implies that

(3.17) SS {wm,w%wvi }dxdt

Rpr
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gSSR {ZWWUZJF":Wl%!vIv,i+2bqﬁv{p,;
20 v+ Ty dndt.

For the second term of the right hand side of the inequality (3.17),
we have

(3.18) SSM«}»I«Jp,lv]v,idxdtg%ggw2vidxdt+ ;{“13 Sgwivzdxdt.

To estimate the third term of the same inequality (3.17), we assume
that #=3. By using Sobolev’s inequality (3.1) with =2 in Lemma
1, and the condition (2.3), we have

Sopbllpzv s dx= Sb (o) (Pr0) ¢ [rv. [ dx
= <Sop br-< dx>_1;—6 (LZSQ,, (wv)zdx)%(gm («1;»1))% dx ) =08

0

<({, 1wvulax)”

g/h'( ;'2 Sa,, «jpavzdxflg <Sk'l(wv)idx)%(SQszvidx)llz

—2+E (¢ 1 1—-¢ 2,2
<rnu ? {¥h"zg yidx + /,LS'I]I' vidx
2 0o Je 2

1—¢

+ -,ugqnivzdx + %ugmpﬁvidx} .

2

Here, 7, is a constant depending only on # and A. z is an arbitrary
constant, which should be decided such that

. 2—¢ %“‘&H :717—1
[ R 2pa ’

that is,

L=Te < p;:l >2IE,

where 7, is also a constant depending on #, 2 and ¢ alone. Then, we
establish

(3.19) SSR”Zva 0, ] dxdi< 1;; - SS vidxdt
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+r(52 )W, s vdzar

The case of #=1 or 2 is contained in that for =3 by ignoring two
or one variables. By the same arguments for the forth and the fifth
term of the right hand side of the inequality (3.17), we have

respectively
(3. 20) Sgthwm,wdxdtg 1’2;; SSRMmjfv’;dxdt

erp (2o, oo daat
(3.21) \{ pavivazar<? - 1 SSRszdxdt

Therefore by making use of estimates (3.18), (3.19), (3.20) and
(3.21), we establish from (3.17)

(3. 22) SS {wvz)ﬁpp—jwi }dxdt

Rpr

et e (2N, el vt et dat.

Now, we choose as ¢r in (3.22) or (3.16) a function yr(x, ) = ().
Ty, (|%), where

[ 1 ; — o' <i<0
«Ira(t)=’—fit,— ; —r<t<<—t’
' T4+
(0 ; i<—7 or 0<<t
[ 1 ; 0=<r<lo’
()= L=T . y<r<g
p—o
0 ; 0=7.
The inequality (3.22) implies that
(3.23) ({  ostanar< -pl—f@( p ){ 1,1 }SS vdxdt
) Reter =T p—1 t—7'  (0—0")%) - )

Since y» was not required to vanish on the upper boundary, we consider
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the rectangle domain
R:-‘r: {(x: t) ; (x; t) ERPT; ]xx]<p 221; R n;
—r<lft<l—g, —r<<—7<—0<<0}

and choose ¢ such that

2 ’ L S 2
Soplv dx e _zr}g)io Q,,,v dx.
Then, we have
(2. 24) max S zfdxgzg zﬁdxl
—7/<t<0JQp’ Qp’ t=—0c

<2 ax|i= “o=al(  (yro).dzar

gr-ﬁ“( >{T_T (p p)}ggvgdxdt.

[\
vl

Inequalities (3.23) and (3.24) are nothing but (3.5) for us to derive.
(2), (8). We can prove (2) and (3) of Lemma 3 by the same
arguments as that of (1) but for choosing as a test function of the

inequality (2.1)

¢:¢<x7 _t) :pﬁO‘, _t)pklll"(x: t>2! 0<p<1

and

¢:¢(x7 t) = _ﬁﬁp—l\l’(x, t>2) p<0

in the case of (2) and (3) respectively instead of the test function

(3.16) in (1).

The Proof of Theorem 2. (1) Setting v=u’"? p=p,>1, for a
subsolution # of the equation (1.1), we apply Lemma 3 (1) with res-

pect to Ry .10 CRypne. Hence we have

s sor (2 5 e
)
(3.25) < ) th'>HZ,hpz<v> W
kﬁ""(”)S”’”E(p—l){h W= k)}

(k’) (h) Hur1e(0),
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where r is a constant depending only on #, ¢, 2 and e. Applying
(3.25) to the formula (3.3) in Lemma 2, we obtain

(3. 26) H;:’p,::’pz (7)3) ng : I{tgp,mﬂ (7}) B’
where
4 28
3.2 1 =rpIrEE 2 ) { : : }
( 7 rn=rp’ (ﬁ—l h—7 + (k—k’)2+1

()
X (1+E2) h (k, k

and y is a constant depending only on #,a,1 and «. Now, we define

v
2

pVZPOBVy vv:n
k,,:k' 1+k’V hy:h' 1+h’V

1+ky’ 14hy
H,=H,1.:,)
for v=0,1,2,---. Then the inequality (3.26) implies a recursion
formula
(3.28) H,.<rwH3,
whence the constant 7., can be estimated in the form;
(3.29) o=y’

for some constant y depending on #,a,4,¢ k, k', h, ”’ and p, alone
from the expression (3.27) of the constant y,. Iteration of the recur-
sion (3.28) and (3.29) gives

Hug,rﬁ B+ y=2)++++8271 [T tg”gje" H %”
which implies that

1 I
( !R,‘Ip’hlpzi SSRk’p,h’ﬂu‘b B dxdt) 0B

() G (M, e axa)

Rewriting the inequality above by making use of the definition (3.9),

we have
(3- 30) M< 1-'708”, Rk'ﬁ.h'pz> g?‘a—y' TpalM(po; Rkp.l:iﬂ)'

When we let v tend to +oo in (3.30) and use the properties of the
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norm M {p,D) in the definition (3.9), we establish the inequality
(3.10) which is our result of Theorem 2, (1).

We shall be allowed not to prove Theorem 2, (2) and (3) since
we can derive the results (3.11) and (3.12) from the inequalities
(3.6) and (3.7) in Lemma 3 respectively by the arguments parallel
to that of (1). (See [5], [14], [15]).

§4. Estimates of solutions (II)
We denote by R, gm0 @ parallel rectangle subdomain
{(x) t) ; ‘x,} <kp7 Z:]-, Y n; _’h202<t<h102}

in the domain R. Furthermore we define a parallel rectangle subdo-
main U and its subdomain U* and U~ in the domain R, e as
follows;
U={(x,8); |x;] <o, i=1, -, n, —hp?<<t<h’}
Ut={(x,1t); | x| <Fo,i=1, -, n, 0<<t<<hio®}
U ={(x1; x| <koi=1, -, n —hp*<t<<0}
where 0<<k'<<k, O0<<l;<<h, 0<<hy<<h,.
For a real number s, the following function @(s) will be used in
deriving the last estimate in Lemma 4.
(Ve ; ¢=0
4.1) m(a)=I 0 e=0
Lemma 4. If u=u(x,t) is a positive supersolution of the equa-
tion (1.1) in Ry .m0 then

1

<4. 2) WSSZ’EU*-J,EU_Q{v(x’)—’[)(y’)}dx’dylgr

for v=—log {#u+L(p)} and U*, U cUCR,, ¢ysupe where x'=(x,1),
dx'=dxdt ahd r is a positive constant depending on #, @, A, ¢, k', k&, I
and /; alone.

Theorem 3. If u=u(x, t) is a supersolution of the equation
(1-1) which is positive in R, im0, then

4.3) M(a,C)H)Z<yM(—a, CY)
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for subdomains C~ and C* of R, uiuie such that

C={(x,t); |x:| <Ko i=1, -, n hp*<t<<Ip'}

C—: {(x’ t) ; lxi] <k’p, i:]" .'.’ n’ —h;pz<t<—képz'}
where 0<<hy<<hi<<hi,, 0<h;<<h;<<h, 0<<k'<<k and y and « are positive
constants depending on %, a, A, ¢, k', k, hi, i, hs, b, and k., alone.

To prove Lemma 4 we need the following lemma;

Lemma 5. Let p(x)=0 be continuous of compact support of
breadth B and such that the domains p(x)==const. are convex. Then
for any function f(x) for which f and f. are square integrable with
respect to p(x)dx one has

(4.4 (tre0—mpmar=es oo

where

(5 e MaxpG) [ gy e |/ p(x) da |
2\ p(0) dx 7 (5 ax

The proof of Lemma 5 can be seen in [5].

The Proof of Lemma 4. It suffices to give the proof for #=6>0
and prove the inequality (4.2) with y independent of 8. For a super-
solution #, we set

v=—log#u, = |u|+L(p)
and choose as a test function ¢ in the inequality (2.1) the following
one

p=o(x, 1) =u(x, )7 (x)*

where «»(x) is a function of compact support in x. Then using (3. 13)
which was derived from the assumption (1.2), we have

(4.6 ¢+ .- A+¢B
<P — @R WP+ AT
+ 200 | | T | + 200 | | T
SN A A T
= — YV, — @YU+ 2avr || | .| + 0y | 0]
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+ 204 | .| 2d0°

Since the given # is a supersolution of the equation (1.1), we obtain
from (4.6)

4.7 S vvdx| +a—lgg vidxdi
Qkp Qrp X (21,

I 22 t2)

gg (20 || | 0.] -+ B 0.] + 20w | | + 28} dxdt

Qkpx (11, t2)

by integrating over @, X (¢, £) in (2.1). Now we shall estimate
each term of the right hand side of the inequality (4.7) by the same
arguments as that of the proof of Lemma 3 using Schwarz’s or Hélder’s
inequality and Sobolev’s inequality in Lemma 1.

For the first term of the right hand side of (4.7), we have

(4.8) (2aw .l 10,1 dzar
1 2,,2 2
gmggw v,a’xa.’z,‘+4a*’gSm,lnx dxdt.
For the second term, we have from the assumption (2.3)
[, 2utlvalan =(puveiyo.lax
o 1-& 1 . &2 2 (n=2)(1-8)
(o) (e o) (as)
1/2
X (S«;ﬁvidx)
.12 1 2 >6/2< 2 )i( 2,y2 >1I2
=iy < 7o Sw dx S"!"x dx) 2 ugmlr vidx

—~1/2 € | 1 2 -1/2 , 1—¢ 2 1/2 _L 2,2 }
g/l{,u 2 TR Sm,!r dx—+u 5 Smlrxdx-i—,u > S'\b vidxt.

Then, choosing a constant x such as

A 1 ; :< 1 )2
o ia’ that is, u 54l

we obtain

(4.9) SSW} .| dxdtgél—lagngvfdxdt

+ rg (k2072 + 2} dxdt.
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In the same way we obtain estimates for the third and the forth term

respectively as follows;

(4.10) SSZ?«M%I dxdt gTSS (k2o ) ddt
(4.11) Sgd:w dxdt <y XS (k20 + ) ddt.
Therefore

(4.12) ngpmpzvdx :Jrggowoh tz)m[ﬁvidxdt

S_TSS {2072+ 2t d xdt

is derived by applying the estimates (4.8), (4.9), (4.10) and (4.11)
to the right hand side of the inequality (4.7).
We shall take for

(0 =Ty (| 5,D),

where
( 1 ; 0<r<Fk'p
) ke—r
‘1":‘(7)*\ (k—k')p s kpgi’gkp
0 H v _Z_kp
and denote

V() = S% v(x, v dx / SQ” widx.

Then, we have

@13\ yrdx =) - viedy-1qu,
for the first term of the left hand side of (4.12), and
(4.14) qu( | vidudt
2 (K \ 1 .
=i () i N, 0D - VO

by applying Lemma 5 to the second term of the left hand side of
(4.12), and furthermore we have
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(4.15) Sg ey dedt
Qrpx(ty, 2

1 EN" 1
SG—Ry <"15"’> o 1@l (fa— 1),

Since the right hand sides of both (4.13) and (4.14) remain un-

changed if v is replaced by v-+const, we normalize v in U by taking
V(0)=0. Now we replace v and V by

w(x, t)=v{x,t)—7i

.16 W) = Vo) 7,
where

R .<_k_>"._1_
TR \E ) e

then we obtain at last
@1 (W) - W Q|+ W, )
o0 Q1 px(t1, t2)
— W) dxdt <0
from (4.12), (4.13), (4.14), (4.15) and the definition (4.16), where
_ 2. ( R )
e R
Let @,(#) be the set
{xEQy,; w(x, t)>s} CQu,
for 0<<t<<hp®. Note that
w(x, 1) — W) >s— W({t)=s>0

’

for any s>0 and x=@Q,(¢!) and W(¢) is monotone decreasing with
W({0)=0. Then from (4.17) we have
| 10 1dt<re | Qul ts— Wy
X [{s—=W(t)} —{s—W({E}]
for some #,<<t<f, by the mean value theorem. Therefore we find
Iy p2 hytp2
@18 (Tewia<ire 1 - wwyds-wa

g?"l—lpz{ Qk'D| s
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and when we denote the measure of a set by m{--+--- } and
m(s)=m{(x,t)cU"; w(x, £)>s},

we obtain from (4.18)
m($) <" Qo] 57

From this estimate we can derive
(4.19) SS Vv dzdi<y U*|,
U-;0>0

where r is a comstant derending on #, @, A, k, k', h and h; alone. Re-

placing ¢ by —¢ and s by —h,;, we obtain from (4.19)
(4. 20) SS v/ —vdxdi=<r|U"|
300

remembering the normalization V(0)=0. We have the result (4.2)
from (4.19) and (4.20).
The Proof of Theorem 3. We set
v=—logu, u=|ul+L{p)
for a supersolution # and denote the measure;

(4.21) p()=M(U*, U

_ m{x'eU, yelU,vx)—v(y)>s}
AR

for any s>0 and U", U"CUCR,, = defined at the beginning of

this section. For a ¢>0,

w00 <\ u(9)do) < uis)do(s)

)
0

<\Cowa—u)=r

with respect to the function 0(s) defined in (4.1) and the measure
u(s) defined in (4.21). The last inequality is true from (4.2) in
Lemma 4. Then, we have

(4.22) () =ro(s)™

for any s>0.

Now we shall define a family of rectangle subdomains;

Co={(x,1); [x:| <K'N~p, — N> <t<< N}
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Cr={(x8); |x:|<<K'Np, by N">p*<<t<"hy N~}

Cr={(x,0); | x| <<k'N~p, —hs N2p*<t<—hy N*p%}
Co={(x,0; [ x| <E'Np, —h N>ty N~*p

(4.23)

for »=0,1, 2, ---, where N is an integer more than 2. From (4.22)
we have

(4.24) M, CH+M(CLCH=r 0(s)

for any subdomain in the family (4.23), where 7 is a constant depend-
ing on n,a, 2, k, k', hy, h, and h; alone but inderendent of », p and N.
The inequality (4.24) holds also for any rectangle subdomain trans-
formed in parallel arbitrarily from that in the family (4.23), since
the class of equation (1.1) is invariant under the parallel transforma-
tions of coordinates. While since the left hand side of the inequality
(4.24) is the average of

mix' eCr;v(x) —v(2)>sp | m{yeCr; v(@)—v(y)>s}
|C*] [C]
over z'C), there exists a constant @, for which

mi{x'eC;;v(x") —a,>s) mi{y'eC;; a,—v(y)>s}
1C] 1C|

Note that for any ¢>0, there exists an $,>>0 such that 7-@(s,)™"
<0. Then if we set

f(x)=si'v(x"), ¢=5si"a,

_|_

<<y0(s)™*

we have

4.25) mFECH é‘ ET’>—¢V>1} n m{y'ec;l; Cqsy_chy'>>1} —s
Gy 5

for v=0,1,2, ---.

Now we define

5,(s) = m{x’ecil;cf_flx’%mw} n m{y’eC;igy_Tf(y’bs}

with respect to domains of (4.23) and

(4.26) q(s) =" EDE {5 §f'>—¢o>s} N m{y’eDai go_—}f (y)=s}

with respect to other subdomains;
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(4.27) D ={(x,t); | x:| <Ko, hip* <<t<< o’}
' Dy ={(x,1); | x| <Ko, —hyp® <t<< —hip*}
for 0 << hs << by << My, hy. We can derive the following lemma;

Lemma 6. Suppose that

(4. 28) p.(1)<<g, v=0,1,2, -
for some constant §>0 sufficiently small. Then we obtain
(4.29) q(s)<a-exp(—bs)

for any s=1, where @ and b are constants depending on #, § and 7
through /% alone.

The proof of Lemma 6 can be seen in Appendix (see [6]). We
shall continue our proof of Theorem 3. Since the assumption (4.28)
is equal to (4.25), we can use the result (4.29) of Lemma 6. Tal:-
ing for a=0b/2s, we have

1 1Y— 1 b 9 rNy—. /7
4. 30 -——S PGS ao)dx’:__g PLEIYCORLY 7
(4.30) [ D] Joo | Di| Joo

“\ Cerac-q -\ “erae
<r+| aevaen<r,

where ¢*(s) in (4.30) denotes the first term of (4.26). In the same

way we obtain

(4. 31) l_l_;ls___.g _ ea(a°~"(’/))dy'§r.

[ s

The inequalities (4.30) and (4.31) imply (4.3) of Theorem 3 since
we can replace a parameter %: to %; and we have

Sg e dxdt SS _wedxdt<r|C:||Cs|

co Cco

by remembering the definition v= —log %.

§5. The proof of Theorem 1

We are now in a position to prove our main theorem (Theorem 1).
For three subdomains (2.2) of R we introduce new subdomains;

Cr=A{(x,0); [ x| <Ko, i=1, -, m, h* <t ho"}
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C={(x,0); x| <Ko, i=1,-,m, 0<t<hy’}
R¥*={(x,t); | x| <k¥o,i=1, -, m, 0<t<<h;o’}
for 0 <<k, <<k*<<k'<<k and O<<hi <<hy <<h,<<h,<<h*<<h. Assume that

a given solution #=6>0. Applying Theorem 3 to it with respect to
C* and C-, we have from (4.3)

(5.1) M(a,CH)X M(—a, CY)

for some o>0. Taking for 6=« in Theorem 2, (3) with R*cC~, we
have

(5' 2) M(‘““, C+> §7M<_‘001R+>7
and also for 6=« in Theorem 2, (2) with R*cC-,
(5.3) M(py, R*)<yM(a,C~)

where p, is a constant more than 1 defined in Theorem 2, (2). Fur-
thermore from Theorem 2, (1) with R~ CR* we obtain

(5.4) M (oo, RT)=yM(po, R*).

Then using the four inequalities (5.1), (5.2), (5.3) and (5.4), we
establish

M(eo, RT)<yM(—o°, R"),
where y is a constant which depends on #, a, 2, ki, &', ki and h; alone.

This inequality is independent of 6—0. This proves Theorem 1.

Appendix

We shall prove Lemma 6 in §4, which was extended from F. John
and L. Nirenberg’s Lemma [12] by J. Moser [5] [6]. Our proof is
also essentially the same as his [6]. Remark that some constant 6>0
is sufficiently small so as to satisiy three irequalities (A.3), (A.6)
and (A.16) in the following paragraphs of our proof.

The Proof of Lemma 6. At first we shall subdivide Di of
(4.27) into N"** congruent rectangle domains by subdividing the f
side into N? and the remaining sides into NN equal parts and denote
them by {D;}. In the »-th step, we obtain N**™® congruent subrec-
tangle domains denoted by {D;}. Correspording to the domain DZ
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in (4.27), there exist three rectangle domains C,, C; and Cy in (4. 23)
and a constant ¢, in (4.25). Similarly we associate three rectangle
subdomains C,,C;} and C; in (4.23) and a constant ¢, in (4.25)
with each subdivided domains D; for v=1,2,3, ---.

Proposition 1. (1) If an integer N in (4.23) satisfies the ine-
quality

b+ I }
%7 4' ’
h4_— 3
then Djc Dy, implies C;cC}..

(2) If DycD}, then ¢,—¢, 1 <2.

(A.1D) N*= max{

The Proof of Proposition 1. (1) In order to obtain the result,
it is sufficient that an inegquality

(A.2) Sl <hi,

should be satisfied in comparing the height of the f sides of rectangles
C,; and C;.,. This inequality (A.2) follows from the assumption
(A.1).
(2) If ¢,—¢,—>2, we would have
¢,,—f(x'} >1 or f(x’> — ey >1
for all ¥’ €C,; cC,;.,. Therefore we have from the assumption (4.28)
of Lemma 6,
ICr 1 Smi{x'eCr; ¢—f(x)>1}

Tm{x' €Cra; f(X) —¢->1}

<3|Cr | +8]Cr|

=81+ N"*(ly—hy) /(hy—h)] 1 C5 |,
which is contradictory if the small constant 6>>0 satisfy
(A.3) O{1+N"*(—hs)/ (ho—hz)}

Let s,=2. We select from {D;j} domains for which ¢;— ¢,>>S, and
denote them by {Df'}. The remaining rectangles are subdivided again.
Similarly at the »-th step we select the rectangles {D,ﬁ'} for which
¢v_¢o > So.
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We denote by C,,‘“ , C,,', C, and g.b,, the rectangle domains and the

constant which correspond to a selected domain D,:‘ . Let D=UC,,*.

Proposition 2. (1) so<¢;—¢o§so+2.

(2) For x’Dy—D, we have Fx") —¢<s,+1.

The Proof of Proposition 2. (1) The left inequality in (1) is
clear. The right one is derived from

‘I;’v — 12 and ¢y, — ¢Sy

since the first ineguality follows from Proposition 1 (2) and the second
one from the fact that D;‘ has a rectangle D} ,D D;' which was not
selected.

(2) For x'&Dy — D there exists a sequence of rectangles {D;}

which were not selected and contain the point %', that is,

(A.4) €Dy CCy, ¢y do=S,.
While there exists a point %,=C;} for every D; such that
(A.5) flx) —¢,.<1

since from the assumption (4.28) of Lemma 6,
mix'eC;; f(x) —¢,=1}<5|C;}|<<|C;|

if the small constant 6>0 satisfies an inequality
(A.6) o<1.
Therefore from (A.4) and (A.5), we have

F&) —g<If (2D —f(x) ] +1+5
which implies the result of Proposition 2 (2) since f(x') is a conti-
nuous function in R.

Proposition 3. Denote the set

{x'eDyg; f(x') —¢>s,—1}

by S. Then we have

(A.7) |D|<r:(1—28)"{|S| +7.N-S| D¢ |},
where
(A.8) ECT R el T

" h—hy “hi—hi N
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The Proof of Proposition 3. From the assumption (4.28) of

Lemma 6, we have

(A.9) IC; Igl 55 mix' eC;f(x) —p>s—1}

since ¢,—f(x2")<1 implies that
F(x2) —go=F(x") — ¢+ — 5> —1+S0.

Now, since the domains of {C; } are not always disjoint, we must

select out of {C,,"} a subset of rectangle domains {C 5} such that

*
J {Cy} are not overlapping with one another
and each rectangle of {(j ,} always overlaps
*
J with some rectangle of {C;} (<y).
The rectangles D;‘ can be grouped into those for which the corres-
. * .
ponding C,; overlap with C; (1<y). These domains Dj are contained

in a rectangle which lies above é{ and has a height less than

h}""‘hz

(Ehy Sy S

times the height of Cy. Noting that both {D;} and {C;} are non.
overlapping and making use of (A.9) we have
(A.10)  |DI=31D;1<nsICr]

<r(1—20)"2m {x’e(i’ s (1) —po>s—1}

<n(-207{IS]+1(Ci —DHNUCHI.
While if we take an integer v, such that

20 =5e<2(1y+1)
for the fixed s,=2, we have begun to seiect the rectangles of {D: }in
fact from the y,-th step of the decomposition since

$o= (§y—y-1) + 2+ + (1~ o) <2

from the result of Proposition 1, (2). Therefore the domain (Ci — Dy)
ﬂ(UCA) is contained in the union of N*" congruent rectangles C;

which lie on the lowest position in {C)} and hence
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*
(A.11) | (Cs—DHU(NCH [N |C]
Nvo . 1 h,—h +
gw|co IgNSO—Z '71_—]21—' IDO !

From (A.10) and (A.11) we obtain the inequality (A.7) of Proposi-
tion 3.

Using the propositions above, we shall derive an estimate (4.28)
of Lemma 6. Let s,=s-+1 for a s=1. Note that f(&') —¢<s+2

for ¥’ €D¢—D from Propoistion 2 (2) and f(x') —g¢.>s+4 implies
(&) —b,=F (&) —po+do— g >s+4d—s—3=1
for ¥’ €D= UD,,* . Then we obtain
mi{x'eDy; f(x) —¢o>s+4}

—mi{x'eD; f(x") —g>s+4}

<sm{x'€Dy;; f(x)—¢>1}
and furthermore from the assumption (4.28) of Lemma 6 and the
inequality (A.7) of Proposition 3 with s,=s+1, we have

<35|Cy | = [(H—hy)/(hi— )18 D]

h—h B { LT +}
g l’l{—h; Tl 1—23 !S] ' NleO] .

Then we obtain
(A.12) g s+ =<7:8(1—20)"{q"(s) +2r. N},

where we denote

g (s)= mi{x'€Dy; f(x") —¢>s}
| D5 |

and

Ts=—
TR —H,

with 7; and 7, in (A.8).

Making use of the notation q(s) in (4. 26), we can derive a recur-

sion

(A.14) q(s+4)<r:0(1—-28)"{q(s) + 2N~}
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from (A.12) and by the same arguments for the the rectangle Dg.
Iteration of the recursion will yield the estimate (4.29) of Lemma 6.
For 1<{s<{4, we have

q(s)=<2=2¢%e™,
where b>>0 is arbitrary. For s>4, setting s=4s+s, (¢; integer, 1<(s,
<4) and using (A.14), we have
(A.15) q(s)=q(4e+s,)
g')’sﬁ(l - 26>—1 {q (4((7_ 1) "" 30> + 2T2N—4(°~1) - So}

&0\ 2r2[ (Nws )*1 (N*rsa )"ﬂﬂ]}
-g-(l—za){q“"”zvso iie ) T '

Now we take for the small constant 6>>0 such that

730

1-25 =L
that is,

1 —hy [ -+ mn
A.16 a<——={2 ; 3[ 1+ 11}
( ) 2"‘?’3 - hl—]h h2~h3 * J

from (A.13). For the fixed 0>0 we enlarge r; in the equality (A.15)
such that

1 7l
N 1-25
': if necessary. Then we obtain from (A.15),
(A.17) g()=[r0(1—28)7"1"r,

where y is a comstant depending on & and /;~%; alone. (A.17) im-
plies

q(s)<ae“"=a-exp(—bs),
where we set

a=max{r, 1}e*

b= —4""log [r:6(1—20)7"].
This proves Lemma 6.
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