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On the of the
many-particle Schrodinger operator

with combined Zeeman
and Stark effect

By

Masaharu ARAI*

1. Introduction

Let us consider a system consisting of N0 infinitely heavy nuclei

and N electrons which is exposed to an external electromagnetic field,

and thus whose Schrodinger operator H is given by

(1.1)

I r J — rk I

where r3= (^3j-_2, ^s/-i, XM} and a{= («3,--2, ^.--i, ^-) are the position vec-
tors of the j-th electron and of the i-ih nucleus, respectively, and A{ and

B are positive constants, 6V(#) are real functions of class C1.
^ is formally selfadjoint, and moreover, it determines a unique

self ad joint operator in Hilbert space § = Z,2(Jt3AD; see [3].
N/

Zislin [9], Jorgens [4] and others have investigated the spectrum

of H when the external electric field (the last term in (1. 1)) does

not exist. But as for the spectrum of H with the external electric

field, no complete study seems to have been made yet except a work

of Titchmarsh [8] (p. 134). He considered a special case of (1.1)

with N0 = N=I, and &,(*)=0, that is,
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(1. 2) Hu(_x} = —Au(x^) j—j—w(#) —B

where x=(^x^_, xz, x^)^Rz, and A and 5 are positive constants. He
showed that the spectrum of H defined by (1.2) is continuous on the
entire real axis.

In this paper we shall study the spectrum of H, (1.1), with ar-
bitrary NO and N, and show that the essential spectrum of H is the
entire real axis. It is still unknown whether H has a point spectrum
or not.

2. Statement of the result

Let us consider the operator of the form

(2. 1) T«(*) = 3S_1(i-£— + bJ (*))*«(*) +?(*)«(*),

in the whole space Rm(m^3'). Denote by T the most general opera-
tor that is significant whenever the right-hand side of (2.1) is defined
in the distribution sense.

Before writing down our assumptions on T, we shall give some
definitions.

Definition 1. For a fixed constant «>0, let us denote by Qa,/off

the set of all functions />(#) for each of which

I £001' *„

is locally bounded. Let us denote by Qa the set of all p^Qa,ioc such
that Mp^x) is uniformly bounded over Rm.

Definition 2. Let <*,-, ft 0" = 1, 2, ••• , m) be constants such that
0<a/<]9/, and 7- is a positive constant. Let

(2.2) D= {x= (xl9 x2, — , X™); aj^x^pji, j=l,2,—9m, t^r}-

Let us call a domain Z) of this type a "cone".

We assume:

(A) &/(#) are real valued functions of class C1.
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(B) 4(*)-£cl)(:r)+gc%r), where q^^Qa,loc and #C2)eQa such that

there exists a positive non-decreasing function #*(>) of r^O such that

<?(1)(*)^-#*( #1) and fV(rr1/2<fr=+oo.

(C) There exist a "cone" D with <#/, ft- and r as in Definition 2, and

a constant e, 0<Ce<I2, and non-empty subset / of the indices {1, 2 , • • • , m},

such that the following conditions are fulfilled:

(d) In D, gcl)(#) is reduced to the sum of one-dimensional func-

tions #/(#/), .7 = 1,2, "-,m, of class C2 defined on #/2^/r> that is,

(2.3) «

such that each #/(#/) with J^/ is non-increasing tending to — oo as

#,.-> + oo, and satisfies

(2. 4) Const, ^qj (#/) ̂  - Const. x^£ °

and

and such that each qj(x/) with y$/, if it exists, converges to a finite

value /J.J as #/ tends to 4-°^;

(C2) In A #(2)(#) is continuous and converges to zero as 1 x \ -> + °o ;

(C3) In D, there exist constants b] such that

(2.6) *,00-*J = 0(|*|-14*/2) as |^[-> + ^,

and furthermore

(2. 7) S;., -* 0 as | x | - + oo.

The list of our assumptions is over.

Let A be an arbitrary differential operator interpreted in the distri-

bution sense. L^c AQ be the restriction of A with domain CS°(^WZ)

(the set of all functions of class C°° on Rm with compact support).

1) Here and henceforth Const, signifies any positive constant, not necessarily the
same.

2) The similar condition to (2.5) is imposed by N. Dunford and J. T. Schwartz to
study the essential spectrum of Strum-Liouville problem;see [1] chap. XIII §j6.22.
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As is well known, if A0 is essentially selfadjoint, its unique selfadjoint

extension, its closure and its adjoint ^4* coincide with each other.

Henceforth we shall use A* to denote any of them.

Let only (A) and (B) be satisfied. By (B), q^L2iloc, and thus

TO is a symmetric operator in !Q = L2(R
m^). Here we recall a theorem

of Ikebe and Kato [3].

Theorem 1. (Ikebe-Kato)3) Let CA) and (5) be satisfied.
Then TQ is essentially selfadjoint, and its unique selfadjoint exten-
sion T* is the restriction of T with domain

Our aim is to show

Theorem 2. Under the assumptions 04), (5) and (C), the
essential spectrum of T0* is the entire real axis.

Let us return to the operator H defined in (1.1). We can apply

Theorem 2 to this operator, and have the following result.

Theorem 3. // £„(#) are real valued functions of class C1 and
there exist real constants bl such that

and

s;_ a^00_-*o as | ̂  + 0^ for any j9
uX^j^v

then the essential spectrum of Hf is the entire real axis.

Proof. Put

- - i - i - - r " ^ \ r! rj — &i\ I 's —

and let us show that conditions (A), (B) and (C) are satisfied. (A)

3) See [3], Theorem 3 and Lemma 4.
4) H2,ioc is the set of all locally ^-functions, where H2 is the completion of

with the second-order Dirichlet norm

Ji2 11/2

bcB111)
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is assumed here. ga)(^)eQai/0f with q*(r)=N-B-r which satisfies

#(1)(#)2> — #*(|#!) and \ q*(ryil2dr= +00. As to the interaction po-

tential ^(2)(^), Stummel [7] (p. 163) has shown that #C2)(*)eQa. Thus
(B) is satisfied, and by Theorem 1 HG has a unique selfadjoint exten-
sion H*.

Put /={3/; .7 = 1,2, ••- ,#}, and e = l. Then for any choice of a
"cone" D, (d) and (C3) can be seen to be satisfied. It is easy to see
that there exists a "cone" D satisfying (C2). Thus (C) is satisfied,
and Theorem 2 yields the result.

Remark. Let (A) and (B) are satisfied. Since assumption (C)
depends upon the choice of the Cartesian coordinate axes, but (A) and
(B) do not, we note that under the change of Cartesian coordinate
axes, T remains of type (2.1), and thus if (C) is satisfied under a
suitable choice of the Cartesian coordinate axes, then the conclusion
of Theorem 2 is true.

3. One dimensional problem

Let A be a selfadjoint operator acting in an abstract Hilbert space
with the norm |[ Ij. We introduce 0(A) to denote the spectrum of A,
and <r.G4), its essential spectrum.

The next lemma will be of frequent use.

Lemma 1»5) A^0e(A) if and only if there exists a sequence

{«»}r.o in 3)(A) sucn that

(a) |[fU = l,
(b) {un} has no strongly convergent subsequence,
(c) AUn — AUt-^Q strongly as ^-> + oo.
Let us call this sequence {un} a singular sequence of A corres-

ponding to L
If #°°00=0, bj(x)=Q and the decomposition (2.3) is true in the

whole space Rm, then our operator becomes

5) See [1]. XIII, §7.12.
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and this operator is separable. Therefore in this section we shall in-

vestigate ordinary differential operators.
Let

in a<^t<^ + oo, where — oo<£< + oo and q(f) is a real valued conti-

nuous function. Let La be the restriction of L with domain Cl(a, +
oo ) (the set of all functions of class C2 on (0, +CX0 with compact sup-

port). Since La is a real symmetric operator mtQ = L2[a, +°°), it has

selfadjoint extensions. Let us denote one of them by La.

In the remainder of this section let fQ = L2[a, +00) and denote by

( , ) and |[ (I the ordinary inner product and norm in §.
The following lemmata are known.

Lemma 20
6) All the selfadjoint extensions of La have the same

essential spectrum.

Lemma 3.7) 0e(X*) does not depend upon the choice of a, as
far as q<=:C[a, -f-oo).

By the last two lemmata, we can write 6e(U) instead of 6e(L^).

The last lemma shows that when the essential spectrum of La is con-
cerned, the left end point a of the interval on which the operator is
considered can be chosen as large as necessary. Henceforth, a is taken

as large as necessary without notice.

Lemma 4.8) Let Kn=[na,n&], K'n=[na, np], for Q<a<a<
£f</3. If the equation L f=Xf in t^a has a non-trivial solution of

class C2 satisfying that

6) See [6] Kap. V §19 Satz 2 (s. 203).
7) See Ibid. §19 Bemerkung 2 (s. 200), or see [5] Theorem 22.
8) This lemma is a modification of the following theorem proved by Hartman and

Wintner [2]. But our proof is different from theirs, for we want to gain a sin-
gular sequence with the properties (3.1) and (3.2).
Theorem: If the equation Lf—\f has a solution /(O^O, satisfying

then either /(£) is of class L2 or A. is in the essential spectrum of L.
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(F.I) /(O is bounded i.e. \f(t*)\<M,

(F.2) Mi(n) = , |/(OI2<ft-* + °° as »

(F.3)

then there exists a singular sequence {uH(t}} corresponding to &>
whose terms are as smooth as f, and have the following properties:

(3. 1) The supports of u»(f) are contained in Kn for large n,

(3.2)

In particular

Proof . Let p(f) and p»(f) be C^ functions with the following
properties: 0^(0^1, p(t)=Q if t<*a or t^p, p(0=l if <*<J;<itf:
Pn(f)=p(f/n). Let n be as large as nou^a. Put fn(f) =f(f)pH(f), then

(3.3) 11/Ji2 — \ \f\2pl dt^\ \ f \ ' 2 d t = M-i(}^)-^ + o^.
J jK'n

We put w,(0=/«(0/II/».!I> which evidently satisfies conditions (a), (b)
of Lemma 1, and (3.1). Let us show that (ua(f)} satisfies (c) of
Lemma 1.

O -ft ' -f ' '
= —2f 'Pn—f'P» .

Since

1 P*(f) I ̂  Const, w"1, I ̂ ' | ̂  Const. »"2,

it follows from (F. 3) and (3. 3) that

\\fr-pn\\
2 Const.-

and from (F.I), (F.2) and (3.3) that

|[/.P;/|!
2 Const, l f m .

*J '

Const.
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as n-> + °°a Thus we have

f f f "
' Pn _ J " Pn r\ „ ,+

and hence AGa,(L).

Now we shall show property (3. 2) .

«:co = wco/co
(3.4)

l«iCO

and thus

Const. (/3 — a~)n
tf li/J2

r + \\J *dt

Const. \ ^—t. (l + Af2(»))-Af1(»)-1 q.e.d.t. p'
JA'«

ll/.ll8

Lemma 5. Lrf #(0 te continuous and tend to a finite value p.

as £-^ + °o, and let Kn=[na,n$] for constants ex. and /3, (Xa<il3.
Then <r.(L)= LU, + °O), and for any ;ke^(L) ^fer^ exists a singular

sequence (uH(f)} of class C~ with properties (3.1) and

(3.5)

Proof- For any c<yj, there exists a, such that for all f^a,

q(f)^c. As the spectrum of an operator is contained in the closure

of its numerical range,

closure of {X=

Since

\\2 = c for

we have e;e(L) c [c, + oo) for any £<C/j, which implies

Next let us show the reverse inclusion. We put

Then L = L'-^q(t\ where 5(0— ?(0~" /* tends to zero as f tends to
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infinity. Let K'n= [««', npr] with 0<«<^<^</3. For any ^v,

the equation L'f=Xf has a solution /(£) =sin(-/^ — /*0> which satisfies

the conditions of Lemma 4. Hence ^e<re(£')«
Let /„(£) and M a(f) be functions constructed in the same way as

in the proof of Lemma 4 with the solution /(0=sin(y /A—/iO of

Lrf=Xf. Then {&„(£)} has properties (a), (b) of Lemma 1, and
(3.1). By (3.1),

qun->0 strongly in L2,

and thus

Lun — Aun = L'tin — tot,n + qun->0 strongly in L2.

This shows that A, and {un} are also a point of the essential spectrum
and a singular sequence of L, respectively. Thus 0e(L*)= [/j,-f oo).

Since

it follows from (3. 4) that

!^(OI2^(Const./^+i/'(0!)VII/«!!2^ Const. n\

Integrating both side over Kn, we have (3.5). q. e. d.

Lemma 6. Let q(f) be of class C2 and be non-increasing tending
to — oo, and statisfy

(3.6) Const.^(0>-Const. f~£ (0<e<2)

and

K»=[na,n@] with

any real & there exists a singular sequence of class Cl with

properties:

(3.1) The supports of un(f) are contained in Kn for large n, and

(3.8) \\u'nf=O(n2^ as n

Proof o For any real A, P(f)=A — q(f) is a positive function for



280 Masaharu Aral

sufficiently large ty say f^a. And (4. 7) is also true for #(£) replaced

by P(t}* Lf=Af becomes

(3.9) /"(0+KO/(0^o.

It is known9) that if p(f) is positive and satisfies (3. 7), for q(f) replaced

by p(f) then the above equation (3.9) has a solution / (f) such that

Let #i=s[wa', «/3'] with 0<*<a:'</3'</3.

Let us show that this solution /(O satisfies assumptions (F.I),

(F. 2) and (F. 3) of Lemma 4. If this is shown, we can see by the

arbitrariness of /*, that <r.(L) = ( — 00, + 00), and that there exists a

singular sequence with property (3. 1). Let n be as large as nou^a. As

p(f) is non-decreasing (F.I) is obviously satisfied. As

(3.11) M2(»)

and thus (F. 3) holds.

In order to show (F. 2), it is sufficient to show the inequality

(3.12) M^n)^[\f\2dt^Const. n8'2 for large n.
JK'n

put

5(0 dt,

and

9) Cf. [1], XIII, §§6.18-6.20, where only the first line of (3.10) is given. The second
one can be seen by calculating the behavior of the derivative in each step of
the proof loc. cit.



Essential spectrum of the many -particle Schrodinger operator 281

Using the triangle inequality in L2(K'n*),

(3. 13) Mi(n?*= /(0 1 W}1/2

f P ) 1/2 1
-o(l)j\ KO~1/2sin2s(iO<^[ ^-^-/ii'3, for large n.

Krn

Changing the variable,

where the function #(5) is defined by t(s(f)^ = t, and «„ and ft, are

defined by

Since

as

•we can assume that /3« — fK^n/2. Since ^(0 and ^(5) are non-de-

creasing,

Considering the fact that

r»CCn + 7T/2

\
•Joe,,

we have

(3. 14) /.
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On the other hand

(3. 15) /.=
Kn

= Const. n£l2.

By (3. 14) and (3.15) we have

L^Un- Const.) /2^Const. n£I\

for large n. By this and (3. 13) we have

and thus (3. 12) holds.

Let /„(£) and &„(£) be functions constructed in the same way as

in the proof of Lemma 4 with the above solution f(f) and given KH

and Kr
n.

Then from (3.2), (3.11) and (3.12)

H«:il2= {i+o(»M/2)} •o(»-£/8)=o(»M).
Thus (3.8) holds and {«»(£)} is a desired sequence,, q. e. d»

It should be noted that in Lemmata 5 and 6 the choice of a. and /3

which define the family of intervals KH are arbitrary, if only

4. Proof of Theorem 2

Let
(4.

where OL} and ft- are the numbers which define the "cone" D in assump-

tion (C). We give the proof in several steps.

1st step. Suppose £/(#)= 0 and #(2)(#)=0. Then our operator

becomes

(4. 2) Su=-Au(x) +#C1)(#M*).

In this step we shall show that <r«(S*) = (— oo,-j-oo) and for any I
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there exists a singular sequence {&„(#)} with the properties:
(4.3) The supports of UA(X} are contained in KH.

(4.4) \ lg rad wB \2dx = O(?z2~£), as

where e is the constant in condition (C).
For any real A, let us choose Aj} j=l,2,...,m, such that

if y^7 and such that the equation /* = S7=i^ is satisfied.
If j$/, then by Lemma 5, and if j^J, then by Lemma 6, Xj is

a point of the essential spectrum of the operator

(4. 5)
dt2

Let us denote by {uij\t}} the singular sequence of L} corresponding
to AJ, CDnstructed in the same way as in the proof of Lemma 5 or 6,
where K^ can be taken as in (4. 1) by what was noted at the end
•of the previous section. Put

Then &„(#) nas property (4.3). Since
and so by virtue of Theorem 1

Let us show that {un(x^)} is a singular sequence corresponding
to X of the operator S0*, that is, it has properties (a), (b) and (c)
of lemma 1. Properties (a) and (b) hold obviously. To prove (c)
"we consider

S*un — Xun ~ — Aun (#) "

= — ̂ .m « ^"_?/!

where we used (4.3) and that ^(1)(^) = Sf=i?/(#/) in
Since

i^l for .7 = 1,2, ...,m; » = 1,2, ..
^ * ' \ \\ T (;\ * r;M\ r\ , r • ^ r»as ^-> + oo, for J = l,2,..., m,
"we have
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IIS0*«« —^.lUca")""^ as fl->H-°o,

and thus (C) holds and {utt} is a singular sequence.

Next let us show property (4.4). Since

considering (4. 6), we have

|[grad un \\L2(R^ =

2

xn

Each —f— u™ is estimated by (3.5) if j$J, and by (3.8) if
i| ax/ L2(Ri)

j^J, and thus (4. 4) holds.
5. Assume that all b] are zero, then our operator becomes

Let us show that the singular sequence {un(x^} of S0* constructed in
the 1st step is also a singular sequence of TO* corresponding to the
same L As ^«(^)e^(T0*) follows from Theorem 1 and the fact that

WaOOeCS, it is sufficient to show that

(4.7)

(4.8)

(4.9) II6/(*)2«.(af)||««.3->0, for j=l',2,.,.,m,

(4.10) ll9w(*)K.(*)!Uc«-*0,

as ra-* + °o.

Assertion (4.7) follows from (2.6), (4.3) and (4.4). In fact, as-
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sumption (2.6) with fi° = 0 shows that for any <5>0, there exists a
real number R5 such that for any x in D (J {| x \

(4 11) JA(*ll
^° -LJ-^ i -l+£2

By (4.3), the supports of fly(ff) ^ " are contained in
OXj

{x\ \x\^na}, where ^=min «y. Fix a number N8 such that

For any n>Ns, from (4.11) we have

-1M*11 <3 for

Considering (4. 4), we have

dUH'n _ dUn

2+£f I dUH

ji Qxj
. 3Z

for any n>Ns. As 5 is arbitrary, this shows that (4. 7) holds.
Assertion (4.8) follows from (2.7) and (4.3). In fact, for any
, by (2. 7), there exists a real number Rs such that

n

For large w such that naujj^R§, considering (4. 3) we have

Thus (4.8) holds.
Finally, let us show (4.9) and (4.10) using (2.6) and (C2).

From (2. 6) with $ = 0 and £<2, it follows that

(4.12) ^00-^0 as \x -> + oo within D.

(4.12) and (C2) imply that for any cD>0, there exists a real number
J?s such that

|i,001<a and |?c«(jc)|<5

in #eDU {[^l^jffs}. For large n such that na^Rs, considering (4. 3),
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we have

ana

it q^

Thus (4.9) and (4.10) hold.

. Let us consider the general case. Put

and

then T' satisfies assumptions in 2nd step, and thus 6e ( TO*) -= ( — oo , + CXD ) .

Let X be an arbitrary real number and let {uu} be a singular sequence

of T" corresponding to L Put

Since

we have

Tvu-Avu = e'«>-*(iT'un-*um)-+0 in

which shows that {#„(#)} is a singular sequence of T0* corresponding

to an arbitrarily given real L Therefore rfe(T0*) is (—00,4-00) and

we complete the proof of Theorem 2.

In conclusion, the writer wishes to express his sincere gratitude

to Professor T. Ikebe for his enduring encouragements and kind in-

structions.
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Note added in proof (October 25, 1967) :
Recently, Professor M. S. P. Eastham studied some interesting

"conditions for the spectrum in eigenfunction theory to consist of
(-00,00)", Quart. J. Math. (2), 18 (1967), 147-153. One of them,
that is, his Theorem 2 seems to be similar to our result. But when
I want to apply his result to (1.1), I can only apply to the case
reduced to (1.2). His Theorem 2 neither implies nor is implied by
ours.




