A remark on complex analytic families of complex tori

By

Takashi Okano*

1. It is well known that the field of meromorphic functions on an irreducible compact complex space is an algebraic function field whose transcendence degree over the complex number field C is not greater than the dimension of the space (for example, see [4] or [6]).

Let X and Y be complex spaces and π a proper holomorphic mapping of X onto Y with irreducible fibers. For a point t of Y we put K_t the meromorphic function field of the fiber $\pi^{-1}(t)$. We ask how many functions of K_t can be extended to meromorphic functions on neighborhoods of the fiber.

In this paper, we solve this problem only in a special case, the case of complex analytic families of complex tori (Corollary 1 of Theorem 2).

Let Y be an irreducible complex space and $\Omega = (\omega_{ij})$ be a (n, 2n)matrix, where ω_{ij} $(i=1,2,\dots,n; j=1,2,\dots,2n)$ are holomorphic functions on Y. We suppose that the (2n, 2n)-matrix $\left(\frac{\Omega}{\Omega}\right)$ (where $\overline{\Omega}$ means the complex conjugate of the matrix Ω) is non-singular for each point of Y.

Let C^n be the space of n complex variables $z = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$ and G be

the discontinuous abelian group of analytic automorphisms of $C^* \times Y$ generated by

 $g_j: (z,t) \rightarrow (z+\omega_j(t), t), j=1, \cdots, 2n,$

Received October 12, 1967.

Communicated by S. Nakano.

^{*} Faculty of Liberal Arts and Education, Nagoya City University.

where $\omega_j(t) = \begin{pmatrix} \omega_{1j}(t) \\ \vdots \\ \omega_{nj}(t) \end{pmatrix}$. Then the factor space $X = (C^n \times Y)/G$ is a

complex analytic family of complex tori over the space Y. We denote the natural projection of X to Y by π . The fiber $X_i = \pi^{-1}(t)$ is the complex torus with periods $\omega_j(t)$, $j=1,\ldots,2n$.

2. From now on, we denote by $td(K_t)$ the transcendence degree of the field K_t over the complex number field.

We put $Y_k = \{t \in Y | td(K_t) = k\}$, $k \ge 0$. Let t_0 be a point of Y_k , where we assume k > 0. Then there is a linear transformation of the variables z,

$$\begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} = Q \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}, \text{ where } Q = \begin{pmatrix} a_{11}, a_{12}, \dots, a_{1n} \\ \vdots & \vdots & \vdots \\ a_{11}, a_{12}, \dots, a_{kn} \\ \vdots & \vdots & \vdots \\ a_{n1}, a_{n2}, \dots, a_{nn} \end{pmatrix} \text{ is a non-singular } (n, n) -$$

matrix, such that any function of K_{i_0} is independent of the *n-k* variables w_{k+1}, \dots, w_n . We put $P = \begin{pmatrix} a_{11}, \dots, a_{1n} \\ \vdots & \vdots \\ a_{k1}, \dots, a_{kn} \end{pmatrix}$.

Then clearly,

$$(i)$$
 rank $P=k$,

and 2n vectors $P\omega_j(t_0)$, j=1,...,2n, of the space C^* (of the variables $w = \begin{pmatrix} w_1 \\ \vdots \\ w_k \end{pmatrix}$) form a lattice G^* in the space C^* (see [5], p. 103).

Hence we obtain a k-dimensional complex torus C^*/G^* and a natural holomorphic mapping of X_{t_0} onto the torus C^*/G^* which is induced from the linear mapping w = Pz. Further, the field K_{t_0} is naturally isomorphic to the field of meromorphic functions on C^*/G^* , and hence the torus C^*/G^* is an abelian variety.

Let $\tilde{\omega}_1, \tilde{\omega}_2, \ldots, \tilde{\omega}_{2k}$ be a free base of the group G^* , where $\tilde{\omega}_i = \begin{pmatrix} \tilde{\omega}_{i1} \\ \tilde{\omega}_{ik} \end{pmatrix}$. Then there are (2n, 2k)-matrix H_1 and a (2k, 2n)-matrix H_2 with integral elements such that;

 $P \mathcal{Q}(t_0) H_1 = (\tilde{\omega}_1, \ldots, \tilde{\omega}_{2k}), \text{ where } \mathcal{Q}(t_0) = (\omega_{ij}(t_0)),$

and,

290

(ii) $P \mathcal{Q}(t_0) H_1 H_2 = P \mathcal{Q}(t_0).$

Further, since C^*/G^* is abelian, there is a non-singular skewsymmetric (2k, 2k)-matrix A with integral elements such that,

(iii) $P \mathcal{Q}(t_0) H_1 A (P \mathcal{Q}(t_0) H_1)' = 0,$

(iv) $\sqrt{-1PQ(t_0)H_1}A(PQ(t_0)H_1)' < 0$, where ' means the transposition.

3. We assume that the set Y_n is of second category.

With each point t of Y_n , we associate a non-singular skew-symmetric (2n,2n)-matrix A with integral elements such that

$$\mathcal{Q}(t_0)A\mathcal{Q}(t_0)'=0$$
 and,
 $\sqrt{-1}\overline{\mathcal{Q}(t_0)}A\mathcal{Q}(t_0)'<0.$

Let \mathfrak{A} be the set of those matrices A. For each A of \mathfrak{A} we consider the analytic set $Y(A) = \{t \in Y \mid \mathcal{Q}(t) A \mathcal{Q}(t)' = 0\}$ in Y. Then there is a matrix A of \mathfrak{A} , such that Y(A) = Y. By the definition of A, there is a point t_0 of Y_n such that $\sqrt{-1} \overline{\mathcal{Q}(t_0)} A \mathcal{Q}(t_0)' < 0$. Hence $\sqrt{-1} \overline{\mathcal{Q}(t)} A \mathcal{Q}(t)' < 0$ for each point t of Y, as Y is connected. Therefore $Y = Y(A) = Y_n$.

In this case, using the theory of ϑ functions, we see, for each $t \in Y$, that any function of K_t can be extended to a meromorphic function on a neighborhood of X_t .

4. Lemma 1. Let F_1 be a (l, p)-matrix and F_2 be a (p, l)-matrix, where $l \ge p$. Then the rank of the (l, l)-matrix $F_1F_2 - E^{(l)}$ is not smaller than l-p, where $E^{(l)}$ is the identity matrix of rank l.

Proof. Let q be the number of multiplicity of the root 1 of the characteristic polynomial of the matrix F_1 F_2 . Then there is a non-

$$JF_1 \; F_2 J^{-1} \!=\! egin{pmatrix} 1 & & & & & \ 1 & & & & \ & 1 & & & \ & 1 & & & \ & 1 & & & \ & 1 & & & \ & 0 & & \dot{\ddots} & & \ & & & & \dot{lpha_{q+1}} & & \ & & & \dot{lpha_l} & & & i\!=\!q\!+\!1,\ldots,l. \end{pmatrix}$$
 , where $lpha_i\!
eq\!1$, $i\!=\!q\!+\!1,\ldots,l.$

singular (l, l)-matrix J such that

Hence the rank $(F_1F_2-E^{(l)})\geq l-q$.

Hence the rank $(1,1,2,\dots,q)$. Let u_i be the *i*-th unit column vector $\begin{pmatrix} 0\\ \vdots\\ 1\\ \vdots\\ 0 \end{pmatrix}$ $\cdots i, i=1,\dots,q.$

q vectors $JF_1F_2J^{-1}u_i$ are independent. Hence $q \leq p$ and therefore rank $(F_1F_2-E^{(l)})\geq l-p.$

Lemma 2. Let T be a real (2n, 2n)-matrix and S be a (n, 2n)matrix.

Then 2 rank
$$ST \ge rank\left(\frac{S}{S}\right)$$
 T.

Proof. The rank of a matrix is the dimension of the image of the linear mapping defined by the matrix.

We consider the matrices ST and \overline{ST} as the linear mappings from the vector space C^{2n} to the vector space C^{n} respectively. Since T is real, the rank of ST and the rank of \overline{ST} are equal. On the other hand the image of $\left(\frac{S}{S}\right)$ $T: C^{2n} \rightarrow C^{n} \oplus C^{n}$ is contained in the (direct) sum of the images of ST and \overline{ST} . Hence we have 2 rank $ST \ge rank\left(\frac{S}{S}\right) T.$

Now t_0 let be a point of Y_k , where k > 0. Then, as mentioned in §2, there is a system of matrices H_1 , H_2 and A (with integral elements) and P of types described in $\S 2$ such that,

- (i) rank P=k,
- (ii) $P\mathcal{Q}(t_0)H_1H_2=P\mathcal{Q}(t_0),$
- (iii) $P \mathcal{Q}(t_0) H_1 A(P \mathcal{Q}(t_0) H_1)' = 0,$
- (iv) $\sqrt{-1} \overline{PQ(t_0)} H_1 A(PQ(t_0) H_1)' < 0.$

Conversely, let t be a point of Y and assume that there are integral matrices H_1 , H_2 and P with properties (i) rank P = k and (ii) $P \mathcal{Q}(t) H_1 H_2 = P \mathcal{Q}(t)$, then the 2*n* column vectors of $P \mathcal{Q}(t)$ generate a lattice in C^{k} and the 2k column vectors of $P_{\mathcal{Q}}(t)H_{1}$ give a system of a free base of this lattice.

We fix a system of matrices H_1 , H_2 and A with integral elements

292

and consider the set $Y(H_1, H_2) = \{t \in Y \mid \text{ there is a } (k, n)\text{-matrix } P$ such that the above conditions (i) and (ii) are satisfied at the point $t\}$ and the set $Y(H_1, H_2, A) = \{t \in Y \mid \text{ there is a } (k, n)\text{-matrix } P \text{ such that the above conditions (i), (ii), (iii) and (iv) are satisfied at <math>t\}$.

Let Π be the vector space of all (k, n)-matrices, and \mathfrak{P} the analytic subspace of $\Pi \times Y$ defined by the equation $P\mathcal{Q}(t) (H_1H_2 - E^{(2n)}) = 0$ $(P \in \Pi, t \in Y)$ with the natural projection p to Y. Then $p^{-1}(t)$ is linear subspace of Π for each point t of Y. Further, the space $p^{-1}(t)$ contains a matrix of rank k if and only if the rank of the matrix $\mathcal{Q}(t)(H_1H_2 - E^{(2n)})$ is not greater than n-k, because the equation $P\mathcal{Q}(t)(H_1H_2 - E^{(2n)}) = 0$ is a system of k independent equations $a_i\mathcal{Q}(t)(H_1H_2 - E^{(2n)}) = 0$, i = 1, ..., k, where a_i is the i-th row vector of the matrix P.

Proposition 1. The set $Y(H_1, H_2)$ is an analytic subset of Y defined by the equation $\operatorname{rank} \Omega(t)(H_1H_2 - E^{(2n)}) = n - k$, and $\mathfrak{P}|Y(H_1, H_2)$ is a complex analytic vector bundle of dimension k^2 .

Further, let t_1 be a point of $Y(H_1, H_2)$ and P_0 be a matrix of $p^{-1}(t_1)$ of rank k. Then, for each matrix P_1 of $p^{-1}(t_1)$, there is a (k, k)-matrix L with $LP_0 = P_1$.

Proof. Since the matrix $\left(\frac{\mathcal{Q}(t)}{\mathcal{Q}(t)}\right)$ is non-singular for each point t of Y the rank of $\mathcal{Q}(t)(H_1H_2-E^{(2n)})$ is not smaller than n-k by Lemma 1 and Lemma 2. Thus the set $Y(H_1, H_2)$ is defined by the equation rank $\mathcal{Q}(t)(H_1H_2-E^{(2n)})=n-k$.

Let \mathfrak{L} be the space of all (k, k)-matrices and b the linear map of \mathfrak{L} to the vector space $p^{-1}(t_1)$ defined by $L \rightarrow LP_0$, then it is trivial that the map b is surjective.

Proposition 2. The set $Y(H_1, H_2, A)$ is an analytic subset of $Y(H_1, H_2)$.

Proof. Let t_1 be a point of $Y(H_1, H_2)$. Then there is an open neighborhood U of t_1 in the space $Y(H_1, H_2)$ and a holomorphic section P(t) of the vector bundle $\mathfrak{P}|Y(H_1, H_2)$ over U such that the rank of P(t) is k for any t of U.

We consider the equation $P(t) \mathcal{Q}(t) H_1 A(P(t) \mathcal{Q}(t) H_1)' = 0$ on U.

Takashi Okano

Then the solution of this equation is an analytic subset of U and it is independent of the choise of the section P(t) by the last assertion of Proposition 1. Therefore the set $\{t \in Y(H_1, H_2) \mid \text{there is a } (k, n)$ matrix P of $p^{-1}(t)$ such that the condition (i) and (iii) are satisfied} is an analytic subset N of $Y(H_1, H_2)$.

Let $N_1, N_2,...$ be the connected components of N. Then the signature of the Hermitian matrix $\sqrt{-1} \overline{P(t)} \mathcal{Q}(t) H_1 A(P(t) \mathcal{Q}(t) H_1)'$ is constant on $N_i, i=1, 2,...$, because the determinant of the matrix can not be zero at any point of N. Therefore the set $Y(H_1, H_2, A)$ is an analytic subset of $Y(H_1, H_2)$.

Theorem 1. We suppose that $Y_j \neq \phi$ for some $j, n > j \ge 0$. Then, for q > j, the set $Y(q) = Y_q \cup Y_{q+1} \cup \cdots \cup Y_n$ is a countable union of thin analytic sets.

Proof. Let t_0 be a point of Y(q). Then t_0 is a point of Y_k , where $k \ge q$, and there are matrices H_1 , H_2 and A as before such that $t_0 \in Y(H_1, H_2, A)$. Thus the set Y(q) is equal to the union of such thin analytic sets of Y.

5. We put $p = \inf_{t \in Y} \{td(K_t)\}$. Then the set Y_p is of second category by Theorem 1.

Let t_0 be a point of Y_p . We assume p > 0. Then we obtain, as mentioned in § 4, three integral matrices H_1 , H_2 and A of type (2n, 2p), (2p, 2n) and (2p, 2p) respectively such that $t_0 \in Y(H_1, H_2, A)$. The analyticity of $Y(H_1, H_2, A)$ and the fact that Y_p is of second category imply the existence of matrices H_1 , H_2 and A, of type described above, such that $Y = Y(H_1, H_2, A)$.

We fix such a system of matrices $\{H_1, H_2, A\}$. Then we obtain a complex analytic vector bundle \mathfrak{P} on Y of dimension p^2 which is embedded in the space $\Pi \times Y$ (where Π is the vector space of all (p, n)-matrices).

Let t_0 be a point of Y. Then there are an open neighborhood U of t_0 and a holomorphic section P(t) of \mathfrak{P} on U such that rank P(t) = p for each t of U. Using this section P(t), we can construct, as mentioned in § 1, a complex analytic family X'_{ν} of abelian varie-

ties over U whose period matrices are $P(t)\mathfrak{Q}(t)H_1$, and we obtain naturally a holomorphic mapping σ_v of X|U onto X'_v , which is induced

by the linear mapping
$$\begin{pmatrix} w_1 \\ \vdots \\ w_p \end{pmatrix} = P(t) \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$$
.

Another such section of \mathfrak{P} over U defines the same family X'_{v} and the mapping σ_{v} but alters only the holomorphic coordinates w. Hence we have;

Theorem 2. Let $p = \inf_{t \in Y} \{td(K_t)\}, p > 0$. Then we have a complex analytic vector bundle $\mathfrak{B} \to Y$ of dimension p and a holomorphic mapping $\overline{\sigma}$ of $\mathbb{C}^n \times Y$ onto \mathfrak{B} such that $\overline{\sigma}$ is locally defined by $(z, t) \to (P(t)z, t)$, where P(t) is a (p, n)-matrix of holomorphic functions on an open set U of Y, and $P(t)\mathfrak{Q}(t)$ gives a discontinuous abelian group G' of analytic automorphisms of $\mathfrak{B}|U$ and the factor space $X' = \mathfrak{B}/G'$ is a family of abelian varieties of dimension pover the space Y.

The map $\overline{\sigma}$ induces naturally a holomorphic mapping σ of X

onto X' such that
$$X \xrightarrow{\sigma} X'$$
 is commutative.
 $\pi \searrow \swarrow \pi'$

Corollary 1. We denote by K'_{t} the subfield of K_{t} consisting of all elements of K_{t} which can be extended to meromorphic functions on some neighborhoods of X_{t} .

Then, for each point t of X;

(a) the transcendence degree of the field K'_i is equal to $\inf_{t \in Y} \{td(K_i)\}$, and

(b) the field K'_t is algebraically closed in K_t .

Proof. Let f_1, \ldots, f_s be meromophic functions on a neighborhood of X_t such that the analytic restriction of f_1, \ldots, f_s to the fiber X_t are independent. Then, for t' sufficiently near to t, the restriction of f_1, \ldots, f_s to X'_t are independent. Hence we see that the *tr. degree* of $K'_i \leq p$ by Theorem 1.

Now let K''_t be the subfield of K_t obtained from the field of meromorphic functions on $X'_t = \pi'^{-1}(t)$ by $\sigma_t: X_t \to X'_t$. Then $K''_t \subset K'_t$,

because the family $X' \xrightarrow{\pi'} Y$ is a family of abelian varieties (see § 2). Hence (a) is proved.

If a meromorphic function on the torus X_t is dependent on meromorphic functions on X_t which are independent of the variables w_{p+1}, \ldots, w_n , then it is also independent of w_{p+1}, \ldots, w_n . The assertion (b) follows from this.

Remark. In [3], we considered the property (b) of the corollary in the case of general complex analytic fiber spaces. There we obtained;

Let X and Y be normal and connected complex spaces and $X \xrightarrow{\pi} Y$ a proper holomorphic mapping of X onto Y with irreducible fibers. Then the set $\{t \in Y |$ the field K'_t is not algebraically closed in K_t is nowhere dense in Y.

Corollary 2. We assume that $Y_0 = \phi$ and $Y_n \neq Y$. Then every abelian variety of a member of the family $X \xrightarrow{\pi} Y$ is always 'singular' (in the sense of [1]).

Let M be a connected complex manifold and $\mathfrak{B} \xrightarrow{\pi} M$ be a complex analytic family, in the sense of Kodaira-Spencer [2], of complex tori. Then, by Theorem 18.6 in [2], the family $\mathfrak{B} \xrightarrow{\pi} M$ is locally the same as our family of complex tori constructed in § 1.

Hence we get:

Theorem 3. Let $\mathfrak{B} \xrightarrow{\pi} M$ be a complex analytic family, in the sense of Kodaira-Spencer, of complex tori. We put $p = \inf_{t \in M} \{td(K_t)\}$

and assume p>0. Then there exists a complex analytic family $\mathfrak{B} \xrightarrow{\pi'} M$ of abelian varieties of dimension p over M and a holomorphic mapping σ of \mathfrak{B} onto \mathfrak{B}' with $\pi = \pi' \circ \sigma$, such that σ is locally the same as mentioned in Theorem 2.

REFERENCES

- [1] Conforto, F., Abelische Funktionen und algebraische Geometrie, Springer-Verlag, Berlin, 1956.
- [2] Kodaira., K. and D.C. Spencer, On deformations of cemplex analytic structures II, Ann. of Math. 67 (1958), 403 466.

- [3] Okano, T., On some fields of meromorphic functions on fibers, Publ. RIMS, Kyoto Univ. Ser. A. 3 (1967), 53-67.
- [4] Remmert, R., Meromorphe Funktionen in kompakten komplexen Raume, Math. Ann. 132 (1956), 328-370.
- [5] Siegel, C. L., Analytic functions of several complex variables, Lectures delivered at Institute for Advanced Study, Princeton, 1948-1949.
- [6] Stein, K., Maximale holomorphe und meromorphe Abbildungen, II, Amer. J. Math. 86 (1964), 823-868.