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The first boundary value problem and the
first eigenvalue problem for the elliptic
equations degenerate on the boundary

By
Kazumasa Suvzukr*

Introduction

The degenerate elliptic equations have been studied by many
authors. Mikhlin [4] discussed those degeneratz on a part of the
boundary. However, he treated only the weak solutions of the problem.
Il'in [2] and Oleinik [6] discussed the degenerate elliptic equation
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They proved the uniqueness and existence theorems for the genuine
solutions of the boundary value problem. They imposed some condi-
tions on the equation, especially they required essentially that the equa-
tion is reduced to the case when ¢<c,<<0 in the domain.

We treat the elliptic equation in the domain

m

(pu ) qu _f

1] =1 ax,

which may be degenerate on the entire boundary. We prove, by the
variational method, the uniqueness and existence theorems for the
genuine solutions of the first boundary value problem and the existence
theorem for the genuine solutions of the first eigenvalue problem.
We do not assume that ¢g=¢,>0 in the domain. However, in order
that Ladyzhenskaya-Ural'tseva’s estimation for the solutions be appli-
cable, we have to impose certain restrictions on the “order of de-
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generacy’.

In §1 some notations and terminologies are introduced. We develop
the main results in §2-§4; especially the boundary problems and the
eigenvalue problems are stated in §3 and in §4 respectively. Section
5 is devoted to the lemmas used in §2-§4. In §6 we give some
sufficient conditions for the validity of the assumptions made in the
main theorems. Finally we arrange, in §7, some examples to which
our theorems are applicable.

The author wishes to express his sincere thanks to Prof. M.

Hukuhara for his helpful suggestions and constant encouragement.

§1. Notations and terminologies

Let £ be a bounded domain in the m-dimensional Euclidean space,
and 882 its boundary.

By C,.(2)(0<<a<<1) we denote the space of functions u, the I-th
order derivatives of which are Hoélder continuous on £ and for which

Huﬂc,,a@;—ksﬁo ~k/2=k m_ax} D"u] +H1,a,n<°° y

where
ak1+---+km

Dry = |k =k+-+Ek,

axl"l...ax”:‘m
and

H, ,.,=max sup |D*u(x)—D*u(x’)|/lx—x"|%.

k=1 zzx'c0

Also C,,(2) will denote the space of functions, the I-th order de-
rivatives of which are continuous on 2.

By C..(2) we denote the space of functions which belongs to
C..(2) for any domain £ strictly contained in 2.

If for any x,&02, there exist a neighbourhood U,,= {x||x—x,| <lo.,}
and the local coordinates (%), -, ¥n(2)EC,(U,)(0=<a<l) such
that

U,Ne={x|y.(x)=y.(2) =0} N U,

and
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—ZD)—EH%—\ +0 in U.,,

then we say that 62 belongs to C, ..

Let £+, 2., --- be the sequence of domains such that each mem-
ber £, is strictly contained in the next £,., and the boundary 02,
belongs to C,,. If !2=D!2,,, then we say that 02 belongs to Cia
and we call {2,} an apl.:;;(l)ximating sequence of domains for 2(0Q<
C..). Hereafter we assume 62 belongs to E,,a.

By L,(2) we denote the space of functions # which are measur-
able in £ and for which

“u”L’(D)E[Sn lul*d V:lw<<>0,

Let (.L,(.Q) be the set of functions which are infinitely differentia-
ble in 2 and with supports strictly contained in 2.
When we have

(o & av= ey

for the function # defined in £ and for every function & C,.,(.Q), we
call w; the generalized derivative of # with respect to x; and denote

it by g;‘ .

By W{®(2) we denote the space of functions # measurable in £

and having the first order generalized derivatives also measurable in
2, and for which

] W%’(Q)ED {i( ou >p+u’d}V]w<oo.

o izi\ 0x;

By W{®(2) we denote the closure of é.,.,(.Q) in WP(®). For
—_ P
9=C,,(2) we shall denote by WP (2) the subset of W®(2) defined

by
P o
WP (@ ={ulu—pc WP(Q)}.
?
For u= W{’(2) and a real number K, we define

u=max{u— K, 0}
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[¢%]
o
[NC]

and
OO={xe2|u(x)>K}.

For p:i<i7j:11 oot ym>, q, pECD,O(@ and u,ve Wél)('g)

we set
wv]=\ (> p, 0% 00
GoLu,v]—Sat{j=1p,, o oz, quvydV,
(&, w o
D (w0l = 3 p, v v,
H, ,(u, v] Eggp uv dV,
Golul=G.[u, u], D.[u] =D, [u, u]
and

H, ul=H,,[u,u].

Now we shall consider the boundary value problem

W L= L (p, ) —qu—f g

i,j=1 6xj
(2) u=¢ on 92,
where p;=pn 4, FECu(2) and ¢&C.(2). We say that # is a
weak solution of (1)-(2) if
(i) Golu, &l +Ho [f,28]1=0 for every ¢ I/cf/'S)(.Q),
and

P
(ii) D.[u] <<oo, and there exists {u,= Wi’(2)} such that

D.(u—u,]—0 and |[#—tt,][1,0>0 as h—>oo.

If ueC,o(2)NCoo(2) satisfies (1)-(2) and D,[u] <<oco, then we call
# a solution of (1)-(2) (in this case p,;€C.,(2) NCo.o(2)).

For the operator L and a boundary point x,=0882, we define a

strong barrier function v(x) as such that, for some >0,

(1) v@)eCho(o(x,0))
(ii) v(x)=0 at x,
(iii) v(x)>0 in w(x, ¢) — {Xo}
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(iv) Liv]<<0 in w(xy, ),

where (2%, 0) = {x=2||x—x,| <q}.

To abbreviate the main theorems, we define Properties (A) and
(B) of the domain and the operator L, as follows:
Property (A). For any boundary point x, there exists some ¢>0,
such that (%, )= {x=2||x—x,]<s} satisfies the following condition.

If v=Cy0(2)NCo,o(2) satisfies

Lv]< min f in w(x,,0)
w(%0,0)

¥= max ¢ on dw(x, ,0)

dw(xg,p)
resp.

Lv]= max f in w(x,,0)
w(x0,0)

v<min ¢ on dw(Xx,, 0),

dw(xg,0)

then for any solution # of (1)-(2), we have
u<v in w(%,, 0)

resp.
u=v  in 0(%,0).

Property (B). For any boundary point there is a strong barrier
function.

§2. Weak solutions

In this section we consider the boundary value problem for the
degenerate elliptic equation (1). In the first place we show that any
solution of (1)-(2) is a weak solution of (1)-(2) (Theorem 1), and
in the next place we give an a priori estimation for the weak solu-
tions of Ladyzhenskaya-Ural'tseva’s type (Theorem 2).

Theorem 1. If u is a solution of

L L= 2 (pij%)—qu=f in 2

ijm1 0X; 0x;

(2) u=¢ on 042,
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then u is a weak solution of (1)—(2), where

D=0 ECi (D NCos(2); q, FECoo(2);
(0601,0(5); 8526(71,0

and

E D:£.6=0 ((&, -+, &.) is any real vector).

i,j=1

Proof. For any fe& I/.i/'é”(ﬂ) we take a sequence {&,EC.(2)}
such that &,—¢ in W{®(R) as h—>oo,
Since u=C,,(2) satisfies (1), we have

Golu, ] +Hon [ f, Gl =0.
Therefore, by Lemma 1 and in a similar way we have
Golu, ] +Hanlf, C]
=lim(Go[%, &i] + Haa [£, 81 =0.
Moreover we can show that there exists a sequence {#,= W (2)}

such that D,[u—u,]—0 and [[#—#,]/1,0;—0, as follows.
Since D,[#] is finite, we get

D, [u—¢] <(v/Do[u] ++/ Da[p] )*<loo.

Choose an approximating sequence {2,} for 2(62<C,,), and
set

u—K, in 9F={xc9,|u(x) —e(x)>K,}

lu+ K, in @i={xc2,|ulx) —p(x)<<—K,}

¢ in & {rea]lulx) —e(x) | <K}

) in 2—2,

U, =

where K,=max|u—¢|—=0 as h—>oo.
a0,

Then we have
”M — Mh”Lz(D) - ”M - ulz”Lz(D—ﬂl,) + ”Kh”LZ(D:)
+ 1l = Kl ryeory + 12—l 2,0t

—lim|%— ¢ )

h->c0
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and
Dolu—u,)
=Do_o, [t—¢] + Dgt [K,] +Do:[— K,] + Doy [t —¢)
—limDoj [u—g].
On the other hand
mes(2i— {x€2[u(x) =¢(x)})—0,
and therefore

yml[u *-gp”z_z(mo.v) =0,
%imD;Z [u—¢p] =0.
Thus

% — | 1,0 (B—>o0)

and
D,[u—u,] -0 (h—>o0).

Finally we show that u#,€ W (2). Note that #—o=C, (@),
u—9
which implies that #u—p= W$(2,). Therefore, if we set

{max{u—¢~K,,, 0} in 2,
vi=
"~ lo in 9—2,

{max {u—ep+ K,, 0} in 2,
Uy = .
L0 in 2—9,

then vf,0; € WP(2) (cf. Lemma 2). Thus

o
U, —e=0vi -+, WP(Q),

P
uw,s WPQ).

Theorem 2. Assume that p.;,=p; q, fECoo(2) and o=Cy,o(2),
and that p;; satisfies

_Zl DiEEi=D(x) 21 £=0
ij= 1=
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((&y -+, &) is any real vector)

where

S Lk/(l—k)<'9> <k<1

po 2

when m=1).
If u is a weak solution of (1)—(2) which satisfies D,[u]<d,
then
vrai‘7 max |u!| <<C,

when C depends on m, k, d and C’ (C’is any positive constant such

that

, max|q|, max| f|, max|¢|, Do[¢], mes 2<C").

1
po Lig1-13(@) o
Proof. We begin with the case m=2. Since # is a weak solu-
tion of (1)-(2), and u®e WP () (K =max ¢, K=1), we have
0@

m au(x)
S @ [Z bis—— 3x or T quu® + fu1d V=0.

Therefore, we have

S(m ,E,- pr azi gz, dV

<max |q| Samu(u—K) dv+ Saunlfl (u—K)dV

<max|q| {—27 S;m(u—KYd V+ ng— mes Q%]

R N O 1 E @
t Sg (u—K)*dV+ 5 mz;x[f, mes 2
<2 max{max|q|, maxjf|? 1} [ng(u——K)zd V+ K?mes2®].

Now by Corollary 1 to Lemma 4 and Corollary 1 to Lemma 8,
we get

17 el v
X max {max|q |, max| f|? 1} [Bn*[F %]}, + K’mes 2°].

Whereas
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(Kka/(m—Zk) mes Q(K)) {r(m+2)~m}|km

g [SO(K) qum/(m-—2k)d V] (k(m+'7)—m)/km_g—“'u”2(k(m+2)—7zxg)/(m—2k)

Lokmjim—28)

< [“u ‘"QOHLzm/:m-zn(a)”l‘ ”(ollll-zhnlm—zn(ﬂ)] B2y [ G2 ’

and #—¢p< I/?’él) (2), so that from Lemma 3 and Lemma 8 follows

(Kkal(m—le)meS ,Q(K)) {e(m+2)—m}|km

g {% <” __;I ”Lk/(l—k)(D)DD [u—(p] >1/2

+ ”Gl’”szm/(m-u)(ﬂ)} 2{k(m+2)—m}|(m—2k)

g {% <” —;; ”Lk/u—k)(ﬂ))llz(l/D” [u] +"/DD [¢J )

+ ”¢”LGm/<m—2k>(0)} 2((m+2)_m”(m—2k);

which implies that mes 2°—0 as K—>co,
Thus if we choose K,(=max ¢, 1) so large that
39

1

2
=

[[24/1-10> max {max [q|, max| f* 1} B,

<2| % l2ssance max {max|q |, max| £]2 1)

kE(m—1)

x( m—2k

)2<mes .Q(KO)> {(m+2)k—m} | mk g_;_ ,
then for any K=K, we have
17 2] Zascarrrn =S4 % lles/c1-0xe> X max {max| ¢ |, max| f|2, 1} K*mes 9.
0 o2 Q2

Hence the assumption of Lemma 7 is satisfied.

Next we show that |[#];,cx», is bounded by a constant which
does not depend on .

Since
”u”Ll(chO))g (mes .Q)llznuuLz(n(Ko))§<meS .Q)Ilz”u(KO) -+ Ko”Lz(a(Kn))
< (mes 2)2(||u>| ,coxpy+ Ko(mes £2)'?),

from Corollary 2 to Lemma 8 follows
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1| Lycocxon=<(mes 2)**

k(m 1) {(m+2)k—m}|2mE 1
XA{—, 55— (mes @) 1/ I 7

+ K,(mes £2)'%.

”Lk/u-n(n)Dn“‘v (o]

Therefore by Lemma 7 vrai max u is bounded by a constant C
which depends on m, &, d and C’.

Since —u# is a weak solution of (1)-(2) in which f and ¢ are
replaced by —f and —¢ respectively, vraig max(—#) is also bounded
by C.

Thus we have

vrai max|u«|<<C,
2

which completes the proof in the case m=2.
When m=1, by Lemmas 2, 8, and (5) in the proof of Lemma 4,
we set

|u—p] <5 (mes )@=/

Therefore

”Lk/(l-k)(ﬂ) D, [u] .

lu|<|u—¢|+ o] <C.

§3. Boundary value problems

We treat the boundary value problem for the degenerate elliptic
equation

) 3 (buge)—au=f in @
with the boundary condition
(2 u=¢ on 8.
We give the uniqueness theorem for weak solutions (Theorem 3) and
the existence theorem for genuine solutions(Theorem 4).

Theorem 3. Assume that p,;=7p;,q, FECe:(2); ¢=C.0(2) and
02 C,, and also that p.; and q satisfy

m m

_Z=1 DiiE&i=po(x) ’Zzl £2=0
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((& +++, &) is any real vector)
1 .
—EEL&,(l_,,)(!z)(for some k with m’_n*_z <k<<l when m=2,

or with %<k<1 when m=1)

and
q=0
in £.
Then the weak solution of (1)-(2) is unique.

Proof. Let %, and #, be two weak solutions of (1)-(2). Then
we have

Golu, 81+ Hoy [ £, 2] =0

and
Goltts, €1+ Hou[f, ] =0

for every ¢ I/cf/'él) (2). Therefore we get
Golu,—u,, 1 =0.

By the definition of a weak solution, there exist two sequences
P P
{u,e WP ()} and {u,c WP(2)} such that

Do [tty— 2] =0, [[t6s— 33| 1,050
and
Do [tty— o] =0, [[tt—ths | 1,y>0 as oo,
Now set &=uy,— .. Then we have
Gty — Uty — Us,) =0.
From Lemma 1 follows
Golu,—u,) =0

and therefore, because of ¢=0,
Doty —u,) =0.

Thus by Corollary 2 to Lemma 8 we have

Al L= }i{f” Ui — Us | Lyco>
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< }1)1;1;1 B... “/” 1150 ”Lﬁ/(l-k)(ﬂ)Dﬂ [um—" U] =0,

i.e., u,=u, almost everywhere in 2.

Corollary. Assume that p,;=p;;< Cyo(2)NCo0(2); q,fECo0(2);
0= C.0(2) and 82<C,, and also that p,; and q satisfy

S Pt = po(2) 3 820

i,j=1 i=1

((&, -+, &) is any real vector)

’1— S Lkl(l—-k) (-Q>

Do
ey Mo > ;
(for some k with prr <k<<l when m=2, or with
%<k<1 when m=1)
and
q=0
in 9.

Then the solution of (1)-(2) is unique.
This corollary is clear by Theorem 1 and Theorem 3.

Theorem 4. Assume that the bounded domain 2 in m-di-
mensional Euclidean space and the coefficients of the problem (1)-
(2) satisfy the following conditions:

(1) pii:pih qrfECO,OL('Q)ﬂCO,O(E)’

%ECD,OE(‘Q) (Z!j:]-’ ) m)» ¢EC2.OL<‘-Q>HC1,O<‘§>y

02 C,,q,

S pEEZ PR E=0 (&, - 64) is any real vector),
i=1

j=1
1 eL,u-n(2)
Do

m

(for some k with pro <k<<l when m=2, or with
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1

5 <k<<1l when m=1),

Po(2x)>0 in 2,
q=0 in 2,
(ii) the domain and the operator have properties (A) and (B).

Then there exists a unique solution u, of (1)—(2). Moreover we
have

Golu,) +2H,, Lf, to)
= lnlf) (Golu)] +2Ho11f, u]).

"E;’z (@
Proof. By Lemma 9, there exist d and d, such that
inf (Golu] +2H,.[f,u]l)=d

(1)
"Eg'z (@)
and

inf (GD,, [u] +2Hﬂ,..1 [f; u] ) :dm

we?WL

where {2, is an approximating sequence for 2(82<=C,.). Clearly
d==d,=---=d.

Moreover we can show that lim d,=d.

n->00

P
In fact, there exists {u,& WP (2)} such that

lim (Golus] +2Ho,[f, us))=d

h->c0

and there exists {u:|u,—¢<E CD,(Q)} such that

|Ga[tts] — G [}] | < %
and
| Hos L f, ] — HoaLf, wi) | < %

92
By choosing # so large that u;,= W (8,), we have

d=111’1’1 (Gn [uh] +2Hn,1 [f; uh] )

h—>co

=lim (Golui) +2Ho [ f, wil)
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>lim inf (G, [u] +2H, .[f,u])

h>eo 1
> "E%’(z )(p,,)

=lim d,,(/,) .

h->c0

Hence
lim d,=d.

Whereas it is certain that for each z there exists a solution
u,€Cyo(2,) of (1)-(2) for 2, which satisfies

Gp" [u,,] +2Hnn,1 [f, M,,] =inf (Ga" [u] +2Ha“,1 [f, M] ).1)

“S35 0,
Therefore we have
d,= Ga,, [u,] + 2Hn,,,1 Lf, u.)

which are bounded above by d;. By Lemma 10 D, [#,] is bounded
and therefore, if we define #,=¢ in 2—2,,

D, [%,,] = Da,, [%n] + Da——a,. [‘/’]

is also bounded. Since by Theorem 1 #, is a weak solution of (1)-
(2) for @,, from Theorem 2 follows

max|u,|<C,

1
5

max|f|, max|e|, Do[p] and mes 2. Hence

where C depends only on m, &, d,, | [l isci-1or, max [q] ,

max|u,|<<C’,
o

where C’ depends on the same quantities as C.
By Lemma 12 u,, (n'>n) satisfies

[#sllc,, (2 ZC" [[ Lttt ||C, . (Lurn) +max |2z, ]]

Ln41

<C"[[ fllcye@+C'1<<C™,

where C"” depends on «, | aﬁ"" llco.a@rerrs[1qllcy,a@ner, min po, the diame-

a j Qn+1

1) This is shown in the same way as in Suzuki [9], where the solution of the first
eigenvalue problem are derived- by the variational method.
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ter of @,,, the distance between 2, and 02,1, | flc,..@ and C".
Therefore we can choose the subsequence of {#,} such that

ull} u12) Tty uln, "“—)uo in C2,0<‘Ql>

Uzt Uagy =y Ugy o>ty i Cy0(2,)

Ztnl; unZ; B umz, “‘%lt0 in CZ,O(E)
oy

where the upper subsequence contains the lower subsequence and
#,=C, «(2),” the absolute value of which is bounded by C'”. Obviously
u, satisfies (1) in £, and D o[#,) =lim Dg, [#%,] =lim lim Dy, [#,.] 1is

n->o0 n>o00  11/->co

finite.

Let us show that u, satisfies (2) at the boundary.
By Property (B), there exists a strong barrier function »(x) for
any boundary point x, Set
Yr (%) =0 (%o) +e+ kw(x)
and
Yo (%) = (%) —e— Rt (x).

Then we have

In the first place we choose (%, ¢), which appears in Properties (A)
and (B), so small that

Y, ()= max u,

82N 3w(ag,0)

and

Y ()< min #u,

92N 3w(xg,a)

on 82n0w(x, ¢). In the next place we choose &, k. so large that

Liy(x)]< min f,

w(x0,0)

2) If [lunllesra(@) are bounded and un—>uo in Cs, o(2), then u#e€Cs, «(2) (cf. Suzuki
[9] p. 68, Theorem 9).
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L{y.(x)] = max f

w(x0,0)
in w(x,, ¢), and

Y, (%)= max u,,

dw(xg, o)

Y ()< min u,

dw(zxg,0)
on 0w(%,0). Then by Property (A), we have
Y (2) 1, () S (%) in 0 (%o, 0).
Therefore, letting #—co, we have

Yo () St (2) < (%) in 0 (%o, 0).

Hence, letting x—x, and letting e—0, we obtain

o (%) =lim () <lim %(%x) =¢(%0).

Therefore
lim 2,(x) =¢(%).
Thus we have shown the existence of a solution of the problem (1)—

(2). Because of Theorem 3, this solution is unique.

Finally we shall show that we have
Go[uo) +2H, [ f, uo) =d.

Since #u, is a solution of the problem (1)-(2), by Theorem 1 #, is

also a weak solution of the problem (1)-(2), i. e., there exists a
P

sequence {u,€ W (2)} such that Do[to—u,]—0, [[tto—2]1,»—>0 as

h—co, and for any = W (2) we have
Gp [uo, C] +Ha,1 [f, C] :0-
Therefore, from Lemma 1 it follows that

Golu,) +2H,, [f, o]
:lim (Gn [uh] +2H0,1 [f; %,,] )

h->e0

=limd=d.

h—>co

?
For any ue W»(Q), put
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u=u,+¢{, u=u,+f.
Clearly &, IsVél’ (£2) and
DD[C_CI:] —0, “C—C,.HLZ@)—>0 as h—>oo,

Therefore
(Golul +2H,o [ f, u]) — (Goluts] +2Ho [ f, us])
=Go[C] + (Golus, €] + Hon[f, 81
=Go{t, &Gl +Hou [ f, Gl
By Lemma 1, letting Z—oo, we have
(Golu] +2Ho, [ f, u]) — (Goluy) +2Ho 1 [ f, o))
=Golu, ¢1 + Hail f, ]
=1im (Go (o, &) + Haa [ £, &) =
Thus we have
Goluo) +2Ho [ f, uo) <d.
Hence we have

G [u,] +2H9,1 Lf u,] =d.

§4. Eigenvalue problems

We consider the eigenvalue problem for the degenerate elliptic
equation

3

m

”=1 8x, (p,, or, )—qu+2iou=0 1in 2,

with the boundary condition
4) u=0 on 02
We arrange the fundamental properties of the eigenfunctions and
eigenvalues (Proposition 1-2). Next we prove the discreteness of the
spectrum (Theorem 5), and finally we give the solution of the problem
for (3)-(4) which shows that the number of eigenvalues is indeed
countable (Theorem 6).

Proposition 1. If u is one of the weak eigenfunctions corres-
ponding to a weak eigenvalue 2, i.e., a non-trvivial weak solution
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of (3)-(4), where

bii=pi, 4, 0E Co,0<§> ;00€ El.o

and
> pEE=0 ((&, -+, €,) ©S any real vector),
i,j=1

then we have
Gg [74] "-AHD,;, [%] :0.

Proof. By the definition of a weak solution, D,[u#]<Teco, and
there exists a sequence {u,= W (L)} such that

Dolu—u,] =0, llu—u) 1,050,

and for any & VI;S)(.Q) we have
Golu, ] —2H, ,[u, ] =0.
Putting ¢=u,, we get
Go[u, w,) —2H, ,[u, w,) =0.
Therefore from Lemma 1 follows

G,[u] —1H,,[u] =0.

Proposition 2. Assume that p.;=pi, q, 0€Coo(2) and that p:;
satisfy

23 pifiEi=20((&y, -+, €a)is any real vector).
i,j=1
Then for two weak eigenfunctions u,, u, corresponding to weak
eigenvalues 2,+ X, we have
H,, [u,, u,] =0.

Proof. By the definition of a weak solution, D, [u«,], Do[#,] oo,

o (2]
and there exist two sequences {u,< W@}, (s WP(R)} such
that

DD [Mn - Mnlz] _90; ” un - uuh“Lz(ﬂ)_)O

DD [un' - un’lz] __)07 ”un’ - un’h”Lz(a)aO
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and for any £ Wi’(Q) we have

G” [um C] _AnHﬂ‘p [M,,, C] :0)
Ga [um C] ——ln,Ha,p [u,,/, C] :O.

Without loss of generality we can assume 1,#0. Therefore from
Lemma 1 follows

Ho,o [ty thwr] =1im0 Ho,p (140, U]
= 4l Go[t,, ] =2"Gou,, ]
=" lim Go [ Uy U
=2 A Hm Ho, o [thn, thar] .
=3 Hy [, t,r]
Since 4,'4,#1, we have

.Hp,p [u,,, u,,/] :0.

Theorem 5. Assume that p,;=p;, q, 0=Coo(2); 02=C., and
also that p;; and p satisfy

S pAsZ D ()3 820

i,j=1 i=1

((&y, =+, &n) is any real vector.),

% € Luan(2)
(for some k with 7:1_2 <k<<l when m=2, or with
%<k<1 when m=1),

P%Pﬁ>0-

Then the weak spectrum of the eigenvalue problem for (3)-(4)
are discrete, i.e., the totality of weak eigenvalues taken with res-
Dective multiplicity does not have any finite limiting point.

Proof. Suppose on the contrary that we had a sequence of
eigenvalues {1,} such that lim i,=1#oc. By Proposition 2 we can

H—>oo



318 Kazumasa Suzuki

construct a system of weak eigenfunctions {u,} corresponding to {A.},
normalized and orthogonal with respect to H,,[,]. From Proposition
1 follows G.lu,] =2,.

Let ¢ be any number such that O<e<%. Then there exists an

#,(e) such that
ho—e<<Goltt,] <<do+e

for every n>n,(¢). Since u#, is a weak solution of (3)-(4) for i1=1,,
]
there exists v, W{(2) such that

Da [u,, —’l),,] <€, HD,p [un_v»] e ’

and therefore we have
Golv,] <a+x(e),
He, 0. [<(1+v/e)" (n>m, (o)),
where 5(e) is some positive number.
Because

max|q|
Q n-l I} n —‘3:’~ a n-l
D.[v,)<Go[v,] + min H,,[v.]

max|q| _
<iot+n(e)+ m‘_’l—m (A+ve)* (n>n(e)),

from the corollary to Lemma 11 follows the relative compactness of
{v,}. Now take a Cauchy sequence in L,(2) from {v,} and denote
it again by {v,}. Obviously

H,,[v,—0v.,]—0 (n,n'—oc0).
Whereas by the orthogonality of {#,} we have
v Hop[0,—0,]
=1/ Ha,, (=] —y/ Ha,y ,—0,] =/ Ho, [t —0,]
=/ H,,(u,] —2Ho,, [thy, ] + Ho o [ths] —2y/ ¢
=121~/ 2e) (n>n(e)).

Therefore we have
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H,,[0,—v,]—0 (n,n'—o0).

This is a contradiction.

Theorem 6. Assume that the bounded domain 2 in m-dimen-
stonal Euclidean space and the coefficients in (3)-(4) satisfy the
following conditions:

( i ) pii:pih q, PECo,a<Q> ﬂco,()(!—)—) ’
31’,-1 =1, -
_a)?j——ECO.G'(‘Q)(Zv]_li sm>’
00eC,.,

3 P8z (D)2 820

i,j=1

((&, -+, &) is any real vector.),

115— € Lyja-n(2)
0
. m 1
(for some k wzthW_Fz— <k<1 when m_2_2,—2—<k<1
when m=1),
po>0 in 82,
0=p>0 in 2,

(ii) the domain and the coefficients have Properties (A) and (B).
Then there exist eigenfunctions s, ,%,, (€ Cooa(2)nCoo(2)
corresponding to the eigenvalues W= 1<r-+=<1,=<--- such that

Golu,]= inf G.lu]l=2,,
ueER,

where
B, = e WP (9) | Ha,lu] =1, H, [, ] =0
(kzl, R n_1>}

Proof. Since this theorem is proved in the same way as Theorem
4, suffice it to say that we give a rough proof.

Let {@;} be an approximating sequence for 2(02<C,.). Consider
the problem for 2, denote by 25,(2,) the set of functions for 2,
corresponding to W, for £ and set
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inf Gp [M] :Zn )

ue%'n

inf ka [M] :/.t,,k .
HEQBnQ.Qk)

It follows that lim Z,,=2,. Now for any % there exists an eigenfunc-
k—>o0

o
tion #,,SCs,o(2) N WP (L) such that

Gnk [uﬂk] = inf Gak [M] = lnk ,
uE‘I‘A‘n(Q;,)

and therefore G,,[u,,] is bounded. From this fact results the bounded-
ness Do[#..], vmz’n max |u,), and thereafter |u,y|[c, con (B'=F).

By a diagonal process, we get a subsequence of {u,} (hereafter
we denote this subsequence again by {#,}) which converges in C,,(2)
to a solution #, of (3) corresponding to 2,. Using a strong barrier
function we conclude that #, also satisfies (4). Obviously D.[#,] <<co.
Finally we confirm that #, satisfies

G.lu,)= inf G.[u]=a,.
uEﬂBn

Since u, is an eigenfunction for (3)-(4) corresponding to 1,, it follows
from Proposition 1 that
G.(u,] —1,Ho ,(u,] =0.

By the corollary to Lemma 11 for some subsequence {#,,} of {#.,.}

we have
}’im Hn,p [unk’] = Hﬂ,p [un] .
Therefore
-Hﬂ,p [un] = lim HD,p [unk']
k>0
=k1im Hyy, [t,y] =k1im 1=1.
Thus

Gp [M,,] == j.,, .

§5. Lemmas

In this section we shall state several lemmas, some of which
were used in the proofs of the theorems in the preceding sections,
while others are of more preliminary nature. Throughout this section
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we assume that p.,; =05, 4, 0, f€Coo(2) and 82 Cy,.
Lemma 1. Let u, v=L,(2), {u,c WP(Q)} and {v,e WP(Q)}
be such that
D, [u] <<oo, Dolu—u,]—0, [[u—u,|.,w—0,
D [v] <oo, Dolv—1:]1—=0, [[v—0ill1,0—0,
where p;; satisfies

>0 piiEEi=0 ((&4, -+, £,) 1S any real vector).
,7=1

Then we have
Dp [u,v] =1lim Da [M;,, U] =lim Da [u,,, vk] ,

h—>c0 b, k>oc0

(u, 1}>p=1im (M,,, v>a:1im <uh’ vk>9 >
h>co b, k->oo

where (u, v)a=gauv dv.
Proof. From the assumption of the lemma follows
D, (u,], Do[v,] <<C,
where C does not depend on %, k. Obviously D,[#,v]<<co and
D,[u, v] =D.[tt—tty, v—v,] + Dot — s, v,]
+ Do o4y, v— 0] + Dao[ts, v:].
Letting A&, k—oo, we get
Dolu, v] :hl,ikfi D lus, v].
In a similar way we have

D.[u,v] = lhim D, [u;, v].

The equalities for (, ). are obvious.

Lemma 2. If ue Ifyf/'é” (2) and K=max g, then uc I/Li/é”(g)
ae
(Cf. Ladyzhenskaya-Ural'tseva [3] p. 75, Lemma 3. 3).

Lemma 3. If uc I/ffél’(!.?), then

k(m—1)
m

“u”sznﬂm_zh)(a)g ——2k

7%/ Laxcoy (%* <k<—1g—- ).
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(45
1N
V]

Proof. When u< Vf}él’(!)), we have

T p—— [ PN =)

(cf. Nirenberg [5] p. 14). If we put u=u*""2"29 then we get the
inequality of the lemma (more precisely we must show in the first
place that we have this inequality for uEC‘m(Q), and in the next
place that we have it for ue I(/)Vé"(g)).

Lemma 4. For any us WP (Q) we have

” u”Lz(ﬂ)gBmk”Vu”sz(ﬂ) )

where
k(m 1) {(m~2)k—m}/2km
( T (mes 2) (m=2)
B,,=)
\ }) (mes Q)(M-—l)/Zk (m:l)
and
m m
i <k<—2— (m=2)
—— (m=1)
5 .

Proof. When m=2, by Hé6lder’s inequality we have
“u”LZ(Q)g“u“LZIHn/(m—zkz(a)(mes ~Q> (Gt 2lm] 2mk .

Therefore from Lemma 3 follows the inequality of the lemma.
When m=1, by the inequality

w@ =5\ Iruiav
and Holder’s inequality we have
®) |l <3 (mes %7 o

Therefore we get the inequality of the lemma.

Corollary 1. If ucs f/’Vél)(.Q), then for any K=max ¢ we have
or
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1965 Loy B il [V %8!] 1,405y

where
j Lfn@—:ﬂ?_ (mes QW) mii=mizkm (3 >9"
" 1% (mes QUO)@DIzk (m=1)
and
P <k (m=2)
k> é— (m=1).

This inequality follows from Lemma 2 and Lemma 4.
Corollary 2. For any u= W{®(2) we have

““”szco)gB;’k”Vu”Lz;,(n) s

where
k(m—1) 1/m =9
) J—-——m_zk (mes 2) (m=2) ,
mk —
I—Lmes 2 (m=1)
2
and
1 M >
iy <k<< 2 (m=2),
k>—§~ (m=1).

This inequality follows from Holder’s inequality and Lemma 4.

Lemma 5. For any ues I;’Vén(g) we have

e G e R e T

m

(m=2,
NPES T2

<k<1)

or we have
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o< {5~ (mes 20 u]l 27l 2e)

1

(m=1, 5

<k<<1).

Proof. We begin with the case m=2. From Hoélder’s inequality
follows

Sa u’d V:S uu*dV
g [S qud VJ «/2k [S u(z—a)-zk/zk-ad V] k—a)/2k
for every a(0<<a<<(2k). Putting a= {(m+2)k—m} /k, we have

, wavsiu gap-mrmulzepn
2

Lomksim—-2)(9)*

Therefore from Lemma 3 follows the inequality of the lemma.
When m=1, by the inequality (5) in the proof of Lemma 4 we
get

S wdV = S u*u*dvV

2 o
<\, wa V(- (mes 2 pulun
< (- (mes @)D o [Pl 532.

Lemma 6. If uc ;Vél)(g) satisfies
o (= E)AVCK(mes gy
for some positive ¢ and for every K=K,>0, then
vrai max #<C’,
where
C’-: [K‘I)/(1+E)_|_c1/(1+5) {Ko mes Q(Ko)+ ”M”LI(D(KM)}EKHE)] A+&E
(Cf. Ladyzhenskaya-Ural'tseva [3] p. 92, Lemma 5.1)
P
Lemma 7. If ucW{(2) satisfies
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7 %] 1,00, <CK(mes Q%)

m m
>
< m+2 <k< 2’ m=2)

for every K=K,>0, then

vari max u#<<C’,
o

where C’ corresponds to C’ in Lemma 6, in which we replace ¢ by

(m+2)k—m

kE(m—1)
2mk

, C by m—2k

C, and K, by max{K,, maxy}.
0e
Proof. By Schwartz’s inequality we have

Sa(m (umK>dV§”u(K)”Lz(ﬂ(K)p)(meS Q(K)>1/2-

Therefore from Corollary 1 to Lemma 4 and the assumption of the
present lemma follows

Sn(x) (u—K)dVg k;,lm__zé) CK (mes ch))1—((m+2)k-m)/2mk

for every K=max {K,, max ¢}. Hence the assumption of Lemma 6
FY]

is satisfied.

Lemma 8. Assume
'Z=:1 piffiéﬁo(-")_‘zl £i=0

((&, -+, &4) is any real vector)

and

% ELan(2) (0<<k<1).

Then for any us ﬁfél)(sz), we have
17l = lo-simDa .
0

Proof. From Hoélder’s inequality and from the assumption of the
lemma follows

i[5 2]
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g”]'/*i)°”L"/<1""’<n)Sa ::Z:p”,< g: )( aa-;tf )av.

Corollary 1. Under the same assumption as in the lemma, if

P
usWP(R), we have

”L"Kl—k)(D)Dn(K) [u]

1722, <] z}o

for every K=max ¢.
22
This inequality follows from Lemma 2 and Lemma 8.

Corollary 2. Under the same assumption as in the lemma, if
P
usWP(Q), we have

”%( >”L (:,(K))gB,,,; V ” HL,,, o ”(D)Da(m [ U,

for every K=max ¢, where B,,,k and k are the same constants as in
a9
Corollary 1 to Lemma 4.
In fact, by Corollary 1 to Lemma 4 and Corollary 1 to Lemma 8

we get the desired inequality.

Lemma 9. Assume

2 p J=x>1__p0<x)2 :?20

i,j=1
((&y, -+, £,) is any real vector),

1

TEL,,,(I_,,)(Q) (for some k with k<<l when m=2 or
0

i 1

with % <k<1 when m=1)

7=0,
and
FECo,0(2).
Then we have
inf (Golu] +2Hou[f, ] )>—oo.
usW(2)

Proof. Let K be a constant larger than max¢. Then we have
ag
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G.lu] +2H,,[ f,
;S 1 p, 0 8u!dV+Spqude—Zga(MC“JFK) FldV

2 ij=1 ox; 6x,~
—2~S z on ou

2 b

oo 50 T Bx, ox;

av-o{  weydv

—%S f'dV—2K max |f] mes @ (0).

By Corollary 1 to Lemma 4 and Corollary 1 to Lemma 8, we get

G.lu] +2H,,[ f, u]

= {—}— —e nff} 170 ]|7 a0y

”_El Lk/’x—k)(g)
-(%maxlf] +2K>max | f]l mes Q.

Therefore, by choosing ¢ so small that the coefficient of [[Fu|},,ww, is
positive, we have

G, (u] +2H,, Lf, ul

=— (%mﬂaxlf{ +2K>maxlf|mes Q.
Lemma 10. Under the same assumption as in Lemma 9, if u&<
@
W P(Q) satisfies
Gﬂ [u] +2HD,1 [f’ u] gc;

then we have
Do[u] <Golu] <C',

where C' depends on m, k, C, || 1/Doll caya-rron mia_xif], max ¢ and mes 8.
Proof. Let K be a constant larger than maabx ¢. Then we have
Gl <C+2{ |f (u®+ KDV

gc+2gm | F14d V+2K max| | mes 0

<C+ (—:— max| f! +2K>m§X]fimeS 9+€S o, YAV

From Corollary 2 to Lemma 8 follows
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Golu] <C-+ <—}—m_axi 1+ 2K )max| f | mes 2

mkH——‘th/u » DDy L%]

Do
§C+<—1«mgxlfl +2K>m§1xff]mes 2

+ EBmk [ ”Lk/(l-k)(D)Go [1/{] .

Therefore, by choosing ¢ so small that the coefficient of G.[#] is less

than %, we have

Golu) <2C+2(-L-max| 7| +2K)max| f | mes .

Lemma 9. Assume

m

> piEiE;i=0 ((&, -+, £.) s any real vector)

i,j=1

and
0=0,=>0.
Then
inf Ga[%]>_‘o°s
A
where W= {ucs WP ()| Ho,u] =1}.
Proof.
Gl 2\, 3 pu Gt 2 av| quwav
> m lqu ] = maxlzl

Lemma 10'. Under the same assumption as in Lemma 9, if
ucsI,, then we have

Do [u] <Gou] + m_ax%.

Proof.
Da [u] an [u] + ! Hﬂ,q [u] ]
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_ |
gGa Lu] -+ maxlj{a,p [u] .
P 4

Lemma 11. Any bounded set in Tijg”(s?) s relatively compact
in L,(2).

(Cf. Smirnov [8] p. 351.2)

Corollary. Assume

m m

2=1Pii5;5:‘2 Do(x) ;5320

((&, -++, &) is any real vector),

1 .
E’—ELW—H(Q) (for some k with mﬁZ <k<1

when m=2, or with %<k<1 when m=1).
Then
A= (ue WP(Q) | Do[u] <C)
is relatively compact in L,(2).

Proof. From the assumption of the corollary and from Lemma

8 follows [[F#|.,,w0y<<C’, and therefore from Corollary 2 to Lemma 4
follows |[#t]]1,,c0y<<C"".

L..(2).
New Let {u,} be a Cauchy sequence in L, ().
“V<un—un')”L2h(ﬂ)
gﬁyun”L“(ﬂ)_!_ ”Vun'ul-zh(ﬂ)<2cl

Thus by Lemma 11 A is relatively compact in

Since

and

26, — e, ]| s >0 (38, W' —>00),
from Lemma 5 follows

|t — || Liy—>0 (12, W' —>00),

so that {u,} is also a Cauchy sequence in L,(2). Hence U is rela-

3) In [8] only the relative compactness in Lp(2’) (£’ is strictly contained in 2) are

stated. When ue VF’%D (8), a similar discussion leads to the relative compactness
in Lp{2) (cf. Suzuki [9], p.44).
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tively compact in L,(2).
Lemma 12. Let the elliptic operator

"0 ou
peng 0 22)-
u ;§1ax,- 2 ox; qu

be such that

m m

>3 piSiEi=po g&?

2,7=1

( p=>0,(&, -+, &,) is any real vector)

317-':‘ 0
ox. q€Co(2).

If ueC, (2), then we have
lulle,,.n=<Clll Lutl ¢, .o+ max|u|],

where Q' is any subdomain of 2 which is strictly contained in £,

and C depends on a, | %if leow@» 1@llcou@» Doy the diameter of 2,

and the distance between 2 and 92 (Cf. Schauder [7]).

§6. Property (A) and Property (B)

In the first place we shall discuss a sufficient condition for the
domain and the coefficients in the problem (1)-(2) to have Property

(A).

Assume

0 €C(2) ﬂCo,o(EJ—) 4, fECo,oQE) ;0€C,,(02)

and

;\L‘;lpijfiéf%O ((&, =+, £.) is any real vector).
If ¢>0 in 2 and vEC,,(2)nC,,(2) satisfies
Lv]<minf ing

Y=>maX ¢ onof
0e

resp.



Elliptic equations degencrate on the boundary 331
L{v]=max f in 2
P
vgrrgn;a on 09,
then by the well known maximum principle, we have

u<v in@2
Tesp.

for any solution # of the problem (1)-(2) (cf. Courant-Hilbert [1],
p. 329).

Suppose on the other hand ¢30 at x’€Q. If there exists 7, such
that P, (2/)=0 and %LE 00 (@) (j=1, -, m), then there exists a

subdomain 2 of 2 such that 2 =%  and
a— e tEaE =),

R (. A PR
J=1 7

in £, for some positive constants @, . Hence by the transformation
u=(a—e =iy,

the problem is reduced to the case where ¢>>0 in 2.
Therefore, if 82=r,Ur,J---Ur,, then domain £ and the coeffi-
cients in the problem have Property (A), where

I={x€02|q(x)>0},

ri= (x€02| pu()=>0, and -2 (j=1, ., m)

are continuous in a neighbourhood of x}.

We now turn to the discussion of Property (B). Let x, be a
boundary point, and x,=S, where (i) S belongs to C,, (02 need not
belong to C.,), i.e., there exist a neighbourhood U, = {x||x—x,|<ls}
and the local coordinates y,(x), *-+, ¥.(x) €C,,(U,,) such that

Uxoﬂsz {xe Uzo}ynl(x> = Yn(%0) =0}

and
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D(yly"'7y1n> .
Dir, ) J‘ #0 in U,,
and (ii) S satisfies
U,nec{zeU,|y.(x)>y.(x,) =0}.

Assume, rewriting U, n2 as w(x,,¢), that

D ECo(0(%0,0)) N Coo(w(Xo, 0)),
qeco,t)(a’(xo: 0'>>,

5 0 (-2 ) (=€ 1)
> ox <Pu o, ) (Vi ¥e(%0)) (=1, -, m—1) is bounded

in w<x07 6) )

and that there exist constants g, b, c(0<<a<<1, b>>0,c >0) such that

aym 53’»; a— 2 - a < . aym> a—1
(6) (a— 1)219” ox, o1, Y ”21 ox, b ox. Y

<—by;° in w(x,, ).
Then, by setting
m=1
v=233 (9= 2:(%0))*+ I,
we can construct a strong barrier function.

In fact, taking ¢ sufficiently small, we have
0 vV
=5 (w2 )-
[v] = P2 2o\ b x, )

L LTI i BT 6(.33’»)@”—
12117” 0x; 0x; 0y.0y, +112'=ll§ 0x; by 0x; / 03, ”

- e 0% 0 L o5 ( t’iyk > _
2Iz=1 i,j=1p“ ox; ax, + )§11121 0x; bus <yk yk(x0)> w

0}’", aym a—2 6 < . 6ym > a—1
+ala— D‘,T"_‘ 2 ox, ox, " +a:.121 0x; bi ox, )"
<0 in w(xy, 0).

Obviously v satisfies all other conditions for a strong barrier function.

§7. Examples
1) Let

= {x!kZ= xi<1(m=2);.
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Consider the problem

m 2/m—€; \
> a‘; {( \/2 ) g;‘ DUt —qu=f(0<e2/m)
in 2,
U=¢p on 02,
where
q;feco.aQQ)ﬂCo.o(E)’
¢ECz,a<~Q)ﬂCo,o<§),
and

g=0 in 2 (q#0 on 89).

This problem has a unique solution.

Proof. Here suffice it to say that we prove that Property (B)

I

is satisfied. Let x,£62. In w(x,,0) take y,=1—\/kE x; (I=1,-+,m)
=1

as local coordinates. If we choose a number @ such that 0<<g¢<<l

~_2”_1_—|—min e;, then we have

6y,,, aym a—2 a < . aym ) a-1
(a 1>'2]_ ]:7;1 ax a y"‘ +§1 ax, ptl axi Yom

~@-DEa-VHa) T (L)
152 -VEa) T e

~@-DF (1-/F )" (vl
S

> af
k=1

=@+ —e)} (2 : ) g
Xk

k=1
\/2 x}
E=1

gé{(a—l)—i— (“ min e; )}(

2
> 2—142/m—maxg,.
m
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— {(a_]-) + (%——mm si>}y";—1+2/m—max5i.

Thus the inequality (6) is satisfied.
2) Let
2= {x|0<x,<1(i=1, -, m)(m=2)}.

Consider the problem

L apm-g; OU >_ _ < A —2_> .
2 dx; <x, ox, ) 9% fl0<e=--) ing

Uu=¢p on 02,
where
0,7 €Co,a(2)nCoo(2),
0€C.,a(2)nCoo(2)
and
g>0 in 2(¢+#0 at x=0).
Again this problem has a unique solution.
3) Let
o= (x1<Tm<4(m=2)}.

Consider the eigenvalue problem for

£ VB )

o1 0x; k=1 0x;

m 6 7“—2 2/m—E€, au }— B
s {2 ,E’“) oz, AT Aou=0

<o<s,.g%, 1§m’<m> in 2,

8
I

0 on 042,

where

Q) p)f ECO,G<~Q> ﬂCo,o<§):

and
0=p,>0 in 2.

This problem has countable and discrete eigenvalues.
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4) Let
2= {x|0<<x,<1(i=1, ---, 2m)(m=1)}.
Consider the eigenvalue problem for
é a ( }/171—6' ou >+ - 0 {(1_xi>l/m'5, ou }
1=1 ax, 636, 1=1 3x,,,+,- ax,,H.;
—qu+/lpu=0<0<e,-§i> in 2,
m
u=0 on 042,
where
q, P;feco'oc<g> ﬂco,0(§>
and
0=0,>>0 in E
Again this problem has countable and discrete eigenvalues.
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