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The first boundary value problem
first eigenvalue problem for the elliptic
equations degenerate on the boundary

By

Kazumasa SUZUKI*

Introduction

The degenerate elliptic equations have been studied by many

authors. Mikhlin [4] discussed those degenerata on a part of the

boundary. However, he treated only the weak solutions of the problem.

Il'in [2] and Oleinik [6] discussed the degenerate elliptic equation

They proved the uniqueness and existence theorems for the genuine

solutions of the boundary value problem. They imposed some condi-

tions on the equation, especially they required essentially that the equa-

tion is reduced to the case when c<,cQ<.Q in the domain.

We treat the elliptic equation in the domain

m r) r)u

which may be degenerate on the entire boundary. We prove, by the

variational method, the uniqueness and existence theorems for the

genuine solutions of the first boundary value problem and the existence

theorem for the genuine solutions of the first eigenvalue problem.

We do not assume that #2^#0>0 in the domain. However, in order

that Ladyzhenskaya-Urartseva's estimation for the solutions be appli-

cable, we have to impose certain restrictions on the "order of de-
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generacy".

In §1 some notations and terminologies are introduced. We develop

the main results in §2-§4; especially the boundary problems and the

eigenvalue problems are stated in §3 and in §4 respectively. Section

5 is devoted to the lemmas used in §2-§4. In §6 we give some

sufficient conditions for the validity of the assumptions made in the

main theorems. Finally we arrange, in §7, some examples to which

our theorems are applicable.

The author wishes to express his sincere thanks to Prof. M.

Hukuhara for his helpful suggestions and constant encouragement,

§1. Notations and terminologies

Let Q be a bounded domain in the w-dimensional Euclidean space,

and d@ its boundary.

By C/,a(£)(0<C<2<;l) we denote the space of functions u, the l-th

order derivatives of which are Holder continuous on Q and for which

where

and

Hif{X,0=max sup

Also C/.oG2) will denote the space of functions, the l-th order de-

rivatives of which are continuous on Q.

By C/faG0) we denote the space of functions which belongs to

C/,aG0') for any domain Of strictly contained in Q.

If for any x^dQ, there exist a neighbourhood UXQ = {x\\x — xQ\<i0XQ}

and the local coordinates y± (x), --,ym (AT) e C/. a ( £/,0) (0^a<l) such

that

) -o} n
and
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, -+ n
.. r ^ ' ° '->%m) I

then we say that dJ2 belongs to C/,a.

Let iGi,-",^,,, ••• be the sequence of domains such that each mem-

ber Qn is strictly contained in the next J2«+1, and the boundary dQn
00 _

belongs to C/,a. If J2=U^, then we say that QQ belongs to C/,a«=i
and we call {£,} an approximating sequence of domains for £(a0e

C/,a). Hereafter we assume 9J2 belongs to C/,a.

By Lp(£f) we denote the space of functions ^ which are measur-

able in J2 and for which

Let Coo (J2) be the set of functions which are infinitely differentia-

ble in J2 and with supports strictly contained in Q.

When we have

for the function u defined in J2 and for every function £e (?«»(£), we

call wi the generalized derivative of u with respect to x{ and denote

it by -j£-.

By W(p\&) we denote the space of functions u measurable in Q

and having the first order generalized derivatives also measurable in

Q, and for which

By W$\£?) we denote the closure of C^C^) in IFf(^). For

(^) we shall denote by ^(.fi) the subset of W$\Q) defined

by

9s

For u<= Wp*(f?) and a real number K, we define

— jfiT, 0}
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and

For p:J(i,j = l, •" ,m\ q, peC0,oC0) and

we set

ffo.P[u,v] =\ /o ^

Gfl [M] =Gfl [M, M] , Z)fl [M] ̂ DD [u, u]

and

HQ,p[u] =H0ip[u9u].

Now we shall consider the boundary value problem

(1) L[u]**£ --(pu--)-qu=f ins,

(2) u = (p on ̂ J2,

where pij=pji9 q, /eC0,0(^) and ^eCli0(J2). We say that u is a

weak solution of (l)-(2) if

( i ) G0 [u, C] + H0,, [/, C] = 0 for every CeE T72
(1) (5) ,

and
9

(ii) Z?*[w]O>, and there exists {w*e PTi1}(^)} such that

D0[u — uk]-*Q and ||«— ^iU2(fl)-^0 as /z-»oo.

If KeC2loC2)nCo,oC0) satisfies (l)-(2) and A,[«]<oo, then we call

u a solution of (l)-(2) (in this case A-^Ci,oC0) HC^oO?)).

For the operator L and a boundary point xQ^9£, we define a

strong barrier function #(#) as such that, for some <C>0,

(^ 1 ) V\X) Gr t^o.o\Qb \^o> ^y y

(ii) v(jc)=0 at j^o

(iii) t;(^)>0 in o>(#0, tf) — {^0}
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(iv) L [v] <0 in co(#0, <0,

where (o^x^d^

To abbreviate the main theorems, we define Properties (A) and

(B) of the domain and the operator L, as follows:

Property (A). For any boundary point #0 there exists some <j>0,

such that G)(tf0, <0= {x^®\\x — xQ\-<a} satisfies the following condition.

If #eC2,o('0)nColo('0) satisfies

i min / in co(x0,

max <p on
3co(a:o.p)

resp.

max / in

v<L min <p on 9a)(tf0><0>

then for any solution u of (l)-(2), we have

resp.

in co(Xo, <r).

Property (B). For any boundary point there is a strong barrier

function.

§2. Weak solutions

In this section we consider the boundary value problem for the

degenerate elliptic equation (1). In the first place we show that any

solution of (l)-(2) is a weak solution of (l)-(2) (Theorem 1), and

in the next place we give an a priori estimation for the weak solu-

tions of Ladyzhenskaya-Ural'tseva's type (Theorem 2).

Theorem 1. If u is a solution of

(2) u=cp on 0J2,
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then u is a weak solution of (1) —(2), where

ijS&^Q ((ft, ••• ,?«) *s 0»y r#a/ vector^.

Proof. For any fe^1}(j2) we take a sequence

such that C.-*C in Tr,a)(fl) as A->oo.
Since weC2,0(^) satisfies (1), we have

Therefore, by Lemma 1 and in a similar way we have

= lim(G. [u, G,] +HaA [f, G] ) =0.
A-»oo

Moreover we can show that there exists a sequence

such that D0[u — uh]-*>Q and |[M — uh\lL2W-*Q, as follows.
Since D0[u] is finite, we get

Choose an approximating sequence {J2,,} for ^(9^eClf0), and

set

in J2A
+^

in A7=

in Ql

in Q—Qh

where -K"A=max|^— ̂ ]->0 as

Then we have
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and

D0[u — u»]

-[-Kt] + D0l[u-<p]

On the other hand

and therefore

Thus

and

Finally we show that uh^W™(&). Note that u —

which implies that «—0>e TTjPCaO. Therefore, if we set

' max{u—(p — Kh,Q} in Qk

.0 in Q-Qh

t—(p+Kh,0} in Qh

in Q — Qh,

o
then Vh^^W^(ST) (cf. Lemma 2). Thus

i.e.,

Theorem 2. Assume that pu9=pji q, /^C0jo(^)
X-y satisfies

m in

V -/i
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( (? i>-•• ,?« . ) is any real vector^

where

( ™> o <£<! w>A0»

when m = l').

If u is a weak solution of (1) — (2) which satisfies DQ [u] <d,

then
vrai

when C depends on m, ky d and C' (C; is any positive constant such
1that |, max|/|,

Proof. We begin with the case m^2. Since u is a weak solu-

tion of (l)-(2), and u^^ ^(^(.fiT^max 9, K^T), we have
30

K^ d V= 0.
- ,y-i %i OXj

Therefore, we have

f ^\ (K) S
Jo i,y-i

du du

- Jz Jo Z

<2max{maxl^i ,maxi/ |2 , l}
s: «

Now by Corollary 1 to Lemma 4 and Corollary 1 to Lemma 8,
we get

X max {max \q\, max | /| 2, 1} [Bmk
f2\\7u\\l2kW^ + ^

o o

Whereas
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O

and u — (p^W(z\&), so that from Lemma 3 and Lemma 8 follows

(II
^/

I ([ |[ ^ 2 l C m
I \\(PllL2km/:m-2k^O)f

which implies that mes J2C7r)->0 as _.

Thus if we choose 7fo(2^max<p, 1) so large that

i
2|| —r- IU*/ci-*>a» max {max \q\, max [ f\2,1} Bmk'

PO Q Q

<2\\ ~^~ HL*/CI-*)W max {max \q\, max | /)2,1}
.PO fl c

x
~

then for any K^K0 we have

- || W/(1.,)C« X max {max \q\, max |

Hence the assumption of Lemma 7 is satisfied.

Next we show that HM|[ L I COCK O >) is bounded by a constant which

does not depend on u.

Since

from Corollary 2 to Lemma 8 follows
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v v«
Therefore by Lemma 7 vrai max u is bounded by a constant C

0
which depends on m, k, d and Cr.

Since — w is a weak solution of (l)-(2) in which / and <p are
replaced by — / and — <p respectively, vrai max( — u) is also bounded

by C,
Thus we have

vrai

which completes the proof in the case m^2.

When m = l, by Lemmas 2, 8, and (5) in the proof of Lemma 4,

we set

Therefore

§3. Boundary value problems

We treat the boundary value problem for the degenerate elliptic
equation

with the boundary condition

(2) u=(p on 8,0.

We give the uniqueness theorem for weak solutions (Theorem 3) and
the existence theorem for genuine solutions (Theorem 4).

Theorem 3. Assume that pij=pji9q9 /eC0,oC0); <^Cli002) and

and also that p{j and q satisfy
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C(?i, ••• ,£») is any real vector}

k with — —-<k<l when

or with --<&<1 when m =

and

in Q.

Then the weak solution of (l)-(2) is unique.

Proof. Let HI and U2 be two weak solutions of (l)-(2). Then

we have

and

for every C^PFfC^). Therefore we get

GfltMi— «2,C] =0.

By the definition of a weak solution, there exist two sequences

' and {u2h^W^W} such that

DD (>!-«!*] ~*0, HWl-MlAlU^-^O

and

D0[u2 — u2h]->0, \\u2 — u2h\\L2W-*Q as

Now set £ = ulh — u2h. Then we have

Gfl[«! — WojHui — Was] =0.

From Lemma 1 follows

GflJX — M2] =0

and therefore, because of #^0,

DaiUi — U2] =0.

Thus by Corollary 2 to Lemma 8 we have
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<HmBm'k

i.e., Ui = u2 almost everywhere in Q.

Corollary. Assume that A/=A.-^Ci.oC0) nCo.o©; ?,/eC0,o(0)*»

a0eCll0 tf^d <z/s0 £A#£ £., <2^rf ^ satisfy

((?i, •••,?*) is any real vector}

_L<
A

- —
m + 2

w/2£?z ^^2, or wzY/z

-^-<A<1 ^A^^ m = ]
£

and

in Q.

Then the solution of (!)-(2) is unique.

This corollary is clear by Theorem 1 and Theorem 3.

Theorem 40 Assume that the bounded domain Q in m-di-

mensional Euclidean space and the coefficients of the problem (1)-
(2) satisfy the following conditions:

(i) A/=A*i

f^O ((flf •-,?„) w any real vector},

—- m^2, or with
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when m = l),

in £,

in £,

(ii) £&£ domain and the operator have properties (A) and CB).
Then there exists a unique solution UQ of (1) —(2). Moreover we

have

G0[uQ] +2H0il[f,u0]

= inf (G,[«]

Proof. By Lemma 9, there exist d and dn such that

inf (GQ[u]+2HQ^[f,u]}=d

and

where {£„} is an approximating sequence for £(dJ2eC2la). Clearly

Moreover we can show that lim dn = d.
n->oo

9

In fact, there exists {uk^W™(Q)} such that

lim (GD [ufl] + 2Zfflil [/, M»] ) - rf
h-^oo

and there exists {M/,|M!— ̂ eC»(fi)} such that

and

99

By choosing n so large that w/^ Wj^CsO, we have
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inf ( G B [

-lim rf^).
/Z->oo

Hence

lim JM = d

Whereas it is certain that for each n there exists a solution

tt.eC2.aC0,,) of (l)-(2) for £„, which satisfies

Therefore we have

which are bounded above by rfi. By Lemma 10 D0tt[un] is bounded

and therefore, if we define un = <p in Q — ®n,

DQ [un] = D0n [un] -r D0_0n [<?]

is also bounded. Since by Theorem 1 un is a weak solution of (1)-

(2) for Qn, from Theorem 2 follows

max | un | <CC,
On

where C depends only on m, k, dI} \\ - l|L*/d-*)Cfi)» max |^| ,
PQ o

max ] / 1 , max ) ̂  | , Dfl [<p] and mes ^. Hence

where Cf depends on the same quantities as C.

By Lemma 12 uur (nf>ri) satisfies

where C'" depends on «, |I-|^-|Ico,ac5.+i),ll9llco,ac3.*i), min A, the diame-

1) This is shown in the same way as in Suzuki [9], where the solution of the first
eigenvalue problem are derived-by the variational method.
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ter of £s+1, the distance between Qn and d&tt+i, !I/iIc0iac5) and Cf.

Therefore we can choose the subsequence of {u,,} such that

«u, uI2, • • - , ulny ---- >MO in Cz.oCSi)

in

"where the upper subsequence contains the lower subsequence and

Wo^C2|aC0),2) *ne absolute value of which is bounded by C"' ' . Obviously

UQ satisfies (1) in £, and D fl[M0] =lim D0a[uQ] =lim lim Z\[^MVj is
?Z-^.cx. «-^oo K'-^DO

finite.

Let us show that UQ satisfies (2) at the boundary.

By Property (B), there exists a strong barrier function #(#) for

any boundary point XQ. Set

and

Then we have

In the first place we choose a)(#0, #), which appears in Properties (A)
and (B), so small that

iH(#)2^ max un

and

•^2 00^ niin un

on dQr\d<o(xQ, <?)• In the next place we choose klt k2 so large that

*)]<! min /,

2) If ||M»||a2»a(^) are bounded and UK-+UQ in C2, o(<6), then us€C2,a(£) (cf. Suzuki
[9] p. 68, Theorem 9).
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L [^2 00 ] ̂  max f

n

mn un
aw(*0,o-)

on do)(#o, <0- Then by Property (A), we have

Therefore, letting n->oo, we have

n fl>*0,<.

Hence, letting #-^#o and letting e-»0, we obtain

Therefore

lim
^^•^0

Thus we have shown the existence of a solution of the problem (1)—

(2). Because of Theorem 3, this solution is unique.

Finally we shall show that we have

G0[u0] +2H0>l[f,u0] =d.

Since u0 is a solution of the problem (l)-(2), by Theorem 1 u0 is

also a weak solution of the problem (l)-(2), L e., there exists a
9>

sequence {u^W$\Q}} such that Z?fl[«0 — «*]-*0, \\u0 — uL\\L2W->0 as
o

h-*°v, and for any C^Wl^CG) we have

Therefore, from Lemma 1 it follows that

GO[UQ] +2H0il[f, «0]

-lim (Gfl[M*] +2HD>l[f, uk] )

For any u^WP(Q\ put
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Clearly £,t^W?\Q} and

£.[C-CJ-»0, HC-C.iw.j-'O as

Therefore

(G0 [«] + £#,,! [/, «] ) - (G, [«,]

= G0 [G] + (Ga [%,

By Lemma 1, letting h-*°°, we have

= lim (G. [MO, C.1 + #..i [/, W ) = 0.
A->o°

Thus we have

GD [UQ] -f 2ft .1 [/, w0j ̂ rf.

Hence we have

GO[UQ] 4-2ft.it/, MO] =rf-

§4. Eigenvalue problems

We consider the eigenvalue problem for the degenerate elliptic
equation

m ft AU(3) s - - ( A , - £ - ) - < 7 « + * > « = o in a,

with the boundary condition

(4) u = 0 on QQ.

We arrange the fundamental properties of the eigenfunctions and
eigenvalues (Proposition 1-2). Next we prove the discreteness of the

spectrum (Theorem 5), and finally we give the solution of the problem
for (3) -(4) which shows that the number of eigenvalues is indeed

countable (Theorem 6).

Proposition 1. If u is one of the weak eigenfunctions corres-

ponding to a weak eigenvalue X, L e., a non-trivial weak solution
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of (3) -(4), where

is 0»;y r^/ vector*),

Proof 8 By the definition of a weak solution, Z)fl[^]<oo? and
o

there exists a sequence {uh^ W^(^} such that

D0[u-uk]-*Q, \\u-uh\\L2W->Q,

o
and for any £<E:W?(Q} we have

G f l[«,C]-^fii,p[w,C]=0.

Putting C = ̂ , we get

Gfl [«, «J —*H0ip [u, uh] =0.

Therefore from Lemma 1 follows

G0[u]-tff0.p[u]=0.

Proposition 2. Assume that pu=pji9 q, ^eC0,0(^) and that pif

satisfy
m

S A-/?A^O((?i, •- , fm)/s «»,y r^7 vector}.
i,j = l

Then for two weak eigenf unctions un, un' corresponding to weak

eigenvalues 4^«', we have

H0ip[un,un,] =0.

Proof. By the definition of a weak solution, D0[un]9 D0[un,]<.°°,
o o

and there exist two sequences {unh^ W **({?)}, {unfh^ W™(Q}} such.

that

D0 [un - unh] ->0, \\un - w^IU^-^0
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o

and for any C^ W*\£f) we have

Without loss of generality we can assume ^=£0. Therefore from
Lemma 1 follows

H0,p[un, unf] =lim H0tp [un, un,h]
h->co

= j-Mim G0[un, un,h] = fclG0[un, un,]
A-»oo

= ̂ IlimG0[unri, unf]
7z-=»oo

= fc*lnr lim H0>p [unk, un,} .

Since ^^/^l, we have

Theorem 5. ^Lsswm^ £/z#£ Pij=Px, Q,
satisfy

" i-i"

C(?i, ••-,?«•) ^ any real vector^,

1

(for some k with — <&<! when m'^>2, or with
m + 2

when m = l\

Then the weak spectrum of the eigenvalue problem for (3)-(4)
are discrete, i. e., the totality of weak eigenvalues taken with res-

pective multiplicity does not have any finite limiting point.

Proof. Suppose on the contrary that we had a sequence of
eigenvalues {An} such that lim ^ = J0

 :^00. By Proposition 2 we can
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construct a system of weak eigenfunctions {un} corresponding to {/l«} ,

normalized and orthogonal with respect to H0,p [ , ] . From Proposition

1 follows G0[un] = hn.

Let e be any number such that 0<Ce<<-^-. Then there exists an£
H0(e) such that

for every #>w0(e)- Since un is a weak solution of (3)-(4) for A = An,
o

there exists vH^WP(G) such that

and therefore we have

>, (e)),

where ^(e) is some positive number.

Because

max ! q \

max

from the corollary to Lemma 11 follows the relative compactness of

{vn}. Now take a Cauchy sequence in Z,2(£) from {VH} and denote

it again by {vn}. Obviously

H*,p[v»-v,>]-*0 (n,ri-+^.

Whereas by the orthogonality of {un} we have

i/H0,p[vH-vn,]

-2HQ,p[un, unf] +H0>p[un,]

Therefore we have
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This is a contradiction.

Theorem 6. Assume that the bounded domain & in m-dinien-

sional Euclidean space and the coefficients in (3) -(4) satisfy the

following conditions :

(i) A-/=&f,tf,peCo,a(£)nC

i, •••,?») is tfwy raz/ vector.^

with — ™-~-<.k<I when m^2,-=

when m = l),

in ,0,

in J2,

(ii) ^^ domain and the coefficients have Properties (^4)

T/i^w there exist eigenf unctions Wi ,& 2 , • • - , & „ ,
corresponding to the eigenvalues ^1

G O [M S ]= inf G f l [M]=

! H0,p[u] =1,

Proof. Since this theorem is proved in the same way as Theorem
4, suffice it to say that we give a rough proof.

Let {@k} be an approximating sequence for 10(9^2 eC2> a). Consider
the problem for Qk, denote by 2BB(^) the set of functions for Qk

corresponding to 2B« for J2 and set
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inf G0[u] =An,
:*iora

inf Got[u]=Ank.

It follows that lim^ = ^n. Now for any k there exists an eigenfunc-
o

tion uHk^C2,a(£k)r[ W^(£) such that

and therefore G^ [unk] is bounded. From this fact results the bounded-

ness D0[unk], vrai max \ u H k \ , and thereafter ]!«„*' ||c,,ac**>

By a diagonal process, we get a subsequence of {#„*} (hereafter

we denote this subsequence again by {unk}) which converges in C2l0(^)

to a solution un of (3) corresponding to AH. Using a strong barrier

function we conclude that u, also satisfies (4). Obviously D0[un]<.°°.

Finally we confirm that un satisfies

G0[u.]= inf G0[u]=*n.

Since un is an eigenf unction for (3) -(4) corresponding to A9, it follows

from Proposition 1 that

G0[un]-*nH,tp[un]=Q.

By the corollary to Lemma 11 for some subsequence {«„*'} of {uak}

we have

lim H0.p[umt']=H0ip[un\.
kf->°a

Therefore

H0,p[un] -lim H0ip[unk']

i^.p [««*'] =lim 1 = 1.
fe/-^=o A/->eo

Thus
Gfl[^K] =^B .

§5. Lemmas

In this section we shall state several lemmas, some of which

were used in the proofs of the theorems in the preceding sections,

while others are of more preliminary nature. Throughout this section
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we assume that pij=pji, #> P> /^Co.oC^) and

Lemma 1. L^ M, v^L2(^, {uh^ W$\Q}} and

be such that

where pu satisfies
m

S PijSiSj^O ((?i, • • • ,?») w fl»^ rec/ vector*).

D0[u,v] =lim D0[uh9 v] =lim D0[uk, vk] ,

where (u,v)0 = \ uv dV.

Proof. From the assumption of the lemma follows

where C does not depend on A, &. Obviously A? [M, v] <C°o and

DC [«, t;] = PC [ u — «*, t; — vt] + -De [w — uk, vk]

+ J9fl [MA, v - vk] + Z)fl [uh, vk] .

Letting /2, k-^w, we get

Ofl [M, v] = lim DC [«*, tV| .
A.fe-^-CXD

In a similar way we have

Do [u, v} =lim Z)fl [«*, v] .
A^-oo

The equalities for ( , )fl are obvious.

Lemma 2. // «eT7?}(^) <mrf ^^max^, fAg» w^e
8fl

(Cf . Ladyzhenskaya-Ural'tseva [3] p. 75, Lemma 3. 3) .

Lemma B, // u^W?\Q}, then



322 Kazumasa Suzuki

Proof. When wepf^CG), we have

IN! L./C.-I>W^-|- HFwkw (w^2)

(cf. Nirenberg [5] p. 14). If we put u = uZKm^l}K~2k\ then we get the
inequality of the lemma (more precisely we must show in the first

place that we have this inequality for weCeoCG), and in the next
o

place that we have it for u^W™(£T)}.
o

Lemma 4. For any u e W™ (£) we have

where

~f (mes

(mes £)C3*-«'

Proofe When m^2, by Holder's inequality we have

Therefore from Lemma 3 follows the inequality of the lemma.
When m = l, by the inequality

and Holder's inequality we have

(5) M<i-

Therefore we get the inequality of the lemma.
?

Corollary 1. // u<^Wf\&), then for any ./f^>max <p we have
30



Elliptic equations degenerate on the boundary 323

where

"'"-^-(mes

and

B'mk='
I 1

-(mes jgwy8*-1)'2* (m = :

This inequality follows from Lemma 2 and Lemma 4.
o

Corollary 2. For any «e W™ (£) we have

-7r-mes

- _ .

This inequality follows from Holder's inequality and Lemma 4.
o

Lemma 5. For any u^W^(&) we have

__

or
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Proof. We begin with the case mj^2. From Holder's inequality
follows

u2kdV]al2k

for every <*(0<<*<2&). Putting a.= {(w4-2)& — m}/k, we have

S M2rlV<^ \\U\\ {0» + 2)A-«} /A |N. | f f f i ( l -A) /*
QUav^\\u\i £2feffl) 1]M1U2WVCM_2A)W

Therefore from Lemma 3 follows the inequality of the lemma.

When m = l, by the inequality (5) in the proof of Lemma 4 we

get

(mes

{ -1- (mes

Lemma 6. // u^W^W satisfies

for some positive e anrf /or

vrai max u<*C ;,£

where

C = [Kll(l+v + C1/cl+£) {^o mes

(Cf. Ladyzhenskaya-UraFtseva [3] p. 92, Lemma 5. 1)
<p

Lemma 7. // weTT^Ctf) satisfies
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for every K^>K0>Q, then

vari max u<C',
a

where C' corresponds to C' in Lemma 6, in which we replace e by

, k(m-l') n , ^ ,
by °' and ^° by2mk - ' m-2k

Proof. By Schwartz's inequality we have

Therefore from Corollary 1 to Lemma 4 and the assumption of the
present lemma follows

^ CK (mes tf^i-cc-^.j/z.*

for every .K'^max {K0, max cp} . Hence the assumption of Lemma 6
do

is satisfied.

Lemma 8. Assume

((ci, ••- ,?») w flw.y r^fl/ vector}

and

Proof. From Holder's inequality and from the assumption of the
lemma follows
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Corollary 1. Under the same assumption as in the lemma, if
9>

have

a-*)wA**> [u]a-*)
Po

for every K^max <p.
30

This inequality follows from Lemma 2 and Lemma 8.

Corollary 2. Under the same assumption as in the lemma, if
9

), we have

for every JT^max <p, where B'mk and k are the same constants as in
BO

Corollary 1 to Lemma 4.

In fact, by Corollary 1 to Lemma 4 and Corollary 1 to Lemma 8
we get the desired inequality.

Lemma 9a Assume

((&, •••,?•.) is any real vector},
1 (for some k with — --<^k<.l when m^2 or

with —=- <^<1 when m = l')

and

Then we have

inf

Proofe Let K be a constant larger than max<p. Then we have
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G B [ u ] + 2 H e , 1 [ f , u ]

4 ,t

I/I£ Jo o

By Corollary 1 to Lemma 4 and Corollary 1 to Lemma 8, we get

G0[u] +2H0il[f,u]
I

- — max 1/| -i-2^max / mes £.
\ £ c / o

Therefore, by choosing e so small that the coefficient of \\^u\\l2k^^ is
positive, we have

G 0 [ u ] + 2 H 0 i l [ f , u ]

-— max |
\ e ^ / o

Lemma 10. Under the same assumption as in Lemma 9, if u e

TTa
a)(0) satisfies

G0[u]+2H0il[f,u]<C,

then we have

D0[u]<G0[u]<Cf,

where Cr depends onm,k,C, lIl/AlU/u-*)^ max|/|,

Proof . Let K be a constant larger than max <p. Then we have

! /I umdV+2K max |/ 1 mes

e s / s

From Corollary 2 to Lemma 8 follows
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G0 [u] <C + f — max | / 1 + 2K\ max | / 1 mes
\ £ Q / o

L ^ . 0
Po

C + f— max | / 1 + 2K )max 1 /| mes Q
\ £ o / o

Therefore, by choosing e so small that the coefficient of G0[u] is less

than -=-, we have

max|/|
£ o / a

Lemma 9'e Assume
m

S Pi££j^Q ((fi, • • • ,£») w fl»^ r^/ vector)
i,j = l

and

inf

Proof.

o P o P

Lemma 10'. Under the same assumption as in Lemma 9', if

[u]
o P

Proof.
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[u] + max--# f l p [u] .
a P

o

Lemma 11. Any bounded set in Wp*(Sf) is relatively compact
in Z,/J2).

(Cf. Smirnov [8] p. 351.3))

Corollary. Assume

x£_I 1
',.7=1

fi, • •• ,?») 2s any real vector},

when m^2, orwith-—-<k<\ when m = l~).

Then

is relatively compact in

Proof. From the assumption of the corollary and from Lemma

8 follows \\7u\\ L2fe(fl)<C;, and therefore from Corollary 2 to Lemma 4
follows \\u\\ Lzkw<C". Thus by Lemma 11 21 is relatively compact in

New Let {«„} be a Cauchy sequence in Z2fe(j2). Since

and

from Lemma 5 follows

so that {«„} is also a Cauchy sequence in i2(^). Hence SI is rela-

3) In [8] only the relative compactness in LP(@') (£' is strictly contained in J2) are
o

stated. When ueWty^ff), a similar discussion leads to the relative compactness
in JLn(0) (cf. Suzuki [9], p. 44).
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tively compact in

Lemma 12. Let the elliptic operator

be such that

is 0wy raz/ vector)

where $ is any subdomain of Q which is strictly contained in Q,

and C depends on a, II ^ ' !lc0g,cg)> II?IIc..a(fl), ^o, the diameter of ®,
O%i

and the distance between $ and dti (Cf . Schauder [7] ) .

§6e Property (A) and Property (B)

In the first place we shall discuss a sufficient condition for the
domain and the coefficients in the problem (l)-(2) to have Property
(A).

Assume

and

S Pi&£j^Q ((&, •••,?*) w <^^j real vector}.
' ,J=1

If g>0 in Q and t;eC2s0(^)nC0i0(^) satisfies

a

p on d@

resp.
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on &0,
30

then by the well known maximum principle, we have

u<Lv in J2

resp.

u^v in &

for any solution M of the problem (l)-(2) (cf. Courant-Hilbert [1],

p. 329).

Suppose on the other hand g>0 at x'^Q. If there exists z'0 such

that A-o/oOO>0 and gAv eC0.oC0) (7 = 1, •", »0, then there exists a
c/^

subdomain Q' of J2 such that Q'^x' and

in ,0', for some positive constants a, b. Hence by the transformation

the problem is reduced to the case where #>0 in £'.

Therefore, if 9ifi = roUr1U-"Ur l l l, then domain Q and the coeffi-

cients in the problem have Property (A), where

are continuous in a neighbourhood of #}.

We now turn to the discussion of Property (B). Let XQ be a

boundary point, and xQ^S, where (i) S belongs to C2;0 ($Q need not

belong to C2>0), i.e., there exist a neighbourhood Z7,0= {jc|| x — XQ\<.0}

and the local coordinates jyiOO, •••>J'»(^) ^C2,Q(UXQ) such that

and
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£0 in U,t,

and (ii) 5 satisfies

U,9nQc:{

Assume, rewriting Uxor\& as CO(XQ, <0> that

= !' -'IW-1) is bounded

in a>(#0, <0)

and that there exist constants a, b, c(0<0<l, fc>0,c >0) such that

(6) («

< — c in

Then, by setting

we can construct a strong barrier function.

In fact, taking 6 sufficiently small, we have

<0 in CO(XQ, <;).

Obviously v satisfies all other conditions for a strong barrier function.

§ 7. Examples

1) Let
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Consider the problem

^ = <p on

where

and

g^O in £ (#^0

This problem has a unique solution.

Proof. Here suffice it to say that we prove that Property (B)

is satisfied. Let x^QQ. In a)(#0,<0 take yi = l —
A-l

as local coordinates. If we choose a number a such that
2

-- + minsl-, then we have
m

min



334 Kazumasa Suzuki

= {(fl-1) + (-? — min £l.)}3C1+2/M-max£'-.m

Thus the inequality (6) is satisfied.

2) Let

Consider the problem

^ = <p on

where

and

" at jr = 0).

Again this problem has a unique solution.

3) Let

Consider the eigenvalue problem for

2/w-£,

n
\ m /

on ^J2,

where

and

P^Po>0 in J?.

This problem has countable and discrete eigenvalues.
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4) Let

Q= {

Consider the eigenvalue problem for

„-£ du

m
u = 0 on aJ2,

where

and
p^>pQ>0 in J2.

Again this problem has countable and discrete eigenvalues.
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