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On the principle of limiting amplitude

By

Nobuhisa IWASAKI*

§1. Introduction and theorem

We study the behavior for large time of solutions of wave equations
with a harmonic forcing term in the three dimensional euclidean space
and we prove the so-called limiting amplitude principle. The principle
states that every solution u(x, 0 for the initial value problem,

(i.i)

(1. 2) u(x, 0 i,-0 = --«(*, 0 I ,.o = 0

tends to the steady state solution, eia>tv(x, zco) uniformly on bounded
sets at £-^oo. Here v(x, ioi) satisfies the elliptic equation,

(1. 3) {- J + c(*) +*'o>K*) -coz}v(x, ioi) =/U) :

and the Sommerfeld radiation conditions at infinity. A denotes the
Laplacian in E3 and o* is a real number. In the case when &(#)=0
and the real valued function £(#) is once continuously differentiable
and its support is compact, this principle has been proved by O. A.
Ladyzenskaja [1] . Here the rate of approach to steady state is like
e~£t, e>0 as £-^oo. When b(x) and c(#) satisfy that

i(jc)=0(-1—wr), c(jc)=0(-|—r^J as |^|->oo, and others, S. Mizohata
\ i x I / \ I x I /

and K. Mochizuki [2] had shown the principle, but they did not give
the rate of approach. In this paper we shall obtain the rate e~Bt under
the assumption that the real valued functions K#)>0, £(#)I>0 are
bounded and their supports are compact.
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Theorem 1. Let /(#), #00 and cOO be functions which satisfy
the following conditions,

i) /00» #00 and cOO vanish outside a bounded set

ii) Si£a/l^£2(£3)
,al<2

iii) #(#);>0, cOO^O, «^rf £/*£y are bounded functions.

And let u(x, 0 be a solution for initial value problem (1. 1), (1. 2).
Then there exists a steady state e{(**v(x\ such that

(1.4) max|«0r, 0-000 e'u/l<lC-e-£', 3£>0, as £->oo,

#(#) is a solution of (1. 3) satisfying the Sommerfeld radiation

conditions at infinity, that is,

d\x\

where K is a bounded set of E3.

We can regard a solution «0ir, 0 as a twice continuously differenti-
able function u(f) from [0,«0 to L2(E3) and as a continuous function

to ^C^3). In this sence there exists the unique solution of (1.1),

(1.2) if /OOe-SKJE8). Let «00 be the Laplace image of «(0 with
respect to ?,

(1.5) «U) = A'«(0^ in

Then

and

(1.6) «(0= -r- lim\ --e»dl in
Z^:^

for large <r>>0. Where

(1.7) {

(1. 7) has the unique solution belonging to L2(£3) if /OO
belongs to L2(jB3) and Re^ is sufficiently large positive0 Therefore
we study the analyticity of v(X) with respect to A and the order

of IbWIUw as
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§2. Some lemmas

1) In the case when 600 =£00=0

has the unique solution v(x,X) in Sfi* at Re^>0 and v(x, X) is an
analytic function of A to L2. v(x, ^)=^?(^)/ is represented by a funda-

mental solutions E(X) as following

/", where

Let 0(5) denote a Hilbert space consisting of all functions / such

that £6W/eL2(£3) with the inner product (f,g^z=(e^f,e^g}LKEv*
(-oo<<5< + oo). Now it is clear that 0(5)cO(5') if 5>5'. Using

these space,

Lemma 1. Let

Then -RGO, which values a bounded operator from 0(25) ^o 0( — 25),
fs ^^ analytic function of A and satisfies the following estimates at

-5 (5>0).

ii)

denote the norm of 0(5), i.e. l / i l = \ \e*^f\2dx and
J£3

C(5) ar^ constants.

2) The case when 600=0,

Lemma 2.

Green operators of LI 00,
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Then we can consider G^) as bounded operators from Q(fl) to
Q( — <5). In this sense we can analytically continue G^) to an

analytic function of X in Re£> — <5'<0, which satisfies the following
estimates (we denote the extension also by

and GI(^) are compact operators from Q(d~) to Q(-d^) (which map

any bounded set to a precompact sef), where £(#);>0 is a bounded

function with compact support.

3) The case when

Lemma 3. Let

and G2CO #£ £fe Green operators of LZ(A), that is,

Then we can consider G2(A) as bounded operators from Q(Jf) to

Q(-d^). In this sense we can analytically continue G2GO to analytic
function of & in Re^<— (5;/<0, which satisfies the following estimate

{we denote the extension also by G2GO),

Where b(x}^>§ and cO)I>0 ore bounded functions with compact
supports,

§3o Proof of lemmas

1) Proof of Lemma 1 (the case when c(#)s=J (#)==()).
We first prove that ^(-0 is an analytic function of X which values

the bounded operators from Q(2<5) to Q( — 25). In order to do so it

is sufficient to show that /OO-^OO; <Pi(x^ = \ x—y le~^x"
JE3

(f=-l, 0, 1, 2—) are bounded operators from Q(2fl) to Q(-
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Since | *TAI^ ] - £TRe A'^I^+S'^I^+S'^+BI^ Re ^> _ 5<Q>

that is,

Hence /(#)-*?>. 00 are bounded operators from Q(+2fl) to Q( — 2fl).
Next we estimate R(A). Since Q(3) densely contains S) (compact
support, C°°-f unction), it is sufficient to show the inequality in the
case /e 3). When Re ,00, we can write

(3-D

(3.2)

where 3" and f? are Fourier transform and Fourier inverse transform,

respectively, i, j, k take a sign of + or —, and

r(+ + +) = ro «0 x [o 00} x ro «oi \ i , i , i j LV, y xx [_v/, y /x |_w, j

Now we prove the estimate i). To do so we divide A into four
cases which are fa; Re£>jV>0}, <U; — 3<Re^^V, Im^>]V}, {^; -5
<;Re,*<;7V, Im^< — ̂ V} and {^; — 8<ReA<^N, |Im^I<^V}. When A is
in {Re^JV>0}, it follows that

sup C

Hence, we have from (3.1)

Since Q(25) cL2cQ(-2^), (5>0), we conclude that
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When & is in { — d<Ret<>N, ImX^N}, we consider that f is of three-

dimension complex space: C3. Then /(?) is an analytic function in

C3 and satisfies that

(3.3) sup (l+|?l)M |/Gm<:CM,,,

where A and M are real numbers and CM,A is a constant depending

on A, M and /. And l/4n2(fl
jr^ + f3') + A2 is analytic in ? unless

the points are such that 11 + 11 + ̂ 1 = -^2/47r2. When Jl^ + i/3, <*>0,

£XZV>0, we set

(3. 4) *a./.

We move lines of integration of the right hand side of (3. 4) as>

following,

[0, oo)->[0, +3i/2n] + [ + 8i/2n, +00

Then

(3. 5) J?o./,«a)/= f -4-^fr
^( / •+ / s )x ( / j+ / jx ( / f e+ / fe ) ^71 ̂ i"r?2~

In fact, ^27ri'"?{47r2(f1
2 + ̂  + ?D+/i2}"1 is analytic and bounded in ? on

t, and (3.3) holds there, where

(3.5) shows that -ffc.-,/,*>0)/ is analytic in {Re^> — 5, Im^^TV} as a

0( — 5) -valued function of L Let

(3.6)

where -flTf- is 7i or /.

Lemma 48
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i) sup
S ^ l . x / j x

ii) sup

where Kh is Ih or Jfl and one of Kit Kj and Kk is /+ or /__.

Proof. We may assume N^3. Then

i) Since 47r2(f? + fJ+fJ) = £^ [-3<52, 0] if f e£ x I j X l k , we have

from

sup

ii) Since ^KfXKj-xKk and one of Ki9 Kj and Kk is /+ or /_,

we can write

.Hence

sup p (f , ̂ ) <sup
-- Z~\

<c(U|+i)
c

(]

This proves Lemma 4.

P5/27T P5/27T p5

= -A \ \
Jo Jo Jo 2 . 2r.2— 471 ^Si

Since

s, s= (slt s2,

+«w/O) 1 2dx,

x sup

Trom Lemma 4, i)
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o o o

where a denotes (is,, s24-/——, s3 + z°^— }=ie 8*2 s*3

n>«-HrJo Jo (Jo
X '

^IV^l, S2, ̂ 3?

where , „ , „ „ ^ A

^
L ^i(5i, 52, S8) =/USi, 52+ /-«-, 58 + i-s

\ ZTT Z

Since we can regard the above equality as Fourier transform from

(s2, s8) to (#2, #3), using Plancherel's theorem, we have the following
inequality.

f N 2

2fiv Sj. S2j 53 ) T^-^—-—^——aSi G
7i(Si, S2, SB)

ini I ̂ iQ5i, 52j 5sy j \ 2iK / J Jo (Jo J

and

?(' j_- 8 - i_- d \\2JT I ^5j, S2 i ^^; j ^3 i ^"7;— I tt5j•' V *y "3 />"lV^lj ^2> ^sy j wo2M'03_\a 11 y i t-oi, 02 I t-~^ j 03 I i>~ I I
J J - oo \ ^TT ZTT / I

also using Plancherel's theorem on (j2, j3)-^(s;

2

Orfyi ^2^3
1+00 - ffC
)-« x Jjj

In fact,

Since
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inf I f tCs j .SfcSfc-O 2={ sup

from Lemma 4, ii), it follows that

\ | ̂ 3-8+«H5(7+) /+, /,) GO/ 1 V*

<:ca+
x f

JR

==g-«c«i+«2+*3)f °°
Jo J

^
^2(^1, 52, 53, A)

where

5i, S2, 53) =/ Si + {-=-, S2 + f — -, S3 + 1-=-
Zn Zn

lt st, s,,A) =

In the same manner with 2°, using Plancherel's theorem and Lemma 4,

ii), we have

In the same manner we have the estimates of other S(---)(^)/, that is,

(3.7)
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Thus, from (3.2), (3.4), (3.6) and (3.7) we can estimate R(£)f as
following.

( t . j . k )

Hence

Where A = a + fft -d<a<N, p^N and r = -/3~<5 + £>0. If we take e

such that r<25, we have the estimate of Lemma 1.

When InU<; — jV<0, we can have the estimates in the same

manner with the above case if we move lines of integration of the

right hand side of (3. 4) as following

Thus we obtain the estimate i) of Lemma 1. We can prove the

estimates ii), iii) and iv) of Lemma 1, using the fact that pi(Jt), AGO

and pz(A) satisfy the following inequalities,

sup l
£^KtxKjxKk

sup !

where

AGO^

A 0) =2«f,AO). AW =
AW)=AU+A)-AU) =

The proof of Lemma 1 is complete.
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2) Proof of Lemma 2 (the case when &(#)— 0, c(#)^0).
Lemma 5. Z,g£ c(#) &£ ^ bounded function with compact support

and c(#)>0. Let u{x} satisfy that

(3.8)

OO^O m £3 z/ Re/l>0.

Proof. From (3. 8) and the assumption that c(#) is a bounded
function with compact support, we have the condition of u(x^) such
that

(3.9)

(3.10) «u a

as \x\-*°°. Let A = a-+-i@. When j9 = 0, we have from (3.9) that

(3.11) 0

\x\<R
= \ lgradz*(#) \2dxjr\

J\x\<R J\

\x i

Since the last term of (3.11) vaishes when j?->oo and c(#)>0, we

have that

\ [grad^(^) \2dx = Q, that is, Igrad^(^) i =0.
J\x\<R

This implies that u(x^) is constant. Thus u(x^=Q in E3 from (3.10)

if ^>0. When ^/3=£0, we have w(^)=0 since 2a$\ \u(x^) \2dx = 0 which

is the imaginary part of \ { — A + }2 + c(x^}u(x^) -u(x*)dx. The case

when <2 = 0 and /3^0 is left. In this case it is sufficient to prove the
two fact such that a) u(x*), which satisfies (3.8), is a function of L2;

b) if (J + jS2)w(*)=0 at \x\^>R and u(x^l2(\x\>R), then w(jc)=0
in |#|;xR. In fact, if u(x)=Q in I^I^J?, ^(^)=0 in whole space
E3 from the unique continuation theorem of solutions of elliptic equation
of second order (Refer to Eidus [3] or Povzner [4] for details of
Lemma 5). q. e. d.
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We now prove Lemma 2. Let <JL(Jf) be the Banach space of

bounded operators from Q( — fl) to Q( — 5) and let =®(£) be that from

to Q( — 5). We denote the norm of each Banach space by

\A 5= sup I

Let M(#, ,0 be a solution in L2 of the equation L1(A')u=f where

and Re£>0. Then w(#, ̂ ) is a solution of the integral equation

which is obtained by operating J?(^) to the both sides of L1(A)u=f,

where R(A) is defined in Lemma 1 and £(#)' is an operator which

multiplies c(x^). That is,

(3.12) {/+J?(/0-c(*>}Gia)=J£GO, at Re/l>0,

where I+R(A) -c(^), GI(^) and j??GO are bounded operators on L2
0

To obtain the analytic continuation of Gi(J) we shall show that the

equation of (3. 12) can be solved at Re^<;0 if we consider Gi(^) as

an element of

(3.13): jR(^)e^(ff) cwrf j??0) -c(jc) - ec_^(5) «:r^ compact operators,

that is, they map a bounded set to a pre-compact set, and

they are analytic functions of /I, which value in <B(jf) and

, respectively, at Re £>— <5' /o
g

In fact an integral operator having a kernel e~5lxl-. - r0~8W,
I ̂  jv I

which is the Hilbert-Schmidt type, is a compact operator on Lz, e+8lxl

is a bounded operator from Q(r) to Q(r—^> and c(#)- is abounded

operator from Q(— 5) to 0(5) from the assumption that c(#) is a

bounded function with compact support. Hence we have that -RGO

and J? GO •£(#)• are compact operators. The analyticity follows from

Lemma 1 and the assumption for c(x*)-

(3.14): {/-f-^GQ-cGO-} *«5 «» inverse (I+R(£) -c(x} •}"1et>Z(5)

^ Re/l>0.

In fact, since J?(A) -cOO • is a compact operator on Q( — 5) from (3. 13)
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it is sufficient to show that, if {I+R(X)-c(x>)-}u = Q and

then u = 0. This follows from Lemma 5. Let us put

We now assume that there exists the inverse Ri(A) at A = ̂ . If we
operate Ri(A0) to the both sides of {I+R(X)-c(x*)-}u=f; u and
/eQ( — 5\ we have

{/+SOO}« = £i(V>/, where SO)=l?1U){50)-5Qo)}C(^):

Since R(A)'C(x)- is analytic at /1 = ^0, we have |!S(>0 is<l/2 in some
neighborhood of ^ = ^0. Hence the Neumann series

uniformly converge in the neighborhood of ^ = ^0. This implies that
{/+SGOK1 is analytic in the neighborhood of A = AQ for SCO is analytic
there. Thus, there exists J?i(^) = {/+S(^)}"1i?iOo) which is analytic
in the neighborhood of ^ = ^0. Considering (3.14) and above, we have
that

(3.15): ^GO^U+^GO-^OO-r1 is an analytic function of X at
Re>C>0 which values in JL(Jf).

Let us estimate Ri(X). From Lemma 1, i) we have, at Re^— 5/2,

e^i r -kw •/(*)!.
' - i /wu,

j:

that is,

Hence, since !J?(^) •£(#) • ls^l/2 when U| is large enough and
Re <*> — 5/2, there exists the inverse of {/-f-l?(^)-c(^)-} by Neumann's
series ;

jftOO = /+ £00 -cOO • + OR 00 -^ W • )2+ -,

which implies that /?i(/0 is aaalytic in X and j|£1Q)||5^Const. in
Re £>- 5/2 and U|^M. Since (3.15) holds where Ul is bounded,

we have that
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(3. 16) : -S?iGO can be continued to an analytic function in Re£> — <5',
<5'>0, which value <JL(JT). If we denote the extension also
by j??iCO> we can estimate R^} as following,

Using (3. 16) and Lemma 1, we conclude that

(3. 17) : Gi(/0 can be continued to an analytic function in Re,Q>
, which value J3(d) and has the estimates as

In fact, from (3.12) we have G^X)=R^(X)-R(^ at Re/OO, the right
hand side of which is analytic in Re^> — dr from (3.16). This defines

the continuation. Since IGiGOIs^'l-ffiOO! s'l^Wjs, the estimate 1° of
(3.17) follows from the estimates of (3.16) for R^A) and of Lemma
1, i) for #00 which is j#GO|5<C(l+

Using (3. 12), we have

Operating ^(,0= {/+ J?(^) -c(jc) -}""1 to the both sides of above equality,

Using the estimates of iv) of Lemma 1, of (3. 16) and of 1° of (3. 17)
and the inequality;

we have the estimate 2° of (3. 17), that is,
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The proposition of (3. 17) is nothing but Lemma 2. Since
is a compact operator and l?iGO is a bounded operator, Gi(^) =

^GO'^GO is also a compact operator.

The proof of Lemma 2 is complete.

3) Proof of Lemma 3 (the case when iOO^O).
From the assumption of Lemma 3, that is, K#)>0, £(#)2>0 are

bounded functions with compact supports, we may put #(#) = ^2(#),
where #(#) is a bounded real valued function with compact support,

and there exists the Green operator GjGO of ZaGO which satisfies
Lemma 2.

Operating GiGO to the both sides of the following equality

we have

From Lemma 2 GiGO '#00 • is a compact operator on Q( — £) at

5'<0 and #OO^Q(-d) if /U)eGU). In the same manner
as in the proof of Lemma 2 we first prove that

(3.19): There exists the inverse R2W = {I+lGiW-b(x}-r*^JL(8}

in Re£> — d" for some positive d" which is analytic there
and satisfies that

where JKjT) is the Banach space defined in the proof of
Lemma 2 and ||j \\\5 is the norm of <JL(jT).

It is clear from the analyticity of ^(/Q •&(#)• that ^2GO is
analytic where ^2(/0 exists. To prove (3. 19) we note that the follow-
ing two problems are equivalent, which are to solve the equation;

gx n -

and to solve in L2 the equation;

-000 •
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Here the relations of wOO an(i #00 are given by

f #00 =000'#00
(3.20) I

We put

7\=M000 • GjGO • 000.

Since TA is a compact operator on L2, there exists the inverse of

{/+ 7\} if we can show the estimate \\v\ £2^C|I{/+ T\}v\\L* for all

v^L2. We show it when o£>0; X = a + i$. The proof of Lemma 5

gives that Z,!=--J + £00> D(Li) = <Di* is a positive definite self ad joint
operator^ that is, there exists the resolution of the identity 1

such that

, for all
Jo

Hence we can write

Therefore

If we denote the inner product of L2 by ( , ) ,

Re(7>, t;) =Re(a(*)

Since (Ella(x)'V,a(x)-v) is a monotone increasing function and the

integrand is a positive function from a>Q and j£>0, it follows that

(3.21) Re(7>, 0)^0, Re^>0, for all

Applying it to the equality;



On the principle of limiting amplitude 389

(3. 22) NU'<|I {/+ TJ v\ L* (Re^>0).

The inequalities (3.21) and (3.22) hold at Re/l^O since TK is conti-

nuous in A (The method of the proof of (3. 22) is the same one as

in Lemma 3, 4 of Mizohata and Mochizuki [2] ) . We now study the

case Re^<0.

(3.23) {T,-T^]v

• GiGO -000 • - Oi- /0000 • G1(A-h') • «(#) - } 0

Applying i) and ii) of Lemma 2 to (3. 23) for sufficiently small
and Re^ — /C> — 3'<0, we have

(3.24)

<Const. 1 A i (1 + U i )"' ! a U) • t; 1 5

<Const. 1 h 1 \\v\\L* , for

On the other hand,

Since Re(T^, f)^0 from (3.21) when ReA-0,

|b!I!2<i[ {/+ TiM\*\\v\\*+ \\{TX- T^}v\\*\\v\\* .

Since ||{TA-T^}f;|U-^(l/2)|[t;||L> for \h\^f' from (3.24) if we
choose sufficiently small 5">0, replacing A — h with /I, we have the
estimate

T,H!L2 at

Thus there exists the inverse (/+ TO""1 at Re£> — 3"<CO, which satisfies

(3. 25) IK/+ T,rhwy<2\\hwy .
This implies the existence of the inverse of {/-h^GiGO 'b(x^) •} in

at Re^^-5/r<0 by (3.20). In fact
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From (3. 25) we obtain the estimate of norm of this inverse, that is,

[![{/+ ̂  GO .K*)-n!i5

^UI|G1GOksup|g!"laOO I • I U+ r.nu-supk8"1^*) [ +1

This proves (3. 19).

When Re^ is sufficiently large, G20) =

from (3.18). The right hand side of this equality can be continued

to an analytic function in Re£> — d"<0 from (3.19) and Lemma 2.

Applying the estimates of i) of Lemma 2 for G^) and of (3. 19)

the estimate of Lemma 3 for G2CO follows.

The proof of Lemma 3 is complete.

§4. Proof of Theorem 1

Let u(x,£) be a solution for initial value problem (1.1), (1.2).

And let u(x, A) be the Laplace image of &(#,£) with respect to t in

the sence of L2, Then by the inversion formula of Laplace transform

for a positive constant *„,

°+ in L\

And u(x, A) is a solution in L2 for the equation that

' J-2

that is,

If we regard u(x, A) as a function in G( — 5), we can apply Lemma 3

to M(#, ^). When /(^) belongs to 0(5), M(jt, ^) is analytic in

Re/Q>—5;/-<0 except for one point X = ia) which is a simple pole with

the residue G2(/aO'/00 and, where U| is large, u(x,A) satisfies the

estimate
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This implies by means of Cauchy integral formula

(4.1) M(*,0=-^r+f"*A'#(*^)^ in Q(-3)

n

where <5";>£>0.
In order to prove the rate of approach of Theorem 1 we require

the stronger estimate of G2(/0-/(#) for ;k under the assumption to
/(#) in Theorem 1.

Since J/eQ( — 5), we have

Applying Lemma 3, for sufficiently large Ul,

(4.2) ||e-5WG2(/i)-/(a:)|U^Const.(U]+l)''2, at

On the other hand, F(#, ^) =G2(/i) •/(#) satisfies the equation

(4.3) FGM) +

This implies that

(4.4)

where K is an arbitrary bounded set in E3. In fact,

1
sup

:— y I
and
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Applying (4.2) to (4.4), we have

-1, at

Since u(x,A) = (A — i(o)~1V(x,A) and from (4.1)

sup [ u (#, £) — G2 C^°
AGE.*:

4- 1)^2^^, where £>0

This proves the rate of approach of Theorem 1. Since G2(fc

= ^00 satisfies f 4. 3) at <* = &"<», it follows that V(x) is a solution of

(1. 3) and Sommerfeld's radiation conditions.

The proof of Theorem 1 is complete.
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