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On the principle of limiting amplitude

By

Nobuhisa Iwasakr*

§1. Introduction and theorem

We study the behavior for large time of solutions of wave equations
with a harmonic forcing term in the three dimensional euclidean space
and we prove the so-called limiting amplitude principle. The principle
states that every solution #(x,¢) for the initial value problem,

(1. 1) { & L hx)-2

oF b sretolutn H=fme=

(1.2) u(x, t) }M:%u(x, £)]1m0=0

tends to the steady state solution, e¢“'v(x,iw) uniformly on bounded
sets at f—oo. Here v(x,iw) satisfies the elliptic equation,

(1.3) {—d+c(x)+iwb(x) — o} v(x, iv) =f(x);

and the Sommerfeld radiation conditions at infinity. 4 denotes the
Laplacian in E® and o is a real number. In the case when b(x)=0
and the real valued function ¢(x) is once continuously differentiable
and its support is compact, this principle has been proved by O. A.
Ladyzenskaja [1]. Here the rate of approach to steady state is like

e, e>0 as t—oo. When b(x) and c(x) satisfy that b&(x)>0,
b(x) =0<—{711W>, c(x) :O<H—1;—2¥> as | x|—oo, and others, S. Mizchata
and K. Mochizuki [2] had shown the principle, but they did not give
the rate of approach. In this paper we shall obtain the rate ¢ under
the assumption that the real valued functions #(x)>0, ¢(x)>0 are

bounded and their supports are compact.

Received October 30. 1967.
Communicated by S. Matsuura.
* Mathematical Institute. Faculty of Science, Kyoto University.
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Theorem 1. Let f(x), b(x) and c(x) be functions which satisfy
the following conditions,

i) f(x), b(x) and c(x) vanish outside a bounded set
i) 3|Def] e L(E)
iii) 8(x)>0, c(x)>0, and they are bounded functions.
And let u(x,t) be a solution for initial value problem (1.1), (1.2).
Then there exists a steady state e'v(x), such that

(1. 4) max|u(x, 1) —v(x)e | <C-e™®, 30, as f—oo,
x=K

and v(x) is a solution of (1.3) satisfying the Sommerfeld radiation
conditions at infinity, that is,

Sx=Rlu[2ds———0(1), Swl-d%uﬂwu ‘ds=0(1) as R—oo,

where K is a bounded set of E°.

We can regard a solution #(x,f) as a twice continuously differenti-
able function #(¢) from [0,00) to L*(E?®) and as a continuous function
to 9%.(E?®). In this sence there exists tke unique solution of (1.1),
(1.2) if f(x)e=Di.(E?®). Let # (1) be the Laplace image of #(¢) with
respect to £,

(1.5) ﬂ(z)=S:e”“u(t)dt in I
Then
a(D)=v(d)/21—iw
and
_ 1 .. ) . .
(1.6) u(t) 5 111280_‘_1 T dr in L

for large ¢6>0. Where
Q.7 {—d+cx)+20(x)+BvQ)=f(x), v(A)=L? Rei>O0.

(1.7) has the unique solution belonging to L*(E?®) if f(x)
belongs to L*(E®) and Rea is sufficiently large positive. Therefore
we study the analyticity of »(i) with respect to 4 and the order
of [[v(D) x> as |Ima|—oce.
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§2. Some lemmas
1) In the case when b(x)=c(x)=0
(—4+2)v(x, H=f(x), f(x)eL’

has the unique solution »(x, 1) in 9% at Rei>0 and v(x,2) is an
analytic function of 1 to L% wv(x, A)=R(A)f is represented by a funda-
mental solutions E(2) as following

R)f=EQ)«f, where E(2) :g{ 1 } oMl

AP+ D) dnlx|

Let Q(0) denote a Hilbert space consisting of all functions f such
that eskx\fELz(E:;) with tke inner product (f, g>5:\€a‘x§f, eamg>l_2(53),
(—oo<§<C+o0). Now it is clear that Q) CQ(d") if o>>¢". Using
these space,

Lemma 1. Let

P

1
Rf =4\ (G- (dy.

Then R(1), which values a bounded operator from Q(28) to Q(—23),
1S an analytic function of A and satisfies the following estimates at
Rei>—d (5=>0).

D RMWf]<{C@/QA+[2DA+|R.D} [ flas
ii) |DRA)f|2s{C(@®/A+|RA}|f]ss
iii) [D*RQf|2s<{C@) A+ [21)/A+ [RaD} | flss
iv) |[RW—RQA+M}f|o{C@® |RI/QA+121)A+ R} fls
where | |s denote the norm of Q(3), ie. [fl§=g aleﬁ“[flzdx and
C(d) are constants. ’

2) The case when b(x)=0, c(x)=0.
Lemma 2. Let
L(Du=(—4+2+c(x)u), uc D
and G,(2) be the Green operators of L,(2), that is,
G.()-Li)cL,()-G.(»)=1I: L*—L*
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Then we can consider G,(2) as bounded operators from Q(8) to
Q(—3). In this sense we can analytically continue G.(2) to an
analytic function of 1 in Reil>>—08"<<0, which salisfies the following
estimates (we denote the extension also by G,(1)),

] C .
D GO <y Trem
i) G ~ G+ W)} o< Cla| s

A+ 2]) @+ |Real)

and G,(2) are compact operators from Q(5) to Q(—0d) (which map
any bounded set to a precompact set), where c(x)>0 is a bounded
Sfunction with compact support.

3) The case when b(x)=0.
Lemma 3. Let
LDu=(—A4+2+c(x)+0(x)u, u=s9i.,
and G,(2) be the Green operators of L,(2), that is,
G, () L,() cL,(2)-G,(2)=1: L*~ L~
Then we can consider G,(2) as bounded operators from Q(3) to
Q(—8). Inthis sense we can analytically continue G,(2) to analytic

Sfunction of A in Rei<—a8"<<0, which satisfies the following estimate
(we denote the extension also by G,(2)),

C

|G = yaTTRen

|fls-

Where b(x)>0 and c(x)>0 are bounded functions with compact
supports.

§3. Proof of lemmas

1) Proof of Lemma 1 (the case when c(x)=5(x)=0).

We first prove that R(2) is an analytic function of 1 which values
the bounded operators from @Q(25) to @(—24). In order to do so it
is sufficient to show that f(x)—¢;(x); qa,-(x)=SE3|x—yl"e’”‘"’1f(y)dy
(1=-1,0,1,2--+) are bounded operators from Q(25) to Q(—27).
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Since |e 27| =g RN I Lgtrpt8Hgtl | Re 1> — 520,
(lemoo pav<{lee{1s—y1rerreas) ax
<\\te s 1x—ylieydndy- (1o £ ()10
that is,

I%’ [—:aéci,ﬁ I fl 25 .

Hence f(x)—¢,(x) are bounded operators from Q(+25) to Q(—2¢).
Next we estimate R{1). Since @Q(5) densely contains 4 (compact
support, C~-function), it is sufficient to show the inequality in the
case f€49. When Rei>0, we can write

RWf =T ootz F ()|

2rle])*+a2
2rixe§ ~ ~
3.1 =\ S ®de, FO =2
_ e27-rix-5 ~
(-2 N (%k)gl‘ﬁ,i,k) dr*(&i+5+8) +4° AOLS

where & and & are Fourier transform and Fourier inverse transform,
respectively, ¢, j, 2 take a sign of + or —, and

r'(+,+, +)=10,0) X [0, 0) X [0, o0)
r'(+, +, —)=1[0,00) X [0, 00) X (—o9, 0]

Now we prove the estimate i). To do so we divide 2 into four
cases which are {1; Rei>N>0}, {1; —0<Rei<N,Imi>N}, {1; —o
<Re2<N,Imi<—N} and {1; —0<<Rei<N, |Ima|<N}. When 1 is
in {Rei>N=>0}, it follows that

C
SATADAT [Rea)"

1
R Crle 2

Hence, we have from (3.1)

2 C 2
”R</DfI’{LZ£ <1+ H[)z(]-_*_ [Rel{)z ”f”L2 .

Since Q(28) cL*c@Q(—25), (6=>0), we conclude that
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C
a+apasren e
When 2 is in {—0<<ReAl<N,Imi>N}, we consider that £ is of three

dimension complex space: C® Then f(é) is an analytic function in
C*® and satisfies that

| RS | -2s<<

(3.3) Jsup (1+ €D 1) [<Curs,

where A and M are real numbers and C, . is a constant depending
on A, M and f. And 1/472*(&+£&+¢€)+2° is analytic in & unless
the points are such that &-+é&+é&=—21/4n>. When i=a-+1iB, a0,
B=>N=>0, we set

eZﬂix-E

CEY R(,-,,-,D(/I)fESr('_ i Art(Ei+ &+ 80 + A2 f@) -de.

We move lines of integration of the right hand side of (3.4) as
following,
[0, o0)— [0, +0i/2r] + [+0i/2r, +oo+0i/2r) =1, +],
(—o0,0]—1{0, —0i/2r] + [—0i/2r, —o0—di/2n)=1 +]_.
Then

e27-rix-£

3. 5 R i 7 A :S G d,t.
(3.5) w0 (Df e Tox el yxcrnerny 4t (E1+E+E63) + 2 s

In fact, ™= {4x*(&+&+£) -+ is analytic and bounded in & on
D, xD;xD,, and (3.3) holds there, where

D, = {Rey>0, 6/2r>Im7>0}, D_= {Rey»<0, —0/2x<Im»>0}.

(3.5) shows that R ;,(A)f is analytic in {Reil>—0,Imi>N} as a
Q(—0)-valued function of 1. Let

6271‘:':-5

3.6) S, K, K)Wr=| e RAGL

K;xK;xKg 4ﬂ2<§%+53+53
where K; is I, or J..

Lemma 4. Let p(&2)=1/|42*(&+&+6) + 42| and 1€ {—o<Rel
<N, Imi>N}. Then
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D s pen<-S,
E=I,xI;xI; I]]

ii) sup pl& D)L C
ESK,xKjxKy ’ '”(1+]/1|)(5+Re/1)

where K, is I, or J, and one of K, K; and K, is J. or J_.

Proof. We may assume N>§. Then Re*<0.
i) Since 47°(&+&+&)=2e[—3% 0] if ¢, xI;x1I,, we have
from Rei*<<0

p(E 0 sup < L >£ ¢

c=r-s82,0 \ |22+ 2] 2z’

ii) Since ¢ K; X K;xX K, and one of K;, K; and K, is J, or J_,
we can write

4?8+ 8+ &) =4n2't (&), ze€],, t(&)>1.
Hence
szx,slllgxx,,p(g’ /D_{zsél}z | A2+ 4n22?|

C
g(5/11 +1D(Rea+d)"

This proves Lemma 4.
1° S, L 1) Wf=| e
toxroxr, 4nt (6 4+ 6+ +
X §/2m (*8/2m (*8 /27 e'—27r(slxl+3212+5312)
B _ZS S S L— 4 (s 4 sit 52

7 f(&ds

) f<+is>dsld32d33, S= (SI, 52, 33).

0 0

Since

sy e[ Jermenmimon £ (2) [
<o (lermonr fpax, (1sl, 15, 101< L),
{leommonscr, 1, 1wy

< {Se‘zf"'dx} : {Sggi’rdsl ds, dsg} " S e TBON £( ) |2 dx

1

X .
P—4x*(si+s3+S3)

0<s,s,5<8/2m

From Lemma 4, i)
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(LY e foras e

2ixe§
o [, +3 Eg : > 5
2 SUL T TS Loxloxt, A (E+E+E) +

27T =3 co =27 %] H2Tis %, 8%y H2TiSga3— 0% ~
. e 1*10 #2705 g 3337 0%3
=ZS dslg dszg f(o)dss,
0

0 0 2 . 2 . 6 2 . 5 2 2
47?3182+ So+i— ) +(Ss+i——) t +2
27 2

wf(@ds

where ¢ denotes <z'sl, sg+i—6—, 33+ii>:ig—8xz—sza
2 2n

o Poo S)2m ,—27rs,x
XS S g2milsyaytsgxy) {S e 2mrig, (8, Ssy S3) dsl} ds,ds,
0 Jo 0 q:(Sy, Sz, Sz, )

2 2
where 4:(Sy, S, S, 2) :4”2{<52+i-i> +<s3+i~5—> —s‘;’} L
{ 27 27
e .8 .6
81(S1, S, S3) =f <zsl, So+i——, s3+z——>.
27 27

Since we can regard the above equality as Fourier transform from
(85 S5) to (&2, x3), using Plancherel’s theorem, we have the following
inequality.

(§1e=onscr, 1, 1> s 12ds1ds,

-]

SE/% e_WWS1X1g_1<S_1’ Sz, S3) d31|2d32d53
0 q:(S1, Sz, S3)

628‘21[ ) —oo -2/2m .
inf |q:(ss So S5) | <—2‘{> SSO {So | g:1(sy, S2, S3) | d51} ds.ds;
)

(s1,52,53

and

= \ *eo) At .5 .o \[2
SSO | g1(S1, Sz, Ss) | dszdssgSS_Jf <zsl, Sitin— sﬁ—zE;)' ds.ds;

also using Plancherel’s theorem on (¥, ¥5)—(S,, S3),

)i

dy.dys

[ evesnemnsay,

gS_:e—zewdyl. SSS , e~/§‘a:y1+£1y1!f(y> Izdyldyzdyg .
In fact, |0y;+0y.+08ys|<<1/305|y!.

Since
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inf [q.(8y, S, 85, ) [°=1{ sup p(& DG

(0<s;<8/2m) E=Iix]ix]s
(0<s3,53<e0)
>C(A+1{2])*(8+Re)*

from Lemma 4, ii), it follows that
S le Vs RS (L, J., J.)(Df|*dx

<" ol ((Tjemon 51, 1, 1) (O drdn} .

oo

<C(L+ 123+ Re D) {St:eﬂanldxl}z(ziﬂy
x{ tevmony (e s

eZ'frixE

(&)d
JexTexJe 4n2($§+§§+£§>+12 f( ) &

3° S . JOWr=|

— e>8(xl+zz+x3)gm Sm Swe2ﬂi(3151+12‘z+’a’3) ——-—————g2<sl’ Sy Ss> d81d82 d33
0 Jo Jo q2(S1, Sz, S, A)

where

=F 0 AL _3_>
{ gz<31, Sa, 33) f<s1+127r,52+127r,33 T 127.[

2 2 2
q2(S1, Sa, S3,A) =477:2{(51-)— iﬁ—> + (sz+ z‘3—> + <s3+ i—3—> } + 22
2 27 2

In the same manner with 2°, using Plancherel’s theorem and Lemma 4,
ii), we have

an le TSI, T, JO (Df 12dx
<\ enos (L, I o Of 17
<CA+1AD*G+Re ™| it f(x)|*da
<C(1+ [/II)“2(6+Re2)”2gkaie“’s_“a“" () 2dx.
In the same manner we have the estimates of other S(---)(A)f, that is,

3.7) Sle“”—*”"S(“')(/1>f]2dx

<C(1+ ]Z]>—2<3+Relll)”2g ]e("3_5+5)lz)f!2dx_
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Thus, from (3.2), (3.4), (3.6) and (3.7) we can estimate R(Q)f as
following.

R = 3 RasoDf
-3 3 SK, K, KD}

(,7,k) (Ki, K, Kp

Hence
{ 1o Ry iax

e TIS(K,, K, K) (Df *dx)

(i,7,k) (KixKi.Kh)SR

<C+ ) *@+Ren ™| _lemf () |%dx.

Where 1=a+i8, —0<<a<N, >N and y=1'36+e>0. If we take ¢
such that r<(26, we have the estimate of Lemma 1.

When Imi<{—N<C0, we can have the estimates in the same
manner with the above case if we move lines of integration of the
right hand side of (3.4) as following

.0 .0 .0
0,5)=/ 0, “’7;]*["‘2? eoit)
A .0 . 9
<—°°, 0:[ ]:0, +ZE;J+[+1‘ZT‘, _°°+Z§;>

Thus we obtain the estimate i) of Lemma 1. We can prove the
estimates ii), iii) and iv) of Lemma 1, using the fact that p,(2), p.(2)
and p;(1) satisfy the following inequalities,

sup | (1) P<C(@+Red)™

ESK,xKjixKy

5‘3}3-“’?2(1) [2<C(1+|2])*(6+Red)

o DAL
SR B P s G Re D (3 T ROA LA

te

where
D(A) = Un*(E+E+8) +177
2:(D) =228,00(2), P:(2) =4n"&, 5.0 (D)
D50 = QA+ 1) — po(R) = — pe(A+ ) po (D) B (22+ 1),

The proof of Lemma 1 is complete.
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2) Proof of Lemma 2 (the case when 5(x)=0, c¢(x)#0).
Lemma 5. Let c(x) be a bounded function with compact support
and c(x)>0. Let u(x) satisfy that

1 e—,\‘x—y\ _ N
.8 ul) | L e (u(ndy=0, ueli.

Then u(x)=0 in E* if Rei>0.

Proof. From (3.8) and the assumption that c¢(x) is a bounded
function with compact support, we have the condition of #(x) such
that

(3.9 {—d+2+c(x)}ulx)=0

(3.10)  u(x)=0(]x|™)e ™", %u(x) +au(x) =0(]x|)e ",

as |x|—oo. Let A=a+i8. When 3=0, we have from (3.9) that

(3.11) 0:& A (o) +atulx) umdx

=S KRIgradu(x)de#—g c(x) lu(x) |2dx

|z|<R

rlf, eoran(Gfe)us

Since the last term of (3.11) vaishes when R—co and c¢(x)>0, we
have that

Su R]gradu(x) |*dx=0, that is, |gradu(x)|=0.

This implies that #(x) is constant. Thus #(x)=0 in E*® from (3. 10)
if >0. When af+#0, we have #(x)=0 since Zaﬁg]u(x) i2dx =0 which

is the imaginary part of g{—A+xg+c(x)}u(x) -u(x)dx. The case
when «=0 and B0 is left. In this case it is sufficient to prove the
two fact such that a) u#(x), which satisfies (3.8), is a function of L?;
b) if (4+5Hu(x)=0 at |x|>R and u(x)=L*(|x|>R), then u(x)=0
in |x]>R. In fact, if #(x)=0 in |x|>R, u(x)=0 in whole space
E? from the unique continuation theorem of solutions of elliptic equation
of second order (Refer to Eidus [3] or Povzner [4] for details of
Lemma 5). q.e.d.
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We now prove Lemma 2. Let 4(5) be the Banach space of
bounded operators from Q(—d) to &(—48) and let $(§) be that from
Q(d) to Q(—d). We denote the norm of each Banach space by

| A s=sup|Afis, Ae %)

If _4<1

!BisE§ungf|_a, Be B().
|f5<

Let u(x,2) be a solution in L? of the equation L,(A)u=f where f& L*
and Rei>0. Then #(x,1) is a solution of the integral equation

u(x, ) +RA)c(x)-ulx,)=RQ)-f(x)

which is obtained by operating R{1) to the both sides of L,()u=f,
where R(2) is defined in Lemma 1 and c¢(x)- is an operator which
multiplies ¢(x). That is,

(3.12) {I+R()-c(x)-}G:(A)=R(1), at Rei>0,

where I+R(2)-c(x), G;{2) and R(2) are bounded operators on L2
To obtain the analytic continuation of G,(1) we shall show that the
equation of (3.12) can be solved at Rei<{0 if we consider G,(1) as
an element of 4$(95).

(3.13): R BB and R(A)-c(x)-€A(8) are compact operators,
that is, they map a bounded set to a pre-compact set, and
they are analytic functions of A, which value in B(5) and
A(8), respectively, at Rei>—3d" for some 5'0.

5 e'—z\’x—yl

¢

lx—y]

which is the Hilbert-Schmidt type, is a compact operator on L? e

is a bounded operator from Q(y) to @(r—a), and c¢(x)- is a bounded

operator from @(—¢) to Q(8) from the assumption that c(x) is a

bounded function with compact support. Hence we have that R(1)

and R(2)-c(x)- are compact operators. The analyticity follows from

Lemma 1 and the assumption for ¢(x)-

—8ll
b

In fact an integral operator having a kernel e

+3lzl

(38.14): {I+-R)-c(x)-} has an inverse {I+R)-c(x) -} ()
at Rei=>0.
In fact, since R(1)-c(x)- is a compact operator on Q@(—4&) from (3. 13)
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it is sufficient to show that, if (I+RQ)-c(x) -}u=0 and u=Q(—9d),
then #=0. This follows from Lemma 5. Let us put

R()={I+R2)-c(x)-}
We now assume that there exists the inverse B;(1) at i1=1. If we
operate R;(4,) to the both sides of {[+R)-c(x)-}u=f; wu and
fEQ(—d), we have
{I+S)yu=R,(4)f, where SQ)=FR,(2){R()—R(1)}C(x):
Since R(1)-c(x)- is analytic at 1=1,, we have 'S(1) ;<1/2 in some
neighbortood of 2=41,. Hence the Neumann series

I+SDOYy ' =T+S) +S)2+---

uniformly converge in the neighborhood of iA=4,. This implies that

{I+S(2)}7* is analytic in the neighborhood of 1=4, for S(2) is analytic

there. Thus, there exists R;(A)={[+S)}*R;(A,) which is analytic

in the neighborhood of 1=14,. Considering (3.14) and above, we have

that

(8.15): R()={I+RA)-c(x)-}* is an analytic function of 1 at
Rei>0 which values in A®).

Let us estimate R;(1). From Lemma 1, i) we have, at Re>—4/2,
[R()-c(x)-f(x) | <CA+[2)7*A+|Rea])7* [e(x) - f(x) |5
éC(lJrilD"‘(lJrlRell)‘lslzlpldx)-eZS]"l Jf) ],
that is,
R -c(x)[s=CA+|a])*(A+ |Rea| )™

Hence, since |R(2)-c(x)-|s<<1/2 when |1] is large enough and
Rei>—0/2, there exists the inverse of {/+R(1)-c(x)-} by Neumann’s
series;

R =1+R()-c(x)-+(RA)-c(x):)*+-,
which implies that R;(1) is analytic in 2 and |R,(1)|s<Const. in
Rel>—6/2 and |2|>M. Since (3.15) holds where || is bounded,
we have that
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(3.16): R,(2) can be continued to an analytic function in Rei>—¢,
0’0, which value A(). If we denote the extension also
by R.(2), we can estimate R,(2) as following,

"R,(2) s Const.<leo; Rei>—4¢".
Using (3.16) and Lemma 1, we conclude that

(3.17): G,()) can be continued to an analytic function in Rei>—v,
0'>0, which value B(5) and has the estimates as

1° |G,(D)s<Const.(1+ |2])7*(1+ |Rex|)™
2° |G:() —G,(a+h)|s<Const.1 k| (1+ |2])*(1+ |Rea|),
0<Reh<<l, |h|<1.

In fact, from (3.12) we have G,(2)=R;(1)-R(2) at Rei>0, the right
hand side of which is analytic in Rei>—¢" from (3.16). This defines
the continuation. Since |Gi(A)E<lI|R,(2)s-|R(2)}s, tne estimate 1° of
(3.17) follows from the estimates of (3.16) for R,(1) and of Lemma
1, i) for R(2) which is [R()E<CA+ [2])7*(1+ |Rea|)™
Using (3.12), we have
{I+RD)-c(x)} - {G:(D -G+ h)}
={RQ+"n) —RWN}-c(x) -GG+ h)—{RG+h)—RQ)}.
Operating R,(2)={[+R(2)-c(x) -} to the both sides of above equality,
IG.(2) — G, (a+ R
<IR,(D) [{RQ+h)—R(D}-c(x)-GQ+h) —{RQA+h)— R}
<IR(D) 5+ [ RQ+1) =R} -e(0)l'sG: A+ Rk
+H{RQ+h) =R}

Using the estimates of iv) of Lemma 1, of (3.16) and of 1° of (3.17)
and the inequality;

{R(+h)—R()}-c(x) s<Const.JR(2+ k) — R(D}s,
we have the estimate 2° of (3.17), that is,

IG.() — G2+ h))s

<HR@G+h) — R} {Const | R, (D)o 1G4+ )5+ 1}
<Const.| 2| (1+|2])*(1+ |Rea|)™; 0<Reh, |h|<1.
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The proposition of (3.17) is nothing but Lemma 2. Since R(2)
is a compact operator and R,(1) is a bounded operator, G,(2)=
R, () -R(2) is also a compact operator.

The proof of Lemma 2 is complete.

3) Proof of Lemma 3 (the case when 5{x)#0).

From the assumption of Lemma 3, that is, 6(x)>0, ¢(x)>0 are
bounded functiors with compact supports, we may put b(x)=a*(x),
where a(x) is a bounded real valued function with compact support,
and there exists the Green ogperator G;(1) of L,(2) which satisfies
Lemma 2.

Operating G;(1) to the both sides of the following equality
LiDu={—4+2+c(x)+0(x)}u=f,
usD(L,(2)), fel? Rei>0

we have

(3.18) {I+2G.(D)-b(x) yu(x) =G:(2) - f(x) =g (x).

From Lemma 2 G,(1)-b(x)- is a compact operator on Q(—4) at
Rel>>—0'<<0 and g(x)=Q(—0) if f(x)=Q(s). In the same manner
as in the proof of Lemma 2 we first prove that
(3.19): There exists the inverse R,(Q)={I[+1G,(2)-b(x)-} &)

in Rei>—29" for some positive &' which is analytic there
and satisfies that

'R,(2) 's<Const.,
where JA(8) is the Banach space defined in the proof of
Lemma 2 and || ||s is the norm of A(3).

It is clear from the analyticity of 1G,(1)-6(x)- that R.(2) is
analytic where K,(1) exists. To prove (3.19) we note that the follow-
ing two problems are equivalent, which are to solve the equation;

{{+2G,(0)-b(x)-Ju(x)=g(x) in Q(—9)
and to solve in L*? the equation;

{I+2a(x)-Gi(2)-a(x)-}v(x)=a(x) -glx)=h(x).
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Here the relations of #(x) and v(x) are given by

v(x)=a(x) u(x)
(3.20) { u(x)=—2G:)-a(x) -v(x)+g(x).
We put

Ti\=2a(x)-G,()-a(x).

Since 7, is a compact operator on L? there exists the inverse of
{I+T,} if we can show the estimate |[v||<C|{I+ T\}v|2 for all
vel®. We show it when «>0; A=a-+i8. The proof of Lemma 5
gives that L= —4+c(x), D(L,)=9;i: is a positive definite selfadjoint
operator, that is, there exists the resolution of the identity E,(0< u<Coo)
such that

L. f:S:udEM £, for all feD(L) =Dk

Hence we can write

G f=S 1 g

=1
o u+ A2
Therefore

Tw=i.a(x)-8:#izz dE.a(x)v.

If we denote the inmer product of L* by (, ),

Re( T30, v) =Re<a(x) : S:ﬂf—xzdaam -0, 1)>

I

Sm 2 d(E.a(x)-v, a(x)-v)
o pt 4

d(E.a(x)-v,a(x) v);

Re
S“" (p+@+Da
o (ut+at—F)*+ (2ap)?

A=a+18, a>0.

Since (E.a(x)-v,a(x)-v) is a monotone increasing function and the
integrand is a positive function from a>0 and £>>0, it follows that

(3.21) Re(T,v,v)>0, Rei>0, for all vl
Applying it to the equality;
[[vi]l +Re( Thv, v) =Re({I+ Ty} v, v),
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(3.22) [vll<[[{T+ T3} vl (Rea=>0).

The inequalities (3.21) and (3.22) hold at Rei>0 since T, is conti-
nuous in A (The method of the proof of (3.22) is the same one as
in Lemma 3, 4 of Mizohata and Mochizuki [2]). We now study the
case Re1<{0.

(3.23) {T\—T\.v
={a(x)-G,(D-a(x)- —A—h)a(x)-Gi(A—h)-a(x) }v
=[ha(x)-G(A)-a(x) - +QA—=h)-a(x){G:D) -G, G—h)}a(x)]v.

Applying i) and ii) of Lemma 2 to (3.23) for sufficiently small 2>>0
and Rei—h>—9'<<0, we have

(3.24) [{Th— T}l
<ih|(supla(x)e™ D) |G(Da(x)v]s
+ 12— h| (supla(x)e”™) | {G.(D) = G.(a— )} a(x)v]
<Const.|hi A+ [2]) a(x) -v]s
+Const.|A—A]-(L+[AD* k|- 1a(x)-v]s
<Const.| 2| ||v]:, for Rei>0.
On the other hand,
lolli+Re(Thv, v) =Re({I+ Thi}v,v) +Re({T\— T\ i} v, v).
Since Re(T v, v)>0 from (3.21) when Rei=0,
o<+ T vllellv] e+ H{ T — T vllefvlle .

Since [[{T\— Th3vlle<<(1/2)|v|lz for [A]<d" from (3.24) if we
choose sufficiently small §”">0, replacing A—#% with 1, we have the
estimate

loll=<2|| {I+ T\}v|z at Rei>—4"<<0.
Thus there exists the inverse (/-+ 7)) at Rei>—¢§"'<<0, which satisfies
(3.25) [T+ T h(x) | 22| h(x)] ..

This implies the existence of the inverse of {I+1G;(1)-b(x)-} in
A(6) at Rei>—08"<<0 by (3.20). In fact
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{I+2G,(2) - b(x) } = —1G, (VD -a(x) - I+ T alx) + 1= A0).
From (3.25) we obtain the estimate of norm of this inverse, that is,

T+ 2G(2) - b(x) -} s
<[2G.(Dls-suple™ax) | - [ {I+ Ty} |- sup| e alx) [ +1
<Const.<<oo,

This proves (3.19).

When Rei is sufficiently large, G,(2) = {I+2G,(2)-b(x)}™* G,(2)
from (3.18). The right hand side of this equality can be continued
to an analytic function in Rei>—§"<<0 from (3.19) and Lemma 2.
Applying the estimates of i) of Lemma 2 for G,(2) and of (3.19)
the estimate of Lemma 3 for G.(1) follows.

The proof of Lemma 3 is complete.

§4. Proof of Theorem 1

Let #(x,%) be a solution for initial value problem (1.1), (1.2).
And let #(x,2) be the Laplace image of #(x,?) with respect to ¢ in
the sence of L. Then by the inversion formula of Laplace transform

for a positive constant s,

w(x, ) ——L nmg"”“}wz(x, Ddi, in I

2% w5 Joo-it
And %(x,2) is a solution in L? for the equation that
(— A+ e+ () + 2y ale, H=LE
that is,

alx, )=

Gy ().

If we regard #(x,2) as a function in @(—¢), we can apply Lemma 3
to %(x,2). When f(x) belongs to &), ##(x,2) is analytic in
Rei>—¢"<<0 except for one point 1=iw which is a simple pole with
the residue G,(iw)-f(x) and, where [4]| is large, #(x, 2) satisfies the
estimate

lle®a(x, »)|[z<Const.(1+ [A]*)7e f(x)] 2.



On the principle of limiting amplitude 391
This implies by means of Cauchy integral formula

4.1 ux b :—21711.—8“'”@%@, Dda in Q(—d)

:_LS’“'“eMzz(x, Dda+Gy(io)-F(x)e*, in Q(—d),

270 J-g-i
where §"'>>e>-0.
In order to prove the rate of approach of Theorem 1 we require
the stronger estimate of G,(2)-f(x) for 4 under the assumption to
f(x) in Theorem 1.

Since 4f =Q(—¢), we have

Go(D)f(x) =L<9Q7§_<Ul

g(x, ) =G(2) - [{ab(x) +c(x)} f(x) +4f (x)].
Applying Lemma 3, for sufficiently large |4},
(4.2) e G,(2) - f(%) ]| 2<Const.(|2] +1)72, at Rei>—d§"<0.

On the other hand, V(x,2)=G,(1)-f(x) satisfies the equation

(4.3) (e, D) +-L S[‘;“yl c(9) V(y, Ddy

+ b Vs ndy= (£ p(ay.

This implies that
4.4 sup| V(x, )|
<Const. [[le™V(x, D) [|=+ 2] eV (x, )2
+ (2l + D72 f () + 4f ()} 2],
where K is an arbitrary bounded set in E3 In fact,

1 e'—/\!x—yl
_SW p(y)dy

<[ sup L[ o @y | 1o o ay

and

_4LS ;e s J]l F(dy=— {f(x)- glex_ 51 Af<y>dy}
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Applying (4.2) to (4.4), we have

SEB] V(x, 2| <Const.(]1] +1)7, at Rei>-—¢"<0.

Since #(x,2)=Q—iw)*V(x,2) and from (4.1)

sup lu(x,t) —G,(tw) - f(x) ]
1 S Eﬂwe,\: V(x ) d/l'

Ssu
<sup 21l J-e-iw

K

+i

1 1
<ot S tsup| V(z, HW’lml‘”

—joo xE

<Conste'5‘g (}z|+1)“"d/1 where >0
=0(e™®), (t—o0).

This proves the rate of approach of Theorem 1. Since G.(iw)-f(x)
= V(x) satisfies (4.3) at A=1iw, it follows that V(x) is a solution of
(1.3) and Sommerfeld’s radiation conditions.

11
[2]

[3]

—
[
()

[5]

[6]

The proof of Thecrem 1 is complete.
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