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On a Cotriple Homology
in a Fibred Category®

By
Hiroshi Uemara and Frank BrReENNEMANT

The main purpose of this paper is, among other things, to study
cotriple (co) homology defined on a fibred category, which includes a
unified account of introducing products of various derived functors,
known or unknown, in a categorical setting. This approach is moti-
vated by an attempt to find a suitable way, in relative homological alge-
bra, of discussing the derived functors of a functor of two variables. In
fact, this is done in this paper by considering cotriple (co) homology de-
fined on a fibred product which is a subcategory of a product category.
More precisely speaking, we introduce first a category Fo= (9, ¥,
Q)& B, P) of fibred functors (T,6): (&, B, P)—(D,¥Y, @), which in-
herits the fibrewise properties of (¥),%, @). Since a cotriple on the
fibred category (%,%, P) induces a cotriple on the category &, in the
usual sense, relative homological algebra can be applied to <,. Con-
sider the situation where a fibred functor (7, 6) is defined on a fibred
category (%,%, P) into an abelian category (3, ¥, @) and a cotriple
(G, s, 4) is given on (%, B, P). Then the cotriple (co) homology
H,(TG) can be defined as an object in &F,. Moreover, if the fibred
categories are both multiplicative and if the functors G, T satisfy
certain conditions involved in the multiplicative functors, then an ex-
ternal product can be defined on H,(TG). For applications, T is
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a bifunctor defined on a fibred product (X¥4%, B, PAP) of a multiplica-
tive fibred category (%,9%, P). As is usually the case, the Eilenberg-
Zilber theorem plays a crucial rOle in defining products. In view of
the fact that a cotriple (co)homology is a derived functor it can be
shown that the theorem is essentially a comparison theorem in rela-
tive homological algebra.

The notions of a cotriple on a fibred category and of induced fibred
categories are introduced in the first two sections. In section 3, a
category of fibred functors is discussed in order to generalize some of
our previous results [6], to the case of fibred categories. The Eilenberg-
Zilber theorem is considered in section 4. In section 5 an external
product is introduced by using the previous sections. The last section
is concerned with products in derived functors; Cotorsion, Coextension

as well as Torsion and Extension.

1. Cotriple on a Fibred Category

Let P:X—®B be a covariant functor of a category ¥ onto a cate-
gory B. By the fibre X; over B in B we mean a subcategory of %
consisting of objects X in X such that P(X)=B and of morphisms f
in ¥ such that P(f)=15. The inclusion functor of %X, into X is denoted
by Js: Xz—%.

Definition 1.1. A fibred category of pull back type (push out
type) is a triple (%,®, P) such that P: X—%B is a functor of a category
%X onto a category %, satisfying the following conditions:

1) For each morphism «: B—B’ in B there is associated a functor
a*: Xgr—¥Xp(ay: ¥£;—%y) and a natural transformation £.: Jzoa™— [ (&x:
Jo—>/sroax).

2) For each B in B, 1¥=1Iz,(1+=1Izy).

3) For a: B—B’ and B: B'—B”,

€a=86uB™  (Spa=Epsofs)

4) For each f: X—X  in ¥ with P(f)=a: B—B’ there exists a
unique morphism f': X—a*(X") (f': ax(X)—X’) in X; (in ¥X,) such
that
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F=6(XDef" (f=f"ot(X)).

From the definition it is immediate to see that for «: B—~B’ and
B: B'=B", (Ba)*=a*F* ((Ba)x=/Bxas).

Given a fibred category (%,%, P,) of pull back type. Let X and
% be opposite categories of X and B respectively, and let ﬁ : iﬁ% be
a covariant functor defined by ﬁ(j\()zP/(}) and /f\’(jf)zfi?) for
each object X and each morphism f in X. Defining a functor ay: Xz
——>§<"\g by a*@('):m') and a*(g):a@) for a morphism «: B—
B’ in B, an object X’ in Xy, and a morphism g in %X, and defining
a natural transformation &3: J3—/Js0ax by Sa()? N =$a/(}(’ ), we have a
fibred category (T’E, Sg, 1/3\) of push out type, which is called the opposite
fibred category of (%,%, P). This observation shows that the opposite
fibred category is of push out type (of pull back type), if a given
fibred category is of pull back type (of push out type). Henceforth
all fibred categories will be considered to be of pull back type, unless
otherwise stated, because the reader can formulate the corresponding
definitions, propositions, and theorems for those of push out type by
passing to the opposite fibred category.

Definition 1.2. Given fibred categories (%X,%8, P) and (9,6, @).
A pair of functors (F,0), F:%X—% and 6: B—>C, is called a functor
of fibred categories (fibred functor) if QoF=goP.

By definition it is immediate to see that for each B in B the
functor (F,#) induces a functor Fj: Xz—>ocs.

Proposition 1.3. Given a functor (F,60): (3,8, P)—~),€, Q) of
fibred categories. Then, for each «: B—~B’ in B there exists a natural
transformation 7q: Fgea®*—0(a)*cFy satisfying the following condi-
tions; for «: B—~B’ and g: B'—B" in B,

Tpa= (0 (a)*18) © (1)

Proof. From the axiom 4 of Definition 1.1 it is seen that for
a: B—B’ in B and for an object X’ in X, there exists a unique
morphism in Y

(F(a (X)) Fa(a* (X)) —0(a)*(Far (X))
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satisfying
Eocry (Fpr (X)) o (F(6a(X))) = F&,(X").

Define 7, (X") = (F(&,(X")))’ for each X’ in Xy, then v, : Fea*—0(a)*Fy
is a natural transformation.
By definition of 7g,,

® F(£6a(X")) =&acary(Forr (X)) o7 (X)
for an object X” in Xzr and morphisms «: B—B’, 3: B’—B” in %.
From the axiom 3 of 1.1 and from the definition of 7., %,
F(60a(X")) = F(6a(X") 08 (B (X))

=F(&(X")) o F(£a(Bx(X")))

=& (For (X)) o15(X"") o€ gar (For (B* (X)) o7 (B*(X™)).
Since €4y in a natural transformation,

Mg (X"") o€ ey (Far (B (X)) =0y (0 (B)*(Far' (X)) 00 (@) *(1a(X™)).
Hence
) F(€aa (X)) =80y (For (X")) o600 (0 (B)* (Far (X))

o6 () *(e(X")) o7 (B*(X"))
=& (Far (X)) 00 (@) * (5 (X")) o0 (B*(X")).
Comparing (1) with (2), we obtain
g (X") =0(a)* (M (X")) 076 (B(X"))

by the uniqueness of a component of the morphism F(&s, (X")).
Therefore, the proof is completed.

Definition 1.4. By a cotriple (G,¢ 4) on a fibred category (%,
B, P) we mean a cotriple (G, ¢, 4) on the category ¥ such that a pair
of functors (G, Is) with the identity functor Is, is a functor, of the
fibred category into itself, satisfying the conditions

Pe(X)=PA4(X) =1z,
for each object X in %.

Given a cotriple (G, 4) on a fibred category (%,B, P) of pull
back type. Considering the opposite fibred category (56, B, P) of push
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out type and defining
C(R)=G(X), CLH=CP), «(X)=<(X), and 4(X)=4(X)

N\
for each object X in ¥ and a morphism f in ¥, we have a functor (G,
I8) of the opposite fibred category such that (G, 4) forms a triple

on X satisfying
Pe(X) =PA(X) =15

N\
for each object X in Z.

For the sake of completeness we give

Definition 1.5. A triple (G, ¢ 4) on a category X is called a
triple on a fibred category (¥, P,®) of push out type iff (G, I3) is a
functor of the fibred category into itself, satisfying

Pe(X)=PA(X) =1px

for each object X in X.

It is clear from the remark made above that if a cotriple (triple)
is given on a fibred category of pull back type (push out type), then
a triple (cotriple) is obtained on the opposite fibred category.

Theorem 1.6. Given a cotriple (G,e, 4) on a fibred category (%,
B, P). Then the cotriple induces a cotriple (Gg, ez, 45) on each fibre
%, such that

1) for morphisms «: B—B’, g: B’—>B” there exists a natural
transformation y.: Gpa*—>a*Gy satisfying the conditions that

Taa= (a™7p) © (7,8*) and 7,,(X)=1x for X with P(X)=5,

2) e =aeyoy, for a:B—B’.
Conversely, if a cotriple (Gj, ¢35, 45) is given on each fibre X¥; of a
fibred category (%,%, P) in such a way that the two conditions stated
above are satisfied, then there exists a cotriple (G,¢, 4) on the fibred

category which induces the cotriple (Gg, €5, 45) on each fibre X;.

Proof. Assume that a cotriple is given on a fibred category.
Since (G, Is) is a functor of the fibred category, it induces a functor
Gy: ¥;,—%; for each B in B, and there exists a natural transformation
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7e: Gpa*—a*Gy for a: B—B’ satisfying the condition 1) because of
proposition 1.3. Defining e;(X) =¢(X), 4:(X)=4(X) for X with
P(X)=B, we have a cotriple (Gy, €3, 45) on X;. Consider a diagram

G(&.(X))
Gla* (X)) > G(XN
7a(X") £.(G(X)
ex(a* (X)) o (G (X< &x (X)

/

a* (e (X))

y / v
a* (XN X’
(XY

Since ¢ is a natural transformation, £,(X")oes(a*(X’)) =ex(X'))e
G(.(X)). By definition of 7, G(E(X")) =£&.(G(X")) ey (X’). Since
&, is a natural transformation, ey (X”) o0&, (G(X")) =& (X") oa*(ep (X')).
Hence, by a diagram chasing, &,(X")oes(a*( X)) =&, (X") o™ (exr (X))o
7.(X’) =¢. By the uniqueness of a component of the morphism ¢, we
have
es(*(X")) =a*(e(X")) o7 (X")

for each object X’ in X,. Therefore the first half of the theorem
has been proved.

First let us define a functor G: X—% in terms of a cotriple given
on each fibre. For an object X with P(X) =B define G(X) =Gz(X).
For a morphism f: X—X’ with P(f)=a: B—B’ consider the diagram

G(X)=G(X)

Ga(fD| N
N
Gala*(X7)) \f(f)
P (XD’ \\

N
£.(Gw(XD) N
@ (G (X)) s (X)) =G (X)),
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where f=¢&,(X")eof’, and define G(f)=£,(Gp(X")) o9 (X")oGs(f").
Note that if f is in X5, then G(f)=Gs(f). Hence G(1x) =1¢wx. For
morphisms f: X—X', g: X’->X" with P(f)=«a: B—>B’, P(g)=p: B’
—B”, consider the diagram

Ga(X)
Gs(f)
Grla*(X")
72(X") 0
/ £(Gw (X
a*(Gw (X)) —(——19 Gw (X"
t
a*(Gw(g") M Gw(g)

7 (G (X))
a* (G (X)) ——— > GB/(BI*(X”))
a*(‘)?,i(X”)) ) 775(X”> 3)

vV a@Gexn Y gGexn) N
(@89 (Gar(X")) . T LS g (G (X)) s Gan(X7)

then the triangles (0), (3) are commutative by definition of G(f)
and G(g), and the rectangles (1) and (2) are commutative because
&, is a natural transformation.

Hence G(g)oG(f)=£a(Gy'(X"))Ea(B*(Gr'(X")))ca*(a(X")) o
a* (G (g")) oy (X")oGs(f’) by a diagram chasing. Since 7. is a natu-
ral transformation, a*(Gur(g")) o9 (X") =9.(B*( X)) oGs(a*(g’)). Also
we have G5((gof))=Gs(a*(g"))oGs(f), so that

G(g)oG(f)=8e(Gp'(X")) o (F*Gsr (X)) 0a*(1a(X"))
o7 (B*(X")) 0Gy(a* (7)) oG (")
=8 (G (X)) Mg (X)) 0G5 ((gof)")
=G(gof).

From the construction it is easily seen that (G, Is) is a functor of
fibred categories.

Define ¢: G—1Iz by e(X)=¢e(X) for X with P(X)=B. Then ¢
is a natural transformation. To see this consider the diagram for f:
X—X’' with P(f)=a: B—B'.
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G(X) Al
7 GX)
G (0) ”
(G (X))
\ ' ) /
Ga*(X") —> a*G(X)
RN s
&x(X) @ (X)) (@ a*lew (X))
N & ea'(X)
(2) a*(X’) 3
f/

By definition of G(f), (0) is commutative, (1) is commutative
from the axiom 4 of 1.1, (2) and (3) are commutative because e
and ey are natural transformations, and (4) is commutative by as-
sumption. By a diagram chasing we have

Joe(X) =e(X")oG(f).
Define 4: G—G* by A(X)=4,(X) for X with P(X)=B. For a
morphism f: X—X’ with P(f)=a: B—B’ consider the diagram

GCfo
G'X) G(X")

X(f;) ($9) 5!(;“:(4\.,)/
7a(X")

Guae (X)) ———————> a((X')

(3) A & “
| /
An(a= (X)) ) / @ Up(X')
) /
4(X) ExlGpla (X'1) / 4(X")
| /
@ /
! /ey @ Gyi\' )
Gila™(X)

/

N
Gu(a(X")) /
Gy N/ 6)
w(at (Gy(X))) ——>
Gn(a (U p 7],((}5/(.\")) @ (G,-‘/(,\\\’);

Cale(X)<Galf) ©) b ‘("z”(i”

G*(X) a0 GHX")

G3(/)

then the commutativities of (1), (2), (3), (4), (5) are obvious. The only
commutativity we need to show A(X")oG(f)=G*(f)4(X), is a*(dx
X)) opa(X") =9 (Gar (X)) 0G5 (9 (X)) 0 dp(a*(X")). From the assumed
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condition 2) relating e; and ey we have o™ (4y (X)) oes(a* (G (X))
=a*(4p (X)) 0 a*(en (Gor (X)) 09 (G (X)) =a* (4ot (X') 065 Gar (X)) 0
7(Ge (X)) =9.(Gx (X)), so that the commutativity of (6) is proved.
From the commutativity of (7), e5(Gpa™®(X"))) oy (X') =ep(a*Gs (X))
°Gs(7.(X")) and from 4y(a*(X"))oesG(a* X)) =1c,(a*(X")), we ob-
tain the desired commutativity. Since the properties for a cotriple (G,
e, A)are readily proved, the proof of the theorem has been completed.

Before we close the present section, let us consider an example of
a triple of a fibred category, which will be used in later sections.

Let 4 be an algebra over a commutative ring K with unity and
let p: AQA—A4 and p: K—A4 be the multiplication and the identity
respectively. By a 4-contramodule M we mean a K-module together
with a K-homomorphism yyr: M—Homg(4, M) such that the diagrams

Homg (K, M)Y=M i

} Homx'(/i, M)

o* o whr im}r*

Homx (4, Homz (A4, M)
I

—_—
Homge (4, M) Hom (4, M) — Homg (AR, M)

are commutative. A morphism of A-contramodules is a K-homomor-
phism f :M—M’ such that the diagram

f
M > M’
M\)lr .M"!f
Homg (A4, M) —————> Homx (4, M")
Jx

is commutative. Let 9% denote the category of all 4-contramodules
with morphisms of A-contramodules and let 9t be the category of
K-modules with K-homomorphisms as morphisms. Adjoint functors,
U:¥M—P and S: M- will be defined in such a manner as
U—S: (D 400, so that we have a triple (.G, 4, +4) with .G=SoU. Let
U be the forgetful functor and let S be defined by S(A)=Homg(4, A)
and S(f)=fs:Homx(4, A)—>Homg(4, A’) for f: A—A" in M. Notice
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that Homg (4, A) is a A-contramodule with structure given by u*:
Homy (4, A) —-Homy (AR A4, A)~=Homg (4, Homx (4, A)). Then (M) =
wir and A(M) = (1Qp)*

Let :ﬁ be the opposite category of the category U of all K-algebras
with algebra homomorphisms, and let *Jt be the category of all ordered
pairs (2 M), where 4 is a K-algebra and M is a 4-contramodule, to-
gether with morphisms (&, f): (//1,\ M )——>(/?, M), where &: 44" is in
éI\, ie, a: £/—4 is in ¥, and f: M—M’ is a K-homomorphism satis-

fying the commutativity of the diagram

M / > M’

.u"l" \l/ Y

: mx(4’, M’

Homc (4, M) ™ ————> Homy (4, M)
with {a, f)(€) =fcfoa for each & ¢ Homx(4, M). Composition in *I is
defined by (&, f )0([3, g) = (B/c:, fg). Define a covariant onto functor P:
A by P(//I: M)=//1\and P(&, f)=a. For each a: Ad let Gse: 5N
— 59 be defined by &*(//1: M) = (//1\’, M) and a1z, f) =%, f), where
M is given a A’-contramodule structure by MﬁtHomK(A, M )ﬁ)
Homy (A, M) with £,(§) =&oa for each & ¢ Homg(4, M). Difine &;: J4
—Iwody by (4 M)=(41): (4 M)—(A, M). Then it is straight-
forward to see that (*90%, ’iI\, P) forms a fibred category of push out type.
As we observed before, each fibre %9t over //1\ in 531\ has a triple
(.G, &, 44). If the two conditions of the dual of Theorem 1.6 are
verified in this example, we have a triple (G,e, 4) on (*90%, §I\, P). For
(4, M) in M and for a&: 4—7, 5G4, M) = (1, Homx(4, M)) and
#Gas (4, M) = (A, Home(4, M)). Define 7z: dG—>vGés by 72(4, M)
= (1, k), Where k,: Homx(4, M)—Homx(A, M) is defined by x.(&)=

Eoa. It is easy to see that all the necessary conditions are satisfied.

2. Fibred Product

Proposition 2.1 Given a fibred category (%,9%, P) and a functor
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6: B—B. Consider a subcategory §*(X) of the product category X x
B consisting of objects (X, B) in X x¥B with the property P(X)=0(B)
and of morphisms (f,@ in X¥x®B with P(f)=60(z). Defining P:
6 (X)—>B by P(X,B)=B, P(f,&) =a, and F:6(X)—% by F(X, B)
=X, F(f,a) =f, the triple (67*(X),®, P) forms a fibred category such
that (F,0): (671(%),8, P)—(X, B, P) is a fibred functor.

Proof. For composable morphisms (f, @), (g, B) in 67*(X), (f,a@)e
(g,B)=(fog,@op) is in 67 (X), because P(fog)=P(f)°P(g)=0(a)e°
6(B) =0(@°B). For each object (X, B) in 67*(X), (1x,15) is the identity
morphism, because P(1x) =1,x=143. Hence 67'(X) is a subcategory
of XxX®B. For each @: B—B’ define a functor &*: 67(¥) 7—07(X)3 by
& (X', B)=0@*(X"), B), a*(f,1z)=(0(@*(f),15) for an object
(X’, B") and a morphism (f,13) in 6*(X)3, and define a morphism
£:(X', B") = (éoz(X"),@). Then it is easy to see that (67(¥),B, P)
forms a fibred category such that (F,0) is a fibred map. Hence the
proof is completed.

Definition 2.2. (67(%),®8, P) is called the fibred category in-
duced by 6: B—B and the fibred category (X,%, P). It will be de-
noted by 67 (%, %, P).

Definition 2.3. Given fibred categories (%,%8, P), (9,8, Q) and a
“diagonal” functor 4: B—-BXB defined by 4(B)=(B,B) and 4(f)=
(f,f) for an object B and a morphism f in 8. The fibred category
induced by 4 and the prcduct fibred category (XxY), BXB, PxXQ), is
called the fibred product of (%,%, P) and (3,9, ), and is denoted
by (%49, B, PAQ) where the product fibred category is defined in the
obvious manner.

It is easy to see that the fibred product (X4, %, P4Q) is a fibred
category consisting of a subcategory X4%) of X X% whose objects are
(X, Y) in ¥x9 with the property P(X)=@Q(Y) and whose morphisms
are (f, g) with P(f)=@Q(g), together with a functor P4Q: ¥4)—B
defined by (P4Q)(X, Y)=P(X)=Q(X) and (P4Q)(f,g)=P(f)=
Q(g).
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Definition 2.4. A fibred category (¥,9B, P) is said to be pointed
if each fibre ¥; is pointed such that for a: B—~B’ in 9B, a*: ¥y—%; is

a pointed functor.

Definition 2.5. A pointed fibred category (%,9, P) is said to be
preadditive if for each @ in B, hom.(X, X)={f: X—=X'| P(f) =a}
is an abelian group such that (f+g)h=fh+gh and A(f+g)=hf+
hg whenever morphisms are composable.

Proposition 2.6. If (X, B, P) is a preadditive fibred category, then
%X, is preadditive for each B and for each a: B—B’ in B, a&*: ¥;—%,

is additive.

Proof. Let a: B—B' be a morphism in B and let f/, g/, f'+g’:
X’—Y’ be morphisms in X,. Since &, is a natural transformation,
(Y@ (f'+g))=(f"+g")6(X"). By definition of preadditivity
and the naturality of &, & (YY) (a*(f)+a*(g")) =6 (Y)a*(f')+
£(YNa*(g") =f"0ta(X') + g'0ta(X)=(f"+g")ot(X'). Hence yr=
(YN (a*(f'+g))=6,Y)(a*(f)+a*(g’)). By the uniqueness of
a component of «», we have &*(f'+g")=a*(f")+a*(g’). Therefore
a* is additive.

Definition 2.7. A preadditive fibred category (%,%, P) is said to
be additive (abelian) iff each fibre is additive (abelian such that for
each a: B—B’, a*: ¥;7—7, preserves the analysis of morphisms.)

Definition 2.8. A fibred category (#,%, P) is said to be multi-
plicative iff ¥, B are multiplicative categories with functors &: XXX
—X, @): BXB—->B and with ground objects K, K respectively, satisfy-
ing the following conditions:

1) The diagram

2
XY ————> ¥

PXPl lp

BXP ——————> B
®
is commutative,
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2) For a: A—A’, 3: B—B’ in B and for objects X’ in X,, Y’
in ¥y, E(XDRE(Y))": a*( X)X (Y)—>(aQH*(X'QY’) is an
isomorphism, where (&,(X)Q&(Y’))’ is the unique component in
Xags of £(X)RE(Y).

Theorem 2.9. Given a fibred category (¥,%, P) and a functor
6: B—B. Then the induced fibred category 67(X,®, P) inherits the
properties of (%,%, P) and 6; pointed, preadditive, additive, abelian,
and multiplicative.

Proof. Let @: B—~B’ be a morphism in %B, then homz((X, B),
(X', B")) =homys (X, X)) xa for (X,B), (X’,B’) in ¢'(%X). Hence
th induce d fibred category is pointed, preadditive, additive, or abelian
according as (X, %, P) is pointed, preadditive, additive or abelian.

Assume that 6: BB preserves multiplication. Defining (X, B)
®(X’, B)=(XQX', BRB") and (f,m)Q(f,a)=(fQf,ala) we
have a functor @: 07(X) X471 (¥)—67(X), such that Po®@=&(Px F).
Let K be a ground object in %, then (K, K) is a ground object in
¢ (%). For @: A=A, 3: B>B’ in B and objects (X', 4), (Y’, B
in 671(%),

£:( X', ANRe(Y', BY) = (o (X)), @) R (&o (Y7, B)
= (E@ (XN Q¢ (Y, alB)
= (&oazp(X'Q Y, a®B) o (o (X Ree@ (Y)Y,
lass), so that (62(X’, AV®Es(Y’, B")) = ((boear(X") Réoa(Y"))’, lugs)
is an isomorphism. Hence 6*(%,%, P) is multiplicative if (%, B, P)
and ¢ are multiplicative. The proof is completed.

Corollary 2.16. The fibred product of fibred categories (%, B, P),
), B, @) is pointed, preadditive, additive, abelian, or multiplicative,
according as the fibred categories are pointed, preadditive, additive,

abelian, or multiplicative.

Proof. The corollary follows immediately from the fact that the
fibred product is the induced fibred category 4 (XX Y, BXB, PxQ)
by the diagonal functor 4: B—-BXPB and that the product fibred cate-
gory (¥x9,BXB, PXQ) inherits the above properties of the compo-
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nent fibred categories.

Proposition 2.11. If (F,0): (£,8, P)—>(P, A S) and (G, 6):
(), B, Q)—(n, A, T) are fibred functors, then (FAG, §): (¥4, B, PAQ)
— (M4, A, SAT) defined by (FAG)(X,Y,B)=(F(X),G(Y),6(B))
and (FAG)(f, g, a) =(F(f), G(g),0(a)), is a fibred functor.

Proof. Evident.

3. Category of Fibred Functors

Definition 3.1. A fibred category (%), 2, @) is said to have kernels
if each fibre 9, has kernels such that the functor 6*: Yu—3, for each
morphism §: A—A’ in ¥, is kernel preserving.

Befinition 3.2. Let (S,0), (T,60): (¥,8, P)—(3, U, @) be fibred
functors. By a fibred natural transformation i: (S, 6)—(7, ) we mean
a function which assigns to each object X in % a morphism A(X):
S(X)—T(X) in the fibre Yorxy such that 2(X)oS(f)=T(f)1(X)

for each morphism f: X—X’ in ¥.

Proposition 3.3. Let (£, 9B, P) be a fibred category and let (¥,
A, @) be an additive fibred category with kernels. Consider the cate-
gory Fo= (3, YU, @) E B, P) of fibred functors (/, ) from (¥, B, P) into
), YU, Q) with ¢: B—Y fixed and of fibred natural transformations as
morphisms. Then &, is pointed, has kernels, has biproducts, and for
morphisms A, x in &y, 2+ u is defined such that compcsition is distri-

butive.

Proof. For each object X and a morphism f: X— X’ with P(f)
=« in ¥, a fibred functor (N, 8): (7,8, P)—(I, Y, @) is defined by
N(X) =Ny, a null object in Yopxy, and by N(f) =E&ocwr(Norcxry)-
Notice that this can be done, because 6(a)* is a pcinted functor. It
is immediate to see that the functor (XV, ) is, in fact, a null object
in the category &,. For a morphism 1: S—7T in ¥y, the kernel k: K
—S of 1is defined as follows. For each object X in % let k(X):
K(X)—>S(X) be the kernel of 12(X) in Ysrx. For each morphism
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f: X=X’ in X with P(f)=a consider the diagram

Koy — 2 > S(X) O S
K(f)’J (3) S(lf)’ €)) lT(f>,
0(a)*(K(X")) % 0(a)* (S(X") M>g(a)*('z“(x/))
sﬂm(K(X'))L ? $e<a><%<X'>> Eua (T(X7)
Kooy — KX b A& N

where S(f) =&ow(S(X"))oS(f) and T(f) =&ow(T(X))oT(f)'. Since
6(a)* preserves kernels, 0(a)*(k(X")) is the kernel of 0(a)*(A(X")). As
the diagram (1) is commutative, there exists a unique morphism K(f)’
in Yory such that the diagram (3) is commutative. Define K(f)=
Eocr (K (X))o K(f)', then A(X)oK(f)=S(f)ok(X) because of the
commutativity of the diagram (2). It is straight forward to verify
that k: K—S is the kernel of 2 in the category &y. For objects S, T
in &y and for each object X in ¥, there exists the biproduct S(X)+
T(X) in the additive category Ysscx, together with morphisms p(S(X)):
S(X)+T(X)=S(X), p(T(X)): S(X)+T(X)—=>T(X), «(S(X)):
S(X)-=S(X)+T(X), and (T(X)): T(X)—>S(X)+T(X) satisfy-
ing the usual conditions. Defining (S+ T)(X)=S(X)+T(X) for
each object X in ¥ and (S+T)(f)=c(T (X))o T(fHop(T(X))+
((S(X))eS(f)op(S(X)) for each morphism f: X—X’ in ¥, it can be
shown that S+ T is the biproduct with morphisms ¢s: S—=S+ T, ¢:
TS+ T, ps: S+ T—S and p,: S+ T—T defined by s(X)=:(S(X)),
(X)) =(T (X)), ps(X)=p(S(T)), and p(X)=p(T(X)). It is
obvious that addition of morphisms A, x: S—T is defined by (1+ ) (X)
=2(X)+pu(X) for each X in ¥ so that composition is distributive.
Hence the proof is completed.

Proposition 3.4. Let (G, 4) be a cotriple on a fibred category
(X, B, P) and let (I, A, @) be a preadditive fibred category with
kernels. Then there exists a cotriple (5, G Z) on the functor category
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Fo=(, YU, Q)& B, P) by setting E(S) =SG, 6(1) =1G, (S)=3Se, and
4(S)=S54 for each object S in T, and each morphism 2 in &,. More-
over the functor G: Fy—F, is additive and kernel preserving.

Proof. By definition of a cotriple (G,¢ 4) on a fibred category,
G is a fibred functor and ¢, 4 are fibred natural transformations. Hence
it is immediate to see that (5, g, 71) is a cotriple on &,. For morph-
isms 1, xin &, and for each object X, 5(z+,4) (X)) =Q+w(G(X))=
H(G(X)) +u(GX)) =G (X)+G(w) (X)= (G +G () (X). Hence
G is additive. Let k2: K—S be the kernel of 2: S—7. Since £#(G(X))
is the kernel of 2(G(X)) for each object X in %, G(k)=kG is the
kernel of E(l) by definition. Hence G is kernel preserving.

In the rest of the present section we shall use some of the results
of our previous paper [6]. Since the category Fy= (3, U, @) (& B, P)
is pointed in case (¥, ¥, @) is pointed fibred category, and since a
cotriple (5, E,Z) can be defined on <&, when a cotriple (G,¢, 4) is
given on (%,%, P), a projective class & of sequences in &, can be
obtained by @’3?, where & is the class of all objects G(S) for S
in .

Proposition 3.5. Let &,(%,) be the class of all split exact
sequences in &y. Then we have ’éza‘l(&(gs)).

Proof. This proposition is proved in a similar manner as Pro-
position 1.2 in [6].

Let G be the standard semi-simplicial complex of the cotriple (5,
E,Z) on &¥,. Then we have

Theorem §.6. For each object S in &, the augmented chain
complex 5(5 )ﬂS is a 6'1(80(9’9))-pr0jective resolution of S in &,.

Proof. One can prove this theorem by referring to Theorem 2.2
and Proposition 5.1 in [3] and by referring to Theorem 3.1 and Corol-
lary 3.2 in [6].

4. Eilenberg-Zilber Theorem

Definition 4.1. A fibred category (%,%, P) is called a tensored
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fibred category iff it is additive and multiplicative such that the multi-
plication functors @: XX X—X and @): B X B—>PB are biadditive.

It is immediate to see that a tensored fibred category (%, B, P)
satisfies the properties; 1) (Xi+ X)) QX' =X, QX'+ X,RX’, XRQ(X;
+X)=XRX:1+XRX,, whenever they are well defined, 2) NQX’
and X®N’ are null objects if N, N’ are null objects.

Let &= (¥, B, P)&%B,P) be the category of fibred functors of the
form(S, 1s) and let 3= (%, DB, P)EXE BXB,PXxP), Then & and T3
are pointed, have kernels and biproducts, if the tensored fibred cate-
gory (%,%, P) has kernels.

For objects S, T in &, an object (S, 7T) in (EXXE BXB, Px
P)(EXZ,Bx%8, PxP) is defined by (S, T)(X, X)=(S5(X), T(X")) and
(S, T)(f, 2)=(S(f), T(g)) for objects (X, X’) and morphisms (f,
g). Then an object in &g, denoted by S® T, is obtained by (®o(7T,
S), @)). In a similar manner, for morphisms i: T—77, u: S—S’ in
&, a morphism in &g denoted by AX)x, can be defined by ®o(4, )
T®RS—T'QRS’. Then it is easy to see that in the category Fgy we
have (T1+T)XRS=T:QRS+T.RS, TR(S:+S)=TRS,+TRS,, (1
+ 1) Ruv=21Qw+ £Qv, and IR (u+v) =iQu+ 21Xy for objects T, S, T4,
T., S:, S: and morphisms 2, #, v in &. Let us see this quickly. For
each object (X, X)) in XXX, ((T1+ To)RS)(X, XN)=Q(T1+ Tv),
SN X, XN =Q(Ti(X)+ T>(X), S(XN)) =T (X)+ T.(X)) ®S(X")
=T (X)X S(XN+ T(X)RS( XN =(T1QS+ T.RS) (X, X). ((4+
w)Q») (X, X)) = Q(Q+ ) (X),v(X)) =QU(X) + (X)), (X)) =&
(X)), »(XN)) + @ (u(X), v(X")) = GRv+ @) (X, X").

Given a cotriple (F, 7, p) on the tensored category (%,®B, P) with
kernels. From Proposition 3.4 and from the observation made above,
the cotriple induces a cotriple (F 7,0) on ®, and a cotr1p1e ((F, F),
(1), (0,0)) on (XXX, BB, PxP) so that a cotriple ((F F), (3, 77)
(p, p)) on 5. (F,F), (9,7), (o,0) will be denoted by G, ¢ and 4
respectively. From Proposition 3.5, fF‘l(é’o(@i)) and 5‘1(6’0(5‘7@)) are
projective classes in & and g respectively, where &, () denotes
the appropriate class of all split exact sequences.
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In view of Theorem 3.6 the augmented chain complex F-5T;

2]
N AP LN AN BN

is a ﬁ‘l(é’o(@))-projective resolution of the identity functor (7, 1s%)
in &, where 6,,=ﬁ(—1)"6,’,' with 0= F""3F* for each i. Hence the
1=0

complex F (F1>T )=}7 (F)gF has a contracting homotopy S,: F"*
—F"*® for each n>>—1 in the category &. Let us consider two aug-
mented chain comlexes F X F, FQF over /X in the category g

as follows. The first one Fx F253] X1 is defined by

s @ Pt Fr@ Frs- > FQ F—>IR1,

where D,=>1(—1)'0:XQ .. The other one F®F"—X7’>I®I is defined by
(FRF),= > F"QF* such that the #-th boundary d,: (FQF),

pP+g=n
$,4=0

—~FQF), s given by 340 (GO + (— 1) 61,, 1 Q D) mpi1,001
where 741,001 (FQRQF),—F "“@F “*1 is a projection morphism and ¢s.,,:
FQF—(FQF),_, is an injection morphism. As is usually the case,
both FXF and FQF form complexes in .

Theorem 4.2. The augmented complexes F x F3 1 X1 and F

F53 &R I are 5’1(80(9g))-projective resolutions of I®I=Q in F;.

Preof. In view of Theorem 3.6, 6(®)-3® is a G (E(F2))-
projective resolution of ). Since z(®)n=5”+1(®)=®G”+‘:®(F w
Fr) = F**Q F*** and since the #-th boundary operator «, () : E"“(@)
—»G"(®) is S(—1)ai(®) such that ai(R)=Rai=® (G"eG) =
@ (FryF, iy F) =R (8:,0:) =0, Q8;, FXF3IQ1 is a G*(E:(F5))
-projective resolution of & in .

As G: F~—Fz is additive, (FQF),= 3 F'QF =5 (F,

2,9=0
F)(F, F)=3(F'QF)G=XG(F'QF) =G F*QF%). Hence (F
QRF)* is 5‘1(80(9;))-projective for each #>>0. The proof will be
completed if the complex G(FRF)Z>IQRI) =G(FQF)™ S FQF
is 5"(80(5”;))-acyclic. Since G(FRF)=FF)XF(F) and since
ﬁ(F)ﬂF has a contracting homotopy {s,|n>—1}, 5(F®F)’1W—"£F
Q@ F also has a contracting homotopy {S,|z>>—1} defined by >1/ss g
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(S, Q@D 7pi2, 012 Ditsee, 013(S_F R S ) Tpis, 02 for n>0 and S.i=s5s.:&s.,
where S,: > FMRQF™— > Fy2QF*? and S_;: FRF—-F:RF*

p+g=n Y+s=n+1
$,9=0 v.s=0

5. Product

Let (%,9, P) be a fibred category on which a cotriple (G, e, 4)
is defined, and let (), %, @) be a tensored fibred category with kernels
where Q/i\): DxD—2 and @: AXA—-IA are the multiplication functors.
If (T,0): (5,98, P)—>@,Y Q) is a covariant (contravariant) functor,
then the cotriple induces a cotriple (G, 3, AT) on the category Fy= (I,
A, Q)EB,P) and a cotriple ((G,,‘é), (eTa), (ATZI)) on the category
Fzwn=C~1), A, P)EXE&xB, PXP)  Let us denote the standard semi-
simplicial complex associated with (G,e, 4) by

33 9
— —
S e NN LN
G ? —_—> ,
2
e

where 8.: G"'—G" is G %G’, and let TG—>T be an augmented chain
complex in &, defined by T6G: TG TG — - TGS T,

where 6,,=é(—1)"T61;. Then we have
1=0

Proposition 5.1. The augmented chain complex TCLT is a
a”l(go(ﬁ?g)l-projective resolution of AT in %,. The chain complexes
TEx TC™BTRT and TERTC=ZTRT are (G, G)*(E(F,0))
-projective resolutions of TQ7 in F 4. Since the proof is similar
to that of Theorem 4.2, it is omitted.

Given a cotriple (G, ¢ 4) on a multiplicative fibred category (%,
B, P) with the multiplication functors &: X XXX, @): BXB—>B.
Then there exist semi-simplicial complexes G X G, G defined by

RS
<o, 23!
9}R3} 0
GXG: - GMRGT — GRE— a—>‘®ai GRG,
o ’ S
%’ —_—

and
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R

2 N 1®
ER: - GQ i@., C'® — - IV CR
aH® '

where 9;=G""eG’ (=0, ---,n). Then
Proposition 5.2. If there exists a natural transformation ux: G&Q

G—GQ such that the diagram

@8
CR/G——— > IRI

o

R — > I¥

is commutative, then there exists a semi-simplicial map z: 6 X G—GQ&)
satisfying the conditions that
m=pn (0.Q)nm,=mn_°0.&0.,)
for each 1.
Proof. Let us define inductively z =g and #,=Ga,_;ou(G", G*)
for each #>>0. Since x is a natural transformation, we have a com-

mutative diagram

GRQG(@;-1, 03-1)
(GRG) (G, G™ (GRG) (G*1,Gr)

#(Gn, Gn)ly ‘L'L‘(G”-l’ Gn-l)
GR(0:-1, 0-1)
GQR(G", Gm) —=> GRQ(G™, G Y)

for each #>7>0. Assume that (8;_,Q)°z,_1=,°(0:1Xd.;). Then
(0.Q) oz = (6:Q) 0 G, 10 n(G", G) =G0 Q °B 1) 0 n(G", G7) =G (7,20
(0:-:88:-1)) 0 (G, G*) =G 20 G(0:-1Q 0;-1) 0 (G", G*) =GRz o (G,
G0 (0iX0}) =H,-1°(0,X3:). Similarly (8:RQ)cz=1,_.0(0:X)6:) can be
shown. Hence the proof is completed.

Proposition 5.3. Given a cotriple (G, ¢ 4) on a multiplicative
fibred category (%,®, P) such that there exists a natural transforma-
tion u#: GRG—GR satisfying (eQ)op=e®e. Let (I, A, Q) be a pre-
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additive fibred category and let (T, 6): (£, 8, P)—(J, YU, @) be a func-
tor. Then there exists a chain map Tz: T(GXG)—TGE in the cate-
gory <,~, where @: B X BB,

Proof. Consider the diagram

2(—1DT9,RK0,
T(6XG) = T(CGMRGH) —————> T(G"QRG™) = T(GXG) 4
Ty, J/ l Tpny
Z(—1)To,R

(TER) =TGR ———u> TGC'R = (TER)

then by Proposition 5.2 (3(—1)iT8) o(Ta,) =3(—1)(T8,)o(Tm,) =
S(=1DiT(0r0m,) =3 (— 1) T (#u10(0:Q02)) = T .10 (3 (— 1) T5,K0,).

Hence the proof is completed.

Proposition 5.4. Let (¥,®8B, P) be a multiplicative fibred category
and let (2, Y, @) be a tensored category with kernels. Given a func-
tor (7,60): (£,98, P)—(J,¥, @) such that there exists a natural trans-
formation y: (§)°(T, T)—-TQ), where Q:EXXX->X, @: D xY—-Y are
multiplication functors. If a cotriple (G,e, 4) is given on (X, 9B, P),
then there exists a chain map v: T6 X T6—T(G XG) over v in the
category oz =% zw.0, Where @: BXB—-B and @: A X A—A are multi-
plication functors. Any two such chain maps over v are chain homo-
topic.

Te®Te

Proof. Since TGX TE YSTRT is a (G, C)(E(Fsz))-projec-
tive resolution of T@T, and since T(GXG)@T(X) is a (G’,\é)“1
(& (Fe~))-projective resolution of 7T, a morphism v: T@T——)T@ in
the category %, can be extended to a chain map 5: T6 X T6—T (G
XG). It is evident that two such maps are chain homotopic by the
usual argument in homological algebra. Hence the proof is completed.

Gathering together Propositions 5.1—5.4, we have
Theorem 5.5. Let (G,e 4) be a cotriple defined on a multipli-

cative fibred category (%,9®, P) such that there exists a natural trans-
formation x: GRG—GQR satisfying (e@)ou=cQe, where Q: XX X—
X, Let (T,0): (X,8, P)—»J,U, Q) be a covariant (contravariant)
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functor of the fibred category (%,%, P) into a multiplicative abelian
fibred category (9,2, @) such that a natural transformation v: @o( T,
T)—T is given, where (§): P xP—Y. Then there exists an external
product in the cotriple homology (cohomology) H:(TG): for integers
b, q there exists a morphism ¢,, in Fo~= (3, A, Q) EXE BXB, PXP)
with &: BXB—B such that g,,: H,(TG)@HG(TG)—»HM(TG@).

Proof. From Proposition 5.1 there is an isomorphism @y, : Hpo (TG
@TG)—>HM(TG X TG). From Proposition 5. 4, v induces a morphism
Uprg: Hpso(TGX TG)—H,, ,(T(G6%X6G)), while Tz induces Tiip,: Hpio
(T(6GX6))—-H, ,(TGQ) in view of Proposition 5.3. Since there al-
ways exists a morphism ¢,,: H,j(TG)(/X\)H,(TG)—»HM(TG@ TG), the
compoSite @s,= T Fipsq®Ppse s ©s, defines the desired morphism. This
completes the proof.

Theorem 5.6. Let (G;,e;, ) for i=1, 2, be cotriples on multi-
plicative fibred categories (¥,,®, P.). Then a cotriple (G:4G,, e, Jes,
B:14B.) is defined on the fibred product (¥X,4%,,8, P,4P,), which is also
multiplicative. Assume that there exist natural transformations g;:
G RG,—G,RQ satisfying (e;Q)ou;=¢,Re;, where Q: ¥,Q%,—X%,. Let
(7, 6): (R.4%,, B, PA4P,) -, U, @) bea covariant (contravariant)
functor of the fibred prcduct into a multiplicative abelian fibred cate-
gory (9,9, @) such that a natural transformation v: Qo(7T, T)—To
(®, ®) is given, where @: 9 x%Y—Y. Then there exists an external
product in the cotriple homclogy (cohomology) H.(T (G.46,)).

The proof is similar to that of Theorem 5.5 and hence is omitted.

6. Examples

6.1 Torsion. Let K be a commutative ring with unity. Let 2 be
the category of all K-algebras with algebra homomorphisms. Let I be
the category with objects (4, M) where 4 is in ¥ and M is a left
A-module with module structure given by ue: 4AQM—M and morphisms
(a, f): (U M)—(A,M’) where 'a: A—A" and f: M—M’'is a K-
homomorphism such that the diagram
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af
ARM —> 4@
M(Pl l e
M > M’
J

is commutative. @: ,N—U is defined by projection on the first
coordinate. Then (I, 2, @) is a tensored fibred category.

Let .G.(4, M) =4, AQM), G-, )=1,1Rf), &, M)=(1,
we) and 4,(4, M) =(1,1QpXR1) where p: K—4 is the unit of 4. Then
(.G, 42, 442) is a cotriple on =@ *(4) and we obtain a cotriple
(Gsy e, 4s) on GG A, Q). Let (M, A, P) be the category of pairs
(M, 4) where M is a right 4-module and obtain, as for left 4-modules,
a cotriple (Gy,e,, 4;) of the tensored fibred category (M, 2, P). Let
0 G;RG,—~G,X be defined by the twisting isomorphism for 7=1, 2.

Let T: MudM—Ab be given by T(M, 4), (4, N)) =M .N.
The natural transformation v is given by the diagram

MROAQNRQM'QARQN’ MOM'QASAINSON’
8 } s @110 w0
T2
MRNQM'QN’ MIM'QUNKQN'

(M& NI v N7) (MROM")Qse st SN’

where t;, =, are twisting isomorphisms and = [(gn&®1—1Rxp) RenX1]
+ [1& v @ (@@L —1Q 1] .

6.2 Cotorsion. A detailed discussion of this example is given in
[1]. Let K be a commutative ring with unity. Let 2 be the cate-
gory of all K-coalgebras and let *Jt be the category with objects (4,
M) where 4 is in ¥ and M is a left 4-comodule, [5], and morphisms
(a, f): (4, M)—(AL, M), where a: A—>A" is in U and f: M—M’ is a
K-homomorphism such that the diagram
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f
M —> M

xo l lw

ARQM ——————> AQM’
a®f

is commutative. @:*MM—A is defined by projection. Then (¢, U, @)
is a tensored fibred category of push out type. Define a triple (uF3, s,
1w,) on “M=Q(4) by Fo(4, M)= (4, AQM), 4.(4, M) =(1, u¥) and
w0, (4, M)=(1,1QeX®1) where ¢: 4—~K is the counit of 4. Then we
have a triple (F;, &, @,) on the fibred category (*9%, 2, P). Similarly,
we define (I, A, P) of right 4-comodules for any 4 in 2 and a triple
(Fy, t1, »;) on the tensored fibred category (% U, P). Let u; be
defined by the twisting isomorphism and let 7: 9*A*t—Ab be given
by T((M, 4), (4, N)) =M EA]N. The natural transformation v is given
by the diagram

(M[AJN)®(M’I;IN’) 2> (MR M’>A%IA,(N®N’)
7 ,1 v
MQNQM'QN'’ > MQM'QNQN’
B ouer Q1 —1Qnen'e
v T v
MRAQNRQM'QARQN’ > MQM'QARQARQNRQN’

where r;, 7, are twisting isomorphisms and 8= [ (¢4 &1 —1Qx?) X1 ]
+ 1Ry R (@ X1 —1R v®)].

6.3 Extension. Let (4% 2, @) be the tensored fibred category
defined in 6.1 and let (Gy, €, 4,) be the cotriple defined on (I, %,
@). o, is the twisting isomorphism; u:: G;cQ@—>Q(G,, G,). Let (Y,
éI\, P) be the tensored fibred category of push out type defined in sec-
tion 1 and (F,¢ ) is the triple given there. Let (G.,e., 4) be the
cotriple (FA‘, ¢,®) on the fibred category (”932\, A, ﬁ) and let 7,: Gyo®
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- (G,, G,) be given by u: Homg(4, N)Q@Homg (A, N')—Homg (AR
A, NQN'). We then consider T': *%A*%%Ab defined by T((4, M),
(4, ﬁ)) =Hom,(M, N). Let y: Hom,(M, N)Q@Hom,(M’, N')—Homgu
(MQRQM’, NQN’") be defined by »(6XpB) =£R3.

One can verify that }0t=P '(4) is isomorphic to M=@Q ().
Therefore, by considering complementary classes, [2], we obtain the
wedge product of Ext.

6.4 Coextension. For the definition and progerties of Coexten-
sion see [1]. It is also shown there that a Yoneda product exists for
Coext and this product induces an algebra structure on Coext. In
this paragraph we consider all K-coalgebras to be projective of finite
type.

Let (*9% A, P) be the tensored fibred category of push out type
defined in 6.2 and (F,¢, ») the triple on (*9%, A, P). Then (1/7\, i, d)
is a cotriple on (*/EJ\JE,/Q\I, ﬁ). Let 9% denote all ordered pairs (//1\, M)
where .//1\ is in /Q\I, /93 is the dual category of A, and M is a A-contra-
module, [2]. Morphisms are ordered pairs (&, f): (//\1, M )~—>(//1\’, M)
where @: A—A" and f: M—M’ is a K-homomorphism such that the
diagram

la, f?

Homg (4, M) > Homg (A, M)
Y l/ \L L
M > M

; I

is commutative, where {a, ) (£) =fofoa. Define @: sm*—@r by projec-
into on the first coordinate, then (9)2*,2/\[, @) is a tensored fibred cate-
gory.

For each A in & let ,,G(;I\, M) = (;1\, Homg (A4, M)), £(4, M)=(1,
wr) and (4, M)=(>1, ARc)*), where c: 4—K is the counit of 4.
Then (.G, &, +4) is a cotriple on the fibre AEUE*=Q‘1(/?) and a cotriple
(G, ¢, 4) is obtained on the fibred category (W%, éI\, Q).
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Let 4: Ge@—>& (G, G) be given by the isomorphism Homg(4; &
Az, My QM) = 4F QA5 Q M, Q M, =45 @ M, &) 45 Q) M, =Homg (4;, M) K
Homx (4., M,) and let u: ?0®—>®(?’, f‘“\) be given by the twist-
ing isomorphism. Define T T A4 — Ab by T( (//1\, M), (//1\, N )=
Hom.(M, N). Then T is a contravariant additive functor. Let »: &
(T, T)—T-(®, Q) be given by v(6RpB) =R for £&: M—N and B:
M’—N’.

Since the coalgebras considered are projective of finite type, 9f=
*M, [2], and by the consideration of complementary classes one ob-

tains an external product for Coext.

References

[1] Brenneman, F. S., Derived functors in relative homological algebra, Doctoral
dissertation, Oklahoma State University, 1967.

[2] Eilenberg, S. and J. C. Moore, Foundations of relative homological algebra,
Mem. Amer. Math. Soc. 55 (1965).

[3] —————, Adjoint functors and triples, Illinois J. Math. 9 (1965), 381-398.

[4] Gray, J. W., Fibred and cofibred categories, Proceedings of the Conference on
Categorical Algebra, La Jolla, Calif. (1966), 21-83.

[5] Milnor, J. W. and J. C. Moore, On the structure of Hopf algebras, Ann. of
Math. 81 (1965), 211-264.

[6] Shimada, N., H. Uehara and F. S. Brenneman, Cotriple cohomology in relative
homological algebra, submitted.



