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On a Cotriple Homology
in a Fibred Category*

By
Hiroshi UEHARA and Frank BRENNEMANT

The main purpose of this paper is, among other things, to study

cotriple (co) homology defined on a fibred category, which includes a

unified account of introducing products of various derived functors,
known or unknown, in a categorical setting. This approach is moti-

vated by an attempt to find a suitable way, in relative homological alge-

bra, of discussing the derived functors of a functor of two variables. In

fact, this is done in this paper by considering cotriple (co) homology de-

fined on a fibred product which is a subcategory of a product category.

More precisely speaking, we introduce first a category 3e= (2), 31,

Q)@,»,P) of fibred functors (T,0): (£, S3, P )->(?), 21, Q), which in-

herits the fibre wise properties of (2), 21, Q). Since a cotriple on the

fibred category (£, S3, P) induces a cotriple on the category £?<? in the

usual sense, relative homological algebra can be applied to 39. Con-

sider the situation where a fibred functor (T, 0) is defined on a fibred

category (£, S3, P) into an abelian category (2), 21, Q) and a cotriple
(G, E, A) is given on (3t, 93, P). Then the cotriple (co) homology

Jt^(TG) can be defined as an object in £?$. Moreover, if the fibred

categories are both multiplicative and if the functors G, T satisfy

certain conditions involved in the multiplicative functors, then an ex-

ternal product can be defined on H*(TG). For applications, T is
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a bifunctor defined on a fibred product (£j£, 39, PAP} of a multiplica-

tive fibred category (£, 33, P). As is usually the case, the Eilenberg-

Zilber theorem plays a crucial role in defining products. In view of

the fact that a cotriple (co)homology is a derived functor it can be

shown that the theorem is essentially a comparison theorem in rela-

tive homological algebra.

The notions of a cotriple on a fibred category and of induced fibred

categories are introduced in the first two sections. In section 3, a

category of fibred functors is discussed in order to generalize some of

our previous results [6], to the case of fibred categories. The Eilenberg-

Zilber theorem is considered in section 4. In section 5 an external

product is introduced by using the previous sections. The last section

is concerned with products in derived functors; Cotorsion, Coextension

as well as Torsion and Extension.

1. Cotriple on a Fibred Category

Let P: £-»3S be a covariant functor of a category £ onto a cate-

gory 33. By the fibre £5 over B in 33 we mean a subcategory of £

consisting of objects X in £ such that P(X^)=B and of morphisms /

in £ such that P(/) =ln. The inclusion functor of £* into £ is denoted

by JB: X*->X.

Definition 1.1. A fibred category of pull back type (push out

type) is a triple (£, 33, P) such that P: £->33 is a functor of a category

£ onto a category 33, satisfying the following conditions:

1) For each morphism a: B->B' in 33 there is associated a functor

a*: £*'-»£* (a*: £*-*£*') and a natural transformation fa: JB
0a*-+JB'(?a:

JB->JB'°OL^.

2) For each B in 33, l% = hB(lB* = !%*).

3) For CL\ B->Bf and 0: B'-*B",

f 3a = f 0°f a/3* (f ̂  - f 0a*°f a)

4) For each /: X-+X' in £ with .?(/)=«; 5- .̂B7 there exists a

unique morphism /7: X-*a*(X') (/': a*(X}-+X'} in £* (in £y) such

that
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From the definition it is immediate to see that for OL\ B->Br and

0: B'-*B", (0*) * = «*£* ((^)*^/W.
Given a fibred category (£, S3, P,) of pull back type. Let X and

/\ x\ -> x\

S3 be opposite categories of 3c and S3 respectively, and let P: £-»S3 be

a covariant functor defined by P(2)-P(Z) and P(/)-P(?) for

each object Jf and each morphism / in S. Defining a functor ct*\ %£'

->£/? by a*(^/)=«*(-X'/) and «*(£) =«*(£' ) for a morphism a\ B->
B' in S3, an object ^T in 3v, and a morphism ^ in 3v, and defining

a natural transformation f £ : ]B'->]B°OL* by ft^X') ^fa^'X we have a
/\ XX /\

fibred category (X, S3, P) of push out type, which is called the opposite

fibred category of (X, S3, P). This observation shows that the opposite

fibred category is of push out type (of pull back type), if a given

fibred category is of pull back type (of push out type). Henceforth

all fibred categories will be considered to be of pull back type, unless

otherwise stated, because the reader can formulate the corresponding

definitions, propositions, and theorems for those of push out type by

passing to the opposite fibred category.

Definition 1.2. Given fibred categories (X, S3, P) and ($,(£,Q).

A pair of functors (-F, 0), F: X->2) and 6\ S3-^(£, is called a functor

of fibred categories (fibred functor) if Q^F=6^P.

By definition it is immediate to see that for each B in S3 the

functor (F, 0) induces a functor FB:%B-*$)ff(B>

Proposition 1.3. Given a functor (F, 0) : (X, S3, P)->(2), E, 0) of

fibred categories. Then, for each a: B->Br in S3 there exists a natural

transformation ??a: FBQcP-*0(a)*°FB' satisfying the following condi-

tions; for a: B->B' and 0: B'->B" in S3,

*te=(0(«)*%M*oi3*)

Proof. From the axiom 4 of Definition 1.1 it is seen that for

a'. B->Br in S3 and for an object Xr in £s' there exists a unique

morphism in 2)e(B)



16 Hiroshi Uehara and Frank Brenneman

satisfying

Define ?a(X') = (F(fa(XO))' for each X' in 3Ey, then 7a: Ftaf-^O

is a natural transformation.

By definition of yBa,

(1) JXfifcCX")) = f «a*>(*>(*'')) °%a(*")

for an object J£" in £fl» and morphisms <*: B-+B', 0: B'->B" in 33.

From the axiom 3 of 1. 1 and from the definition of ?a, ^,

Since ffl(a) in a natural transformation,

Hence

(2)

Comparing (1) with (2), we obtain

by the uniqueness of a component of the morphism

Therefore, the proof is completed.

Definition 1.4. By a cotriple fG, e, J) on a fibred category (X,

33, P) we mean a cotriple (G, e, A) on the category X such that a pair

of functors (G, /JB) with the identity functor /ss, is a functort of the

fibred category into itself, satisfying the conditions

for each object X in £.

Given a cotriple (G, e, J) on a fibred category (£, SB, P) of pull

back type. Considering the opposite fibred category (£, 33, P) of push
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out type and defining

for each object X in X and a morphism / in 3E, we have a functor (G,
xs ^

/&) of the opposite fibred category such that (G, g, J) forms a triple

on 3J satisfying

7
for each object X in 5.

For the sake of completeness we give

Definition 1.5. A triple (G, e, A) on a category £ is called a

triple on a fibred category (£, P, S3) of push out type iff (G, Zs) is a

functor of the fibred category into itself, satisfying

for each object X in £.

It is clear from the remark made above that if a cotriple (triple)

is given on a fibred category of pull back type (push out type), then

a triple (cotriple) is obtained on the opposite fibred category.

Theorem 1.6. Given a cotriple (G, e, A) on a fibred category (£,

S3, P). Then the cotriple induces a cotriple (G5, es, 4») on each fibre

3E* such that

1) for morphisms a.\ B->B' ', /3: Bf->B" there exists a natural

transformation ^a: G#oi*-*cPGBi satisfying the conditions that

^a=(^%M?a/3*) and ?? l j l(-X')=lz for X with

2) eBa* = a*eBrQ-q(t for a\B->B'.

Conversely, if a cotriple (G5, e5, 4B) is given on each fibre £s of a

fibred category (X, S3, P) in such a way that the two conditions stated

above are satisfied, then there exists a cotriple (G, s, J) on the fibred

category which induces the cotriple (G5, eB, AB) on each fibre Xfl.

Proof. Assume that a cotriple is given on a fibred category.

Since (G, /as) is a functor of the fibred category, it induces a functor

GB\ 3:5-»X5 for each B in S3, and there exists a natural transformation
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T?a: Gsa*-*a*GBr for a: B->Br satisfying the condition 1) because of

proposition 1.3. Defining e/,(Jf) = e(-20, AB(X^=A(X^ for X with

P(X^)=B, we have a cotriple (GB, eB, AB) on HB. Consider a diagram

-> G(XO

\

Y l£ v
«*(X'} — > X-

Since e is a natural transformation, fcc(J?"/)oefl(aj*(j?"/)) = e5/(X /))o

Gfe(ZO). By definition of Va, G(fa(JT /))=fa(G(Z /))ova(-y /). Since

fa is a natural transformation, '

Hence, by a diagram chasing, fa(

7?a.(X')=(p. By the uniqueness of a component of the morphism <?, we

have

for each object X' in 3Efl/. Therefore the first half of the theorem

has been proved.

First let us define a functor G: X-^X in terms of a cotriple given

on each fibre. For an object X with P(X^=B define G(X^=GB(X').

For a morphism /: X-^Xr with P(/)=«: B->B' consider the diagram

N
\

Y f«(Ga/(XO)
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where /=fa(Z>/', and define G(/) =fa(GB<Z'))^a(^/)°GB(//).
Note that if/ is in 3tB, then G(/) = GS(/). Hence G (I*) = Icoo- For
morphisms /: JT-*X', g": Z'^JT' with P(f)=a: B-+B', P(g)=$: B'
—>-B", consider the diagram

F

then the triangles (0), (3) are commutative by definition of G(f)
and G(g~), and the rectangles (1) and (2) are commutative because
fa is a natural transformation.

Hence G(*>G(/) =fs(Gy (Z"))°faG3*(GXZ"))>**(%(X")) o
a*(GB'(g')~)°ya(X')°GB(f') by a diagram chasing. Since % is a natu-

ral transformation, of(GB>(.g'}'}°y,0.(_X''} =T?a(^*(^/))°GB(a!*(^/)). Also
we have GB((^o/)') = GB(a*(^'))°GJJ(/

/), so that

From the construction it is easily seen that (G, /SB) is a functor of
fibred categories.

Define £: G->4 by e ( X ) = e B ( X ) for X with P(X)=B. Then 6

is a natural transformation. To see this consider the diagram for /:
X-*Xf with
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G(/)
G(AO

6B(X)

By definition of G(/), (0) is commutative, (1) is commutative

from the axiom 4 of 1.1, (2) and (3) are commutative because eB

and eB' are natural transformations, and (4) is commutative by as-

sumption. By a diagram chasing we have

Define A\ G->G2 by A(X)=AB(X) for X with P(X*)=B. For a

morphism f:X-*X' with P(f)=a: B->B' consider the diagram

GH/)

then the commutativities of (1), (2), (3), (4), (5) are obvious. The only

commutativity we need to show J(-X'/)°G(/) =G2(/)°J(AT), is ct*(AB
r

ATO) °^(^0 =7a(Gy (ZO) oG^aCY7)) oJ5(^*(ZO). From the assumed
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condition 2) relating SB and eB' we have ^*(J

0^^^
, so that the commutativity of (6) is proved.

From the commutativity of (7), e*(G^*(JrO))°?aOX"') =efl(a*G^(-X'/))

oGadfcCX")) and from A(^(^0)°eBGB(^JfO)=lGBC^(-yO), we ob-
tain the desired commutativity. Since the properties for a cotriple (G,

e, J)are readily proved, the proof of the theorem has been completed.

Before we close the present section, let us consider an example of

a triple of a fibred category, which will be used in later sections.

Let A be an algebra over a commutative ring K with unity and

let /jt: A&)A-^A and p: K->A be the multiplication and the identity

respectively. By a ./f-contramodule M we mean a JT-module together

with a /f-homomorphism Mty: M—- >Hom/f(J, M) such that the diagrams

M) -' M) ~^ * Hom,(^, M)

are commutative. A morphism of ^-contramodules is a .K-homomor-

phism / : M->Mr such that the diagram

1

\

Horn*:

4 s IVj

f \
' < 71 f\ - - "5^* T T^A, M) > Hom2

is commutative. Let 9Jl5 denote the category of all J-contrainodules

with morphisms of y^-contramodules and let K^Sl be the category of

^-modules with JT-homomorphisms as morphisms. Adjoint functors,

U: *3Jl-^^2H and S: /c3Jl->*2Jl will be defined in such a manner as

U-\S: (jrSK, iaK), so that we have a triple GG, ̂ , ^J) with AG=- So f/. Let

f/ be the forgetful functor and let S be defined by S(A) =Hom*(./4, A)

and S(f^=f*:KQmK(A,A)-*I{QmK(A, A') for f:A-*A' in *2Jl. Notice
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that Horn* (A, A) is a ,4-contramodule with structure given by /**:

Hom,<:(^, A~)->HomK(A&)A, ^4)~Hom*C4, Hom^(^, -4)). Then ^e(Af) =

y^
Let SI be the opposite category of the category SI of all j?f-algebras

with algebra homomorphisms, and let *2Ji be the category of all ordered
^\

pairs (4 Af), where A is a J^-algebra and Af is a ^-contramodule, to-
^\ /^ s\ /\

gether with morphisms (a, /) : (A, Af) -> (A\ Af0, where a: A-^Af is in
/^.
SI, i. e., a: A'->A is in SI, and /: Af->AT is a ^-homomorphism satis-

fying the commutativity of the diagram

-, - J -* *»

ja\l/*

N
Hom^i

^ -y AI

^,M; . „. > î^rU'.MO

with <«,/>(?) =f°S°a for each ? e Hom/f(^, M). Composition in S90^ is
x> X\

defined by (^/)°(/3, #) = (0ct,fg). Define a covariant onto functor P:

"TO-^a by P(A, M^=A and P(4 /) =&. For each «: A-+2 let ^: M

-*J$K be defined by ̂ (^M)-(2, M) and ^*(1?,/) = (b',/), where

M is given a ^-contramodule structure by M—^Hom^(^, M)—^

'^, Af) with *a(?) =foa for each f s Hom/f(^, Af). Difine fs'- JA

-»h'°A* by feC^, Af) = (a, 1) : (A, Af)->(^, Af). Then it is straight-
XX

forward to see that (*3ft, SI, P) forms a fibred category of push out type.

As we observed before, each fibre *9Jl over A in SI has a triple

GG, Az, AJ). If the two conditions of the dual of Theorem 1.6 are

verified in this example, we have a triple (G, e, J) on (*2J£, SI, P). For
XX XX XX XX XX XX

(A, M) in !2J£ and for <%: A-+A', d*AG(A, Af) = (Af, Hom/f(^, Af)) and

X?&i:(2, Af) = (2, Hom/rC^7, Af)). Define ^: ^G-^yG^ by ^(4 Af)

= (1, O> where A:a: ~H.omK(A, M)->RomK(A', M) is defined by *a(f) =

f QO:. It is easy to see that all the necessary conditions are satisfied.

2. Fibred Product

Proposition 2.1 Given a fibred category (3E, S3, P) and a functor
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d: S3-»S3. Consider a subcategory 6'1 (X) of the product category X x

3$ consisting of objects (X, 5) in Xx« with the property P(JQ =0(5)

and of morphisms (/, s) in XxS3 with P(/)=0(s). Defining P:

fl^CX)-^ by P(X,B)=B, P(/,aO=zE, and F: 0~1(X)->X by F(JT, 5)

= Jf, F(/,«)=/, the triple (0~1(X),S, P) forms a fibred category such

that (F,0): (0~1(X), IB, P)->(3E, 85, P) is a fibred functor.

Proof. For composable morphisms (/, s), (g", j3) in 0~1(X), (f,a)°

(*,0) = (/°#,s°0) is in rm because P(f°g)=P(f)°P(ig)=d&)°

0(0) = 0(soj9). For each object (Jf, 5) in 0~J(X), (lz, 15) is the identity

morphism, because P(lx) =1P(X) = 10(I). Hence 0'^X) is a subcategory

of XxS. For each s: 5-^5' define a functor z^*: r1(X)^->^1(X)5 by

s*(J5T/
>5/) = (0(s)*(-ar/),5), s*(/, 150 = (<?(«)*(/),li) for an object

(J?7, SO and a morphism (/, IsO in 0~1(X)s/, and define a morphism

fe(-X'/,5/) = (^(S)(^/),a). Then it is easy to see that (r1 (£),», P)

forms a fibred category such that (F, 0) is a fibred map. Hence the

proof is completed.

Definition 2.2. (0"1 (£), $8, P) is called the fibred category in-

duced by 0: S->S and the fibred category (X, S3, P). It will be de-

noted by 0-1(3f, S3, P).

Definition 2.3. Given fibred categories (X, S3, P), (2), S3, Q) and a

"diagonal" functor A: S->SxS defined by J(5) = (5, 5) and J(/) =

(/,/) for an object 5 and a morphism / in 53. The fibred category

induced by A and the product fibred category (Xx3), SSx33, PxQ), is

called the fibred product of (X, S3, P) and (2), S3, Q), and is denoted

by (?<J3), S3, P4Q) where the product fibred category is defined in the

obvious manner.

It is easy to see that the fibred product (XjZ), S3, PAQ} is a fibred

category consisting of a subcategory XJ3) of Xx2) whose objects are

(X, F) in XxS) with the property P(X)=Q(Y) and whose morphisms

are (/, #) with P(/)=Q(#), together with a functor PJQ: XJJ)->S3

defined by (PJQ) (X, F) =P(JT) =0(-Y) and (PJQ) (/, ^) = P(/) =
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Definition 2.4. A fibred category (£, S3, P) is said to be pointed

if each fibre 3r5 is pointed such that for a.: B—>B' in S3, a*: THBi-^HB is

a pointed functor.

Definition 2.5. A pointed fibred category (3f, S3, P) is said to be

preadditive if for each a in S3, homa(X, X7) - {/: X-+X'\P(f)=a}

is an abelian group such that (f + g}h=fh + gh and h(f+g)=hf+

hg whenever morphisms are composable.

Proposition 2.6. If (I, S3, P) is a preadditive fibred category, then

%B is preadditive for each B and for each a: B->Bf in 93, GL*\ 3v->JB

is additive.

Proof. Let a: jB->,B' be a morphism in S3 and let /', #',

X'->Yf be morphisms in 3v« Since £a is a natural transformation,

fcc(F/)(^*(//+^0) = (//+^/)?a(-^/). By definition of preadditivity

and the naturality of f t t, ?a(FO (^(/O+^C^O) =ftt (F0^*(/0 +
0fa(JSrO^ Hence ^ =

By the uniqueness of

a component of ty, we have oj*(// + ̂ r/)=«*(/0+«*(5r/)- Therefore
^ is additive.

Definition 2.7. A preadditive fibred category (3f, 93, P) is said to

be additive (abelian) iff each fibre is additive (abelian such that for

each a: B->B', a*: HB'-^B preserves the analysis of morphisms.)

Definition 2.8. A fibred category (3:, 93, P) is said to be multi-

plicative iff 5, S3 are multiplicative categories with functors 0 : 3c x X

->3f, ®: S3xS3->S3 and with ground objects K, K respectively, satisfy-

ing the following conditions:

1) The diagram

PXP

55x59 - - > 58

is commutative,
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2) For a\ A-+A', 0: B~>B' in S3 and for objects X' in HA>, Yr

in 9v, fexCXOOfaCF'))': ^(XO^^CFO-U®^)^^® FO is an

isomorphism, where (?a(-Xv)®?0(F/))/ is the unique component in

3^g, of faC-

Theorem 2.9. Given a fibred category (X, S3, P) and a functor

0:23-»33. Then the induced fibred category ^(S, S3, P) inherits the

properties of (X, S3, P) and 0 ; pointed, preadditive, additive, abelian,

and multiplicative.

Proof . Let u\ B->Bf be a morphism in S3, then hom«((X, jB),

(Jf /,F))=homflS)CJf, XOxs for (Jf,F), (-*', P) in ^(X). Hence

th induced fibred category is pointed, preadditive, additive, or abelian

according as (3c, S3, P) is pointed, preadditive, additive or abelian.

Assume that 6: S3->33 preserves multiplication. Defining (X, J?)

®(X/,F) = (JT(8)Jr/
>5®F) and (/,s)®(//,2') = (/(8)//

>s0s/) we

have a functor (gj: fl"1^) x r1 (£) -HT1 (£) , such that Po(g = (g)o(Px F).

Let JT be a ground object in S3, then (jfiT, jff ) is a ground object in

^(S). For ̂ rZ-^^7, p:B-^B' in S and objects (^Z7), (F',50

in (T^I),

f a( Z7, Z0®fl( F', F) = (f0Ca)(^0,

1 )̂, so that (fa(*^0®ft(^F)y = (fo^

is an isomorphism. Hence ^(I, S3, P) is multiplicative if (X, S3, P)

and 0 are multiplicative. The proof is completed.

Corollary 2.16. The fibred product of fibred categories (X, S3, P),

(?), S3> O is pointed, preadditive, additive, abelian, or multiplicative,

according as the fibred categories are pointed, preadditive, additive,

abelian, or multiplicative.

Proof. The corollary follows immediately from the fact that the

fibred product is the induced fibred category ^(Xx?), 33xSS, PxQ)

by the diagonal functor A : S->S3 X SB and that the product fibred cate-

gory (£x2), S3xS5, PxQ) inherits the above properties of the compo-
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nent fibred categories.

Proposition 2.11. If (F, 0) : (J, S3, P)-*(3W, 21, 5) and (G, 0) :

(3, §B, Q)->(n, SI, T) are fibred functors, then (FJG, 0) :
-*(27Mn,3l, 5JT) defined by (FJG)(X, F, 5) = (F(X), G(F), 0(5))
and (FJG) (/, #, *) = (F(/), G(#), 0G*)), is a fibred functor.

Proof. Evident.

3. Category of Fibred Functors

Definition 3.1. A fibred category (2), 21, 0) is said to have kernels

if each fibre %)A has kernels such that the functor 8*: 2h'-»2Xi for each

morphism d: A-+A' in 21, is kernel preserving.

Definition 3.2. Let (S,0), (T,0): (f, S3, P)->(2), 21, Q) be fibred

functors. By a fibred natural transformation ^: (5, ^)->(T, 0) we mean

a function which assigns to each object X in X a morphism

S(JO->T(X) in the fibre ?W) such that ^(JH0S(/) = T(/)

for each morphism /: X-*X' in 3r.

Proposition 3.3. Let (£, S3, P) be a fibred category and let (2),

21, Q) be an additive fibred category with kernels. Consider the cate-

gory 2^= (8,31,0) (*,»,/>) of fibred functors (/, 0) from (r,S3,P) into

(2), 21, 0) with 6\ S3->2I fixed and of fibred natural transformations as

morphisms. Then £?0 is pointed, has kernels, has biproducts, and for

morphisms A, p. in £?0, ̂  + ^ is defined such that composition is distri-

butive.

Proof. For each object X and a morphism /: Jf-^^ with

= oj in £, a fibred functor C/V, 0) : (?, S3, P)->(2), 21, 0) is defined by

N(X}=NePw, a null object in SJ^a), and by N(f)=Se^(N0P^.

Notice that this can be done, because 00*)* is a pointed functor. It

is immediate to see that the functor (JV, 0) is, in fact, a null object

in the category £?0. For a morphism /I: 5->T in £F9, the kernel &: ̂ f

->5 of A is defined as follows. For each object X in £ let &(-ST) :

be the kernel of ^(X) in 2)0Kx> For each morphism
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f:X->X' in £ with P(/)=oz consider the diagram

> 7XX)

<! "> 5

0(«)*(/KXO ^

(2)

rr,™ k(X'} * A(X') V
K(X') > 5(j^/) > T(XO

where 5(/)=f0Ca)(5(Z/))°5(/)/ and T(f)=^(T(X'»oT(fY. Since

0GO* preserves kernels, ^(a)*(A(-X'0) is the kernel of <9(^)*(/i(Z/)). As

the diagram (1) is commutative, there exists a unique morphism K(fY

in 2)0F(x) such that the diagram (3) is commutative. Define ./£"(/) =

GffW(K(X'»oK(fy, then k(X^oK(f) = S(f)ok(X) because of the

commutativity of the diagram (2). It is straight forward to verify

that k: K-*S is the kernel of A in the category £?0. For objects 5, T

in £F0 and for each object X in I, there exists the biproduct S(X) +

T(J?") in the additive category 2}0pa), together with morphisms p(S(X)*) :

and c(T(X» : T(^T)->5(X) + T(Z) satisfy-

ing the usual conditions. Defining (5+ T)(Jf) =S(JT) + T(JT) for

each object ^ in X and (5+ T)(/) -<T(ZO)°T(/)o^(T(Z)) +

r(5(ZO)o5(/)o^(5(Z)) for each morphism /: X- '̂ in K, it can be

shown that S+T is the biproduct with morphisms cs: S->5+ T, <r r:

T->S+ T, ^?s: S+ T-+S and ^r: S+ T->T defined by «S(Z)=KS(-X")),

r r (A r )=r(r(JT))> />SCSO=J>(S(D), and pT(X)=p(T(X». It is

obvious that addition of morphisms ^, /^: 5->Tis defined by (^A + jui){X)

= A(X^) -JT JUL(X^) for each JT in K so that composition is distributive.

Hence the proof is completed.

Proposition 3.4. Let (G, e, J) be a cotriple on a fibred category

(£, S3, P) and let (2), SI, Q) be a preadditive fibred category with

kernels. Then there exists a cotriple (G, e, J) on the functor category
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=(1), 21, (?)(*> *^) by setting G(S) = SG, GGO=*G, e(S) = Se, and

= 5J for each object 5 in £?e and each morphism /I in £F9. More-

over the functor G: 2r
e->2r

e is additive and kernel preserving.

Proof. By definition of a cotriple (G, e, J) on a fibred category,

G is a fibred functor and e, J are fibred natural transformations. Hence

it is immediate to see that (G, e, J) is a cotriple on 3J0 . For morph-

isms A, fjt in 39 and for each object X, G(A + v)(X) = (* + &) (G(X)) =

J(G(JO) + KG(JO)=GGO(*) + ^
G is additive. Let &: JT->S be the kernel of A: S-*T. Since A(G(X))

is the kernel of ^(G(-3T)) for each object JY" in 3E, G(k)=kG is the

kernel of GO) by definition. Hence G is kernel preserving.

In the rest of the present section we shall use some of the results

of our previous paper [6] . Since the category 30 = (D, 21, (?) @> ®, ̂ )

is pointed in case (2), 21, (?) is pointed fibred category, and since a

cotriple (G, e, A) can be defined on 39 when a cotriple (G, e, J) is

given on (X, 93, P), a projective class c of sequences in £F0 can be

obtained by ff^?, where <?' is the class of all objects G(S) for 5

in £F0.

Proposition 3.5. Let <5>
0(2

r0) be the class of all split exact

sequences in £F0. Then we have (5=G"1(<?0(2'e)).

Proof. This proposition is proved in a similar manner as Pro-

position 1.2 in [6].

Let G be the standard semi-simplicial complex of the cotriple (G,

e, J) on 2v Then we have

Theorem 3.6. For each object 5 in 3e the augmented chain

complex C(S) — >S is a G~1((?0(2
re))"projective resolution of 5 in 2v

Proof. One can prove this theorem by referring to Theorem 2.2

and Proposition 5. 1 in [3] and by referring to Theorem 3. 1 and Corol-

lary 3. 2 in [6] .

4. Eilenberg-Zilber Theorem

Definition 4.1. A fibred category (3c, 93, P) is called a tensored
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fibred category iff it is additive and multiplicative such that the multi-

plication functors (8): £x£->£ and ®: 33x93->S3 are biadditive.

It is immediate to see that a tensored fibred category (£, 33, P)

satisfies the properties; 1) (Xi+Xd®X' = X&X'+XJ&Xf

+ JQ=Z(8).X"i+-Y®jr;, whenever they are well defined, 2)

and X®Nf are null objects if Ny N' are null objects.

Let ®=(,T,S3, P)(*,^) be the category of fibred functors of the
form(S,lsB) and let £F3=(X,S, JP)(3Ex3,»x»,pxp). Then ® and £FS

are pointed, have kernels and biproducts, if the tensored fibred cate-

gory (3E, S3, P) has kernels.

For objects 5, T in ®, an object (5, T) in (XxX, ^8xS3, Px

p)(3Ex3B,»x»,pxp) is defined by (5, r)(JST, Jf/) = (S(-X')> T(^')) and

(S, T) (/,#) = (S(/), T(#)) for objects (X, X') and morphisms (/,

£•). Then an object in 3^, denoted by S®T, is obtained by (®0(T;

S), ®). In a similar manner, for morphisms ^: T->T7, /^: S->S7 in

@, a rnorphism in £?s denoted by ^®/>e, can be defined by ®°0, A):

T&)S->T'(£)S'. Then it is easy to see that in the category 3g we

have (T1+T2)®5-T1®S+T2®5, T®(S1+S2) = T®S1+ T®S2> (/I

+ /e) ®v = ^(8)^ + ^(8)^, and ;i(8)G*+jO=>l®^ + >l<8)*' for objects T, 5, T1?

T2, Si, 52 and morphisms /I, /*, y in ®. Let us see this quickly. For
each object (X, X') in £x36, ((7^+ T2)(g)5)(Z, X7) =®o(r!+ T2),

Given a cotriple (F, 77, p) on the tensored category (X, SB, P) with

kernels. From Proposition 3.4 and from the observation made above,

the cotriple induces a cotriple (F, ?7, p) on (8, and a cotriple ((F, F),

(?,?), (P,P)) on (KxX,33xS3, PxP) so that a cotriple ((F^P), (^),

(p, p)) on ffg. (F, F), (17,17), (P, P) will be denoted by G, s, and A

respectively. From Proposition 3.5, F^cSX©)) and G^GS^s)) are

projective classes in © and ffg respectively, where <?„ ( ) denotes

the appropriate class of all split exact sequences.
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In view of Theorem 3. 6 the augmented chain complex F— »/;

_^ l?«+i a" ^ Z?«__^ 9\ 17 ^ . r•••—>/< - >/' — >... - >£< - >i

is a JF~1(<?o(@))-projective resolution of the identity functor (/, Iss)
w

in ©, where 9fl = S( — l)f'9i with 9i = F'^yF* for each *'. Hence the
* = 0

complex F(F-^/)=F(F) — >F has a contracting homotopy 5B: FM+2

->Fn+3 for each ^^ — 1 in the category @. Let us consider two aug-

mented chain comlexes FxF, F®F over I®/ in the category £F~

as follows. The first one FxF-^101 is defined by

where ZJ^S(-1)^(8)9^ The other one F(g)F^/<g)/ is defined by
(F(g)F)B= S FP+10F9+1 such that the n-th boundary dn\ (F0F),

„_! is given by
P,q

where 7r^.i,ff+1: (F0F)w-^F?+1Cg)F*+1 is a projection morphism and

n_1 is an injection morphism. As is usually the case,

both FxF and F®F form complexes in £?£.

Theorem 4.2. The augmented complexes F x F / 0 7 and
F-^/(g)/ are G"1(£>

0(2
7c))-Pi"ojective resolutions of 7®/-(g) in

^»vx ^-V'S?^ '̂ •̂
Proof. In view of Theorem 3.6, G«8>)-^i<8> is a ^(^.(

projective resolution of ®. Since G((g))B = G"+1((g)) = (g)G"+1 = (g)(

/r«+i) = _f»+i(g)wp-+i and Since the «-th boundary operator a,((g)) : G"+1

-»G'((g)) is S(-l)'ai«8)) such that «i«8)) = (g)«l = (g) (G"-;6GO =

-projective resolution of ® in £?~.

As G:^~-^^5 is additive, (JF(g)F).=

. Hence (F

(8>JF)" is G^C^oC^r)) -projective for each w^O. The proof will be

completed if the complex G(F(g)F)-^^/®/) = G(F(S>.F)—
is G^C^Cff-)) -acyclic. Since G(F®F) =F(F) (g)F(F) and since

F has a contracting homotopy {s.|«^-l}, G(F(g)

also has a contracting homotopy {5,|«^ — 1} denned by
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TcMti+2 for n^>0 and S_i = s_i®

where S.: S Fp+2®F«+2-> S F^+2®FS+2 and £_*: F(g)F->F2(g)F2.

5, Product

Let (S, SB, P) be a fibred category on which a cotriple (G, e, J)

is defined, and let (3), 21, Q) be a tensored fibred category with kernels

where ® : 2) x 2) ->2) and (§) : §1 X 2I->3I are the multiplication functors.

If (T, 0): (#, S3, P)-> 03,31, Q) is a covariant (contravariant) functor,

then the cotriple induces a cotriple (G, e, J) on the category 39=(3),

§1, Q)(£,SB, P) and a cotriple ((G7G), (e70, (4^)) on the category

2^(0,60=02), SI> P)(3Ex3E,ffix»,pxp). Let us denote the standard semi-

simplicial complex associated with (G, e, A) by

T£
where 9i : GK+1->GB is Gn~^Gl , and let TG — > T be an augmented chain

complex in S7, defined by TG: ••• ->TGK+1-^>TGB-> ••• -

where 9, = S (-l)f'T9i. Then we have

Proposition 5.1. The augmented chain complex TG^>T is a

G~1(<?o(^?0))-projective resolution of T in 3Q. The chain complexes

TGxTGT-^>T0T and TG®TG^T®T are (J^GY\G^3-^^

-projective resolutions of T®T in 3-^^. Since the proof is similar

to that of Theorem 4.2, it is omitted.

Given a cotriple (G, e, J) on a multiplicative fibred category (3c,

99, P) with the multiplication functors ®: £x£->£, (§): SxaB->S3.

Then there exist semi-simplicial complexes GxG, G® defined by

and



32 Hiroshi Uehara and Frank Brenneman

G(8>:

where 8i = G"-''eG' (i = 0, — ,»). Then

Proposition 5.2. If there exists a natural transformation ^: G0

such that the diagram

G<g)G

is commutative, then there exists a semi-simplicial map JJL\ GxG

satisfying the conditions that

£o = A (9i (8)) ° A, - A-i ° (Si ® 90
for each i.

Proof. Let us define inductively £o = /* and 7£M = G^M_{-°^(G", G")

for each ^>0. Since /« is a natural transformation, we have a com-

mutative diagram

(G®G) (Gw, G») - > (G(g)G) (G*-1,

Y
G(g)(G»,G»)

for each n>i>0. Assume that (8i-i(8>)0A-i = A-20(9i-i®8Li). Then

B, G") = Ga-zo G(8i_! ® 8i_0 o ̂ (G", G") = G/iB_2 o ̂ (G-1,

G'1-1) o (8i(8)8i) - A-i ° (8i 090 . Similarly (8!(8)) °^ = ̂ -i ° (81(8)8;) can be
shown. Hence the proof is completed.

Proposition 5.3. Given a cotriple (G, e, J) on a multiplicative

fibred category (36, S3, P) such that there exists a natural transforma-

tion fjL\ G(g)G->G0 satisfying (e(8>)°j« = e(8>e. Let (2), §1, 0 be a pre-
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additive fibred category and let (T, 0) : (X, SB, P)-*(2), §1, Q) be a func-

tor. Then there exists a chain map Tji: T(G x G) -*>TG® in the cate-

gory 2V:, where (g): 33x33-^33.

Proof. Consider the diagram

v

then by Proposition 5. 2 (S ( - 1) ' T8i) ° ( TR.) = S ( - 1) ' ( T8J)
S(-i)''T(^o^=2x-i)<T^
Hence the proof is completed.

Proposition 5.4. Let (3E, 33, P) be a multiplicative fibred category
and let (2), 21, Q) be a tensored category with kernels. Given a func-
tor (T, 0) : (X, 33, P) -*(?), 31, Q) such that there exists a natural trans-
formation v : (§ o ( T, T) -> T®, where (g) : X x X-*X, ® : 3) X 2)->2) are
multiplication functors. If a cotriple (G, s, J) is given on (X, 33, P),
then there exists a chain map P: TGx T£->T(GxGO over y in the
category 2^ = 3^,60, where (§) : 33x33-^33 and ®: SIxSI->SI are multi-
plication functors. Any two such chain maps over v are chain homo-
topic.

Proof. Since TGxTG— T®Tis a (G?G)-1((?o(2r^))-projec-
tive resolution of T ( T , and since T(G^G)-T® is a ( G ) - '

XX

((?0(2
7e3))-projective resolution of T0, a morphism v. T®T->T® in

the category £F0~ can be extended to a chain map £: TGx TG->T(G
xG). It is evident that two such maps are chain homotopic by the
usual argument in homological algebra. Hence the proof is completed.

Gathering together Propositions 5. 1 — 5. 4, we have

Theorem 5.5. Let (G, e, A) be a cotriple defined on a multipli-
cative fibred category (36, 33, P) such that there exists a natural trans-
formation fji\ G(x)G-»G(S) satisfying (e®)°^ = s®e, where ®: XxX->
X. Let (T,0): (X, 33, P)->O,2I, Q) be a covariant (contravariant)



34 Hiroshi Uehara and Frank Brenneman

functor of the fibred category (3E, 33, P) into a multiplicative abelian
x\

fibred category (2), SI, G) such that a natural transformation y: (8)°(T,

T)->T® is given, where ® : 2) X ?)-*•?)• Then there exists an external

product in the cotriple homology (cohomology) H*(TG)\ for integers

p, q there exists a morphism <pPi9 in 2"c= OS, 21, Q)(3Exs,sxSB,pxp)

with (g): S3XSB—SB such that ^.,:

Proof . From Proposition 5. 1 there is an isomorphism ap+q:Hp+q(TG
x\

®TG)-*Hp+t(TGx TC). From Proposition 5.4, v induces a morphism

VP+,: HP+g(TGxTG)-*HP+g(T(GxG')), while 7> induces T^2p+q : Hp+q

(T(GxG))^fl,+(r(TG(S)) in view of Proposition 5.3. Since there al-

ways exists a morphism *,.,: Ht(TG)®H<(TG')-*H^9(TG®TG), the

composite (pp,q=Tjip+q°vp+qQctp+qQtpiq defines the desired morphism. This

completes the proof.

Theorem 5.6. Let (Gf , ef- , ft) for f = l, 2, be cotriples on multi-

plicative fibred categories (3c,-, S3, Pf). Then a cotriple (GiJG2> £i^£2,

j9iJ/32) is defined on the fibred product (i\J£2> S3, P-^AP^), which is also

multiplicative. Assume that there exist natural transformations A-:

Gf- ® Gf.->Gf.(g) satisfying fe®) °A- = e^e,- , where ® : 3f,-® S,--^3Ef. . Let

(7, ^) : (XaJlz, S3, Pi/fPz) ->(2), 21, G) be a covariant (contravariant)

functor of the fibred product into a multiplicative abelian fibred cate-

gory (§9,21, G) such that a natural transformation v, ®o(T, T)-^To
/\

(®, 0) is given, where ®: |)x2)->2). Then there exists an external

product in the cotriple homology (cohomology) H^(T(G^AG^,

The proof is similar to that of Theorem 5. 5 and hence is omitted.

6. Examples

6.1 Torsion. Let K be a commutative ring with unity. Let 21 be

the category of all JT-algebras with algebra homomorphisms. Let *2J2 be

the category with objects (A, M) where A is in SI and M is a left

yl-mcdule with module structure given by M<p'. A®M->M and morphisms

(a,/): UM) — G4',M') where >: A-*A' and /: M-WkP is a Jf-

homomorphism such that the diagram
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A®M

M -

is commutative. Q: *3ft->21 is defined by projection on the first
coordinate. Then (*2Ji, 21, 0) is a tensored fibred category.

Let ,G2C4Af) = U^(g)M), .G2(l,/) = (!, I®/), ^2UAf) = (l,
j#0 and ^2(A M) = (1,10p®l) where p: j?T->y4 is the unit of A. Then
GG2, ^£2, ,,40 is a cotriple on ^5K = Q"1 (A) and we obtain a cotriple
(G2 ,e2 ,4>) on G5K,a, 0). Let (SIK*, 21, P) be the category of pairs
(M, yi) where M is a right ^-module and obtain, as for left ./(-modules,

a cotriple (G^ei, JO of the tensored fibred category (501*, 21, P). Let
A-: G.-^Gf-^G,-® be defined by the twisting isomorphism for z" = l, 2.

Let Traj^J+JK-*^ be given by T(M,^), (A
The natural transformation y is given by the diagram

where ri, rz are twisting isomorphisms and p=

6.2 Cotorsion. A detailed discussion of this example is given in
[1], Let K be a commutative ring with unity. Let 21 be the cate-
gory of all Jf-coalgebras and let *2JJ be the category with objects (/f,
M ) where A is in 21 and M is a left ^f-comodule, [5] , and morphisms
(<*,/) : (4 M)->U7, MO, where «: ^->^ is in 21 and /: M-*M' is a
./T-homomorphism such that the diagram
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f
M ^ M'

is commutative. Q: *2ft->2l is defined by projection. Then (*3K, 21, Q)

is a tensored fibred category of push out type. Define a triple GF2, ^2,

,o>2) on JSK = 0"1(^) by ,F2U M) - U ,i®M), ^2(4 Af) = (l, ̂ ) and

^2C4 M) = (1, l®e®l) where e: ^->J?" is the counit of A. Then we

have a triple (F 2 , f 2 ,<y 2 ) on the fibred category (*2Jl, 21, P). Similarly,

we define (3JI*, 21, P) of right ^-comodules for any A in 21 and a triple

(Fi , f i ,oh) on the tensored fibred category (9J£*, 21, P). Let A be

defined by the twisting isomorphism and let T: W^A^W,-^Ab be given

by T((M,A), (A,N))=MON. The natural transformation v is given
A

by the diagram

r2

where rt, r2 are twisting isomorphisms and 0=

+

6.3 Extensiono Let (#5K, 21, Q) be the tensored fibred category

defined in 6.1 and let (G^ei, Ji) be the cotriple defined on (#211,21,

Q). /*! is the twisting isomorphism ; ^: G1o(g)->®(G1, GO. Let (*2Jl,
/\
21, P) be the tensored fibred category of push out type defined in sec-

tion 1 and (F, c, CD) is the triple given there. Let (G2 ,e2 ,4>) be the

cotriple (£?,<») on the fibred category (*5K, 21, P) and let 22: G2o(g)
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->(g)(G2,G2) be given by A>

A',N®N'). We then consider T: *2ttJ*$K->-4£ defined by T((4 M),

U JV)) =Hoia-(M, AO- Let „: HomXM, 7V)(g)Hom/1<M/, TV') — Hom^

(M®M',N®N'} be defined by v(f(g)/9)=e(8)0.

One can verify that M^P"1^) is isomorphic to A<m = Q~1(A^.

Therefore, by considering complementary classes, [2] , we obtain the

wedge product of Ext.

6.4 Coextension. For the definition and properties of Coexten-

sion see [1] . It is also shown there that a Yoneda product exists for

Coext and this product induces an algebra structure on Coext. In

this paragraph we consider all Jf-coalgebras to be projective of finite

type.

Let (*9K, 91, P) be the tensored fibred category of push out type

defined in 6.2 and (F, c, ai) the triple on (*TO, 31, P). Then (F,c,a)
XX XX XX /\

is a cotriple on (*2JJ, SI, P). Let TO* denote all ordered pairs (A, M}
/N XX /X

where J is in 21, SI is the dual category of SI, and M is a ^i-contra-
XX XX

module, [2] . Morphisms are ordered pairs (<£, /) : (^, M) -> (A\ M'}

where a\ A->A' and /: M->Mr is a ^T-homomorphism such that the

diagram

Horn* U', MO

XX

is commutative, where <a,/>(f)=/°?°«- Define Q: TO*-^SI by projec-
XX

into on the first coordinate, then (5UZ*, SI, Q) is a tensored fibred cate-

gory.

For each A in 31 let AG(A, M) = (A, Horn*(4, M)), #(A, M) - (1,

m^r) and X^> M) = (1, (!(§)£)*), where £: A->K is the counit of A.
XX

Then GG, ^s, AA) is a cotriple on the fibre A($R* = Q~:L(A) and a cotriple

(G, e, J) is obtained on the fibred category (9JZS, SI, Q).
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Let //!: Go(g)->(g)(G, G) be given by the isomorphism

A2, Ml ®Af2) =A* 0^*®^®^=^!* (g^gUs*®^^ Horn* G*i, AQ

Horn* 0*2, M2) and let /*2: Fo(g)->(g)(F, F) be given by the twist-

ing isomorphism. Define T\W*A*Wl-*Ab by T(o£ Af), (£ JV)) =

HonuCM, JV). Then T is a contra variant additive functor. Let \>\ ®

(T, T)-»7X®,(g)) be given by *(f<8)j9)=e<g)j9 for f: M->^ and /3:

Since the coalgebras considered are projective of finite type, 2J£* =

*2JJ, [2] , and by the consideration of complementary classes one ob-

tains an external product for Coext.
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