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On imbedding theorems for Scbolev
spaces and some of their generalization

By

Tosinobu MuraMATU

§1. Introduction

In the previous paper [9] the auther reports that we can give
another proof of imbedding theorems for Sobolev spaces. The
purpose of this paper is to develop our proof precisely. We also
discuss imbedding theorems for Scholev spaces with mixed norm and
the boundary values of functions belonging to some Sobolev spaces.

For functions f(x) defined in an open set £ in the real n-dimen-
sional space R”" we introduce the norm

£ 1l zesnmiay —’“uilQ,Hf(x', £ 2wy s

where x=(x",x"), ¥*€R" x"€R ™ 2"y ={"; (,x")eg}, and
2" is the set of all points x” such that (x, x"")&2 for some x’. For
feC~(2) we define the semi-norms”

(1. 1> !fiI,ﬁ.n—m,D:azi!,IDafHL""—'"(”))
when / is a non-negative integer, or

, | af( _ P 1
(1.1") Flisnma=3 || L@ —DS(y) |

Ix_y [1-[13+m]p I

of=[1 1| | L& =2mcox 0y,

when [ is factional.® We define also the norms
“u”l,ﬁ,n—m,a: [I%[[Lp’"_"(a)+ Iu } 1,b,n—m,Q

Definition 1. The space W"*" "(Q) is defined as the completion
of the subset of C~(®2) consisting of functions f with [[fl[; s neme<loo.
W*h#° coincides with the usual Sobolev spaces W'"?, while W">"(2)

coincides with the space B'(2) of all bounded continuous functions

Received November 1, 1967.
1) a=(ay, - an),|a| =@+ +an. DE=Dg-Dg», D;=3/ox;.
2) [ID denotes the integral part of I 4
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defined in 2 whose partial derivatives of order <C! all exist and

|Df () =D (D _ o
Rt SoT [x—y[ta <

(if I=1[l], D*f are continuous and bounded).
In this paper an open set 2 is said to have the cone property

if there exists a bounded uniformly Lipschtz continuous vector-valued
function #(x) in 2 and a constant 7, such that for each point x in
2 the cone

1.2) {x+tz+tv(x); 0<t<T, z€Q} C4,

where @ is the unit cube {z;|z;/<1/2} in R

Imbedding theorems are stated as follows.
Theorem 1. Let 2 be an open set in R” having the cone prop-

erty. If 1<p<g<<oo and l~%gk~—’q"—, then there exists the

imbedding:
Wee (@)= W (2),

with the following exceptional cases.

() 1=p, l—n=k—",
q
n—m
p
It is known that the imbedding also exists when 1<<p=¢<2 and

] - "=M_ _Lisan integer ([1], [16], [17], [18]). But the author

(b)) 1<p=q,0<m<n, [— =Fk is an integer.

has no proof based on our method.
For I— " >p— —’Z— existence of the imbedding is easily proved

p
by using Holder’s inequality and Jessen’s inequality only.

The essential part of the theorem is in the case [ ——;sz—— —%—

In the case O0<<m<u the existence of the imbedding
WI.P(Q)_éWk,p,rwm(-Q)
means the fact if f& W"?(2), then the trace of the function on m-
dimensional hyperplane S is well defined and belongs to the space

WHe(2NS).

Sobolev [14] gave a proof for the case where /, £ are integers,
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m=n and 1<p<<q. Sobolev [15] proved for the case where [ and k&

are integers and / "k —72— Krondrashov [5] and 'Sobolev [15]

b

discussed also Hoélder continuity of the trace (sse §3. Theorem 1').
Du Plessis [13] proved the case m=0, %2 is fractional; that is, imbed-
dings into $B*(Q).
Gagliardo [2], [3] and Nirenberg [11] gave a proof for the case
! and k£ are integers, which is quite different from that of Sobolev.
They moreover proved “the Gagliardo-Nirenberg inequality”,
[t ] ,<const. |u|?, |u|s",

where 1l _@e¢  1-@ , 0<<a<<l.
q p 7
For the case [/ or % is fractional, Besov [1], Uspecskii {17], [18]

announced their results. Nirenberg [11] also refers to this case.

Taibleson [16] also gives a proof for the case 2= R"

Another method to investigate the spaces of fractional order is
that of the interpolation of spaces. Using this method Peetre [9]
gave a proof of the theorem for the spaces of fractional order.

In this paper we employ integrals of the form
T
(1.3) S t"ldtSK(x, DF (% +tz+ 1w (x))dz,
0
instead of that of potential type. By virtue of the integral representa-
tions of the form (1.3) (Lemma 1), after applying Jessen's inequality

and Holder’s inequality appropriately, we need only to discuss in-

equalities concerning integrals of one variable.

§2. Integral representations and the proof of Theorem 1

We begin with integral representations:

Lemma 1. Let 2, 7,, @ and ¥(x) be as in Theorem 1. Let
o(x) EC7(R") satisty| o(x)ds—1,0(x)=0 for x&Q. Then the
following identities hofd for any integer / and for any function

F)eC().
@1 fw=x rar [ IO poppa s (0))o(2)dz

jou =1

3) f(a)_—_Dasf‘
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s Swm(z) (2+7(2)f (x+ Tz+ To(x))dz,

<l

@2 fa=3 | rat (oun 7@+ 2t (0)dz

0

[}

+ 3 fou@ @ r e ns T+ To)az,

[<3

O<T<Ty)

where w.(z) is a linear combination of derivatives of o, and

ou(x,2) = D510 im0 2+ ()0 (@)

For any B, [p| </,

23 fou-3 S:t"B‘IdtSwa_B(x, 2) O (x+tz+ 10 (x))dz
a=B

LT 3 Xa)“<2>(z+;p(x))af(x+T2+T§V(x))dz.

l=1-B

Proof. By Taylor’s formula we have

f) =3 S B (%) — ) f @ (x+tz+ 10 () )t

=1 d!

s Tmi:_%_&f(a)(er Tz+ Tw(x)) (z+w(x))".

lal<t @

Multiplying by w(z) and integrating with respect to z, we have

=1

@4 f@W=-3 StdtS% (— 2= (X)) (x+t2+17(%))0(2) dz

+> T.'m_(__&%ﬂ S(z_;_g,(x))aw @ f@(x+Tz+Tw(x))dz

a|<?

=f1(x) +f2(x).
From the identity

2.5) S FO(x+ Ta+ To(x)g(x, 2)dz

—(— T)““*‘S Fx+Tz+ Tw(x)Dg(x, 2)dz
it follows that

fu(0)= S0u@ Gw) (e + Te+ Ton)de.
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Using (2.1) with [ replaced by [+1, we have j(x)=f.(x)+f:(x),
where

fiD =3 ST t’dtS 141 () (—2—w(2))F O (x +iz+ 1% (x))dz,

laj=1+1J0 LK!

fil) == Swa(m 2+ () F @ (x+ Tz+ To(x))dz.

x| =t

For each « with |«a|=[+1 there is an index j such that D*=D;D?
|gl=I1. Thus,

Stf<a><x+tz+zw<x>> (247 (%)) %0 (2)dz

=S% (FO(x+iz+10(x)} (2+7(%))%0(2)dz

- —Sf<3><x+tz+tw<x>> (2+2,(x)) (z+7(%))Pw(2)dz.

0
0z;
Therefore, fi(x) is equal to the first term on the right side of (2.2).
Consider now (2.3). Using (2.2) with f replaced by f® for |g|</,
we have

TRIGRD S: tHdtS as(2,2) [ (x+tz+10(%))dz

«
lee|=1

+[§I_!B Swa(z) (z+7 () ®(x+Tz+ Tw(x))dz

=fi(x) +f(x).

Therefore, by (2.5) applied to B instead of «, we find that f,(x) is
equal to the second term on the right-hand side of (2.3). This
completes the proof.

Our proof of Theorem is based on these integral representations
and the following lemma, which will be proved in the next section.

Lemma 2. Let 2 be a domain in R"** having the cone property:
there are a constant 7, and i;f\(ﬁ) such that (1.2) is satisfied with 2
and ¥ replaced by EJ\ and ?/F\ respectively. Let £ be a domain in R?,
and let ® be a bounded, uniformly Lipschitz continuous mapping from
2 into @ such that 0(x) = (x, 0,(x)). Assume that K(x, £) is a bound-
ed, uniformly Lipschitz continuous function whose carrier is contained



398 Tosinobu Muramatu

N )
in R"x @, where @ is the unit cube in R™"

For any function f in L"(s/z\) we define
(2.6) Vit x) = SK(x, DF(0(%) +12+To0(x))dz.

(i) Assume that 0<k<<1 and 1<p<g<<Teco. Then there is a con-
stant C independent of f and ? such that

2.7 |V, %) h0,nem o SCE 7| f llo.,3
holds for all f in L"(EZ\), where u= n;s — _”;—.

(ii) Assume moreover that /—u=k and either one of the conditions
(a) [—u>k, (b)) 1<p<<q, m>0, (c) k>0, m=0, or
(d) 1<p, m<mn,
is satisfied. Then there is a constant C independent of f and 7 such
that

(2.8) | S:t'—l V(t, 2)dt] 40 n-meCT" **| fllo.53

holds for any f in LJ’(/[\J).
Proof of Theorem 1. To prove the theorem, it is enough to
show that the inequality

2.9 L f lban-mo Cl|fli1s.e
holds for any f in W"*(2)NC~(2), where C is a constant independent
of f.

Consider first the case in which / is a positive integer. Let g be
an index with !gj=1[k]. From (2.3) and Lemma 2 it follows that

(2.10) Lt eonm e S Co(T ™ flop ot T 7 f | 10,0)

for fe W (2)NC=(L), where pu= — —’ZL— Summing these in-
equalities over all 3, we have

(2.11) Lf 1hanma SCCT | flopot T f | 16,0,

which implies (2.9).
Consider next the case in which /= [I] +9d, 0<6<<l. Since

n
b
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Sma_a(x,z)dzzo and Sw(z)er-l,
the first term on the right side of (2.3) is equal to

>3 STt"ldtSSwa_g(x, Do)

la|=1,B=a JO

{fx+iz+tw(x))—f(x+tw+tw(x))}dzdw,

which can be written in the form

T N
;—1 Bs S tl+nlkldtSKa—B<x’ 2)fa(0(x) +12+¥o0(x))dz,

0
where fo(£) ={f ) —f YN} lx—y|7" w(2)=@(x),7(y)) for
2=(x,y)€2x8 K,sx, 2) =0.s(x,2)o(w)|z—w|"*"?* for 2=z, w)
€ R*, and where 0(x)=(x, x). Applying Lemma 2 to these integrals,
we have the inequality (2.10), which imply (2.9), and the theorem
is proved in this case also.

Taking g=p, m=mn, (2.11) implies the first part of the following
theorem.

Theorem 2. (The Interpolation Inequality) Let £ be as in
Theorem 1 and assume that 0<Ck<</. Then there is a constant C such
that
(2- 12) Iflk,p,ogc<€_k}fI'o,r.a‘*‘sl_k}f}/,p,a)

holds for f€ W"*(2) and 0<e<T,.
If 2=R", then also

(2.13) | flasen=Clf 5% | f |15
holds for any f in W"?(R").
Proof. Choosing ¢= Ty=1, we have for f & W"*(R")

(2.14) s <CUflost 1S 110),

where C denotes a constant depending only on [, %, p and #. For
feWw (R set g(x)=f(ex), 0. It is easily obtained from the
definition that

1g1es=e""" f lis,
so that (2.14) with f replaced by g implies that
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(2.15) Lf s <CE*H floste™ [ flis).
Chocsing in (2.15)

e=|f1351 £,
we have (2.13).

§3. Proof of the fundamental lemma
We turn now to consider the proof of Lemma 2, which is based
on the following lemma.

Lemma 3. Let .?2\, T, @, 2 and @ be as in Lemma 2. For
f EL’(/!E) we define

3.1) Ut %) =Sa|f(a)(x) 24 o0(x)) | d2.

(i) If 1<p<g<<eo, then there is a constant C independent of f and
t such that

(3- 2) ” U(t> x) IlO,q,:t—m,ﬂ?gCt’_u”f ”0.1’.3’
h _nts m
where y2] p q

(ii) If I—ux>0, 1<p<<g<<oo, or if [—u=0, 1<<p<<q<<oco, m>0, then
there is a constant C independent of f and 7 such that

SC Tl—““f ”0.17,3-

0,9,n—m,Q

(3.3) “St Ut, x)dt

(iii) If —p>k>0, m>0, 1<p<g<Teo, and if p<lq or m<m, then
there is a comstant C independent of f and 7 such that for any
x”, y,,E,QII

s T
AY
(3.4 ]:Sm(x”) SOI(;W) [x—y|m Sot Ui, x)h 7 dt

gCT’—M—k”f”o,p,?,
where x=(x', x"), y=(9',%"), and h(z)=min {1, "}, 0<e<%.

Proof. Changing the variables of integration, U can be written

in the form

Ut 1) = Sa | F0(x)+22) | d2,
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N\ N\ N P
where Q.=Q-+%o0(x). Since ¥od(x) is bounded, there is a constant
b such that ,cb@ for all points x in 2. Thus, defining f to vanish

ey
outside 2, we have

U, x)gg [ f(o(x)+1t2) [dz”zb""galf(a)(x) +1tbz) |dz.

53
N Py
Therefore, we may assume that £=R"", 2=R", and ¥=0(.

By Holder’s inequality we have
11p
(3.5) U, x>g(ng F(0(x) +12) I"dé) .

Changing the variables of integration, we have
<3- 6) U(L x>gt_(n+3)/ﬂ”f”o,p,R"” )

so that (3.2) is proved in the case where m=0. To prove (3.2)
for m>0, let x=(»,9), 2=(z,w) and let 0(x)=(y, 0*(x)), where
y,ze€R" y=R™™ and w, 0*(x)e R ™ From (3.5) and Fubini’s

theorem it follows that

(o yar<\{ \ | 1r+ta 02+ t0) 12aydzam,

SS o* [ f(y+tz, 0*(x)+iw)|*dzdydw,

Q

)
SQSS |fCu, v) 747" dzdudv,
A D P

where @ and @ denote the unit cubes. From this ineguality mnd
(38.6) it follows that
U, 2000w U(t, x) Hﬁ,’z,ﬂ_m(s:m U(t, x))r2le

=

<t/[f o
This completes the proof of (i).
Since (3.3) is an immediate consequence of (3.2) if [— x>0, it
is sufficient to prove (3.3) in the case where [ —pu=0, 1<<p<<q, m>0.

By Jessen’s inequality we have

{S <St U, x)dt)qu’}m
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gg:t’“ldtgql dz, {S (SQ | £(0(x) +12) \dz*)“dx'}”",

where x=(x, %', x"), z=(2, 2%, 2, z2ER, ' ER"*, xR ", z*e
R From (3.2) with f replaced by f(x,+1?z,-), it follows that

1/q
(1(1,. 17000 +t2)1a)an} " <Fex+ tzyprcsmvmcman
where F(z;) = f(z:,)llo.szw+:-:. Thus we have
T q 1/q T
{(Sot"l U, x)dt) dx'} / ;X zf”’"l'q“dtgo Flxi+i2)dz..
0 1

Therefore, it is sufficient to prove that the inequalities

3.7

1/2

g:tlw—m—ldtg " | flx+ tz)dz'\o‘ng”f”o’ﬁ

holds for any f in L’(R). Set y=x+tz and w=z. Then an ele-

mentary calculation shows that
oo 1/2 oo
{emrmal” i 1aa=C\"_1rona-yrimay.
0 -1/2 —o0

The right side of this relation is a function in L? whose L‘norm is
dominated by C| fl,,, where C denotes a constant depending only on
p and q. (see [7] p.288). Thus (3.3) is proved.

Proof of (iii). Since ¥<T'+*+** it is sufficient to prove
(3.4) in the case where [—u==~F.

First consider the case in which #>m, p=q. By Jessen’s in-
equality and (3.2)

S5 (L v n( 2 ad

2 |x—y]m

e L e mon( e T

where g(u,) denotes the L?norm of f(#s, -+, %, *, %,,,) when con-
sidered as a function of (#y, =+, Uy_1, Unp1y ***5 Unis).
Set

£)2
Gt x) = grrtzrdn—1\" glrind:.

Since
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Smtk+lliz—1G (t, x,,)h( [v] >}Z)] ~mlo=k It
[

gg‘: tk+1/ﬁ IG(t x)]v I-—m/b kdt‘l_g tl/.b —-E&— 1G<t x >l7j IE mh’dt

we have
S Ivl"‘*“ {S #mG (L, ,.>h( 2] )dt}"]”’
el oo o}
ref{irear({Temec, xa) |

gcz( S+l ) {S:G(t, x,,>»dt}"”

The last inequality is followed from Hardy’s inequality ([7], p.245):

(o (§rroar)a< (L) {rerar,

S:t"”qu”lf (r)drydtg( 1_pr 5 >" S:f(t)bdt _

Therefore, what we have to show is that

SwG (t, x,)dt < const.gm g()rdt .
0 —oc0
From the inequality

(a+b)P2""(a*+b*), a, b=0,
and Hardy’s inequality, it follows that

S‘”G(t, x,)*dt
0

<o (1 (e oad a2 {1 {et—oad at,

v

S (s ans {1 st ar,
<‘}f€_1— >P{S:g<xn +1)*di + S:g(xn_ t>l’dt}

(2 )T s

IA

Il
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and this gives (3.4) for p=gq, m<n.
Consider next the case in which p<<q. By Jessen’s inequality,
(3.3) with [ replaced by /—#%, and the inequality

lx—y] > ay' -
(3.8) Sh( t e <O

we have

SS{ST"‘FI}‘(—M—?L) utt, x>dt}f—lﬂ'@’_

0 x__ysm-i-kq

<Jor {00 (K22 5 )

gcsg{ g:t'—k—i UG, x)dt} "dx’

A

<C, Tb‘k—“”f ”o,p,'ﬁ-

Therefore, Lemma 3 is established.

Now we are in position to prove Lemma 2. It is obvious that
Lemma 2 for 2=0 follows from Lemma 3. Therefore, it it sufficient
to consider the case where 2>0. From the identity

3.9 Vit )= K, DF(0(y)+12+F0(5))dz
:SK(J}, 24 &);M_ +§/p'\o@<x) —;/F\oq)(y))
(0(x) +t2+ o0 (%))d2
and the inequality

(3.10) | K(x,2) —K(y, 2+ ﬂx);—“)(”_ L Po0(x) —Pon ()]

§C1h<-—{x~;ﬂ—>,
where 4(z)=min (1, «**¢), £+e<1, it follows that

<en(1ZD) 0 100 + 12+ 7e0() a2},

where @ =Q+1(0(y) —0(x)) +To0(x) —TFon(y). It is obvious that
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(. o+ weo)iaz=\ 170 +iz+ie0(y))az,
so that

G1) VD=V I<Ca(-E ) we n U, .

In the case where m>0 we choose ¢ so small that 0<<qge<lm.
Let 2" and 3" be any points in 2. Set x=(x',x") and y=(y,y").
From (3.8) it follows that

U, x)e (Ix—yl < ot .
@12y (BB a2 Y ayar < U 0 s

Combining (3.11), (3.12) and (3.2), we obtain (2.7). From (3.10)
and the inequality

(a+b) <27 (a"+b%), a, b=0,

it follows that

T
(3.13) | S F AV, )AL 8y nmo

<C, sup BS {S:t‘—1h<M> U, x)dt} «  dx'dy

P t IW
Ao 570) vaf 20

Combining (3.13) and (3.4), we have (2.8) in this case.

Finally, we consider the case in which m=0. In this case it is
obvious that (2.9) is obtained from (3.9) and (3.2). Using (3.2)
and (3.11), we have

S:m Vi, £ — V) |dt
<c{ (252w m + vt yar
<ColFllosal h(_'x_;&'_) dt

<C, T+ f []o,p_ag:t h('i}y‘_yzt



406 Tosinobu Muramatu

SCT"*flio.ralx—y1*,

where we have used the fact that

"1 [x—y! ) =<L L) _wlk
got h<—~—~t dt 5 + ; lx—yl&

This establishes (2.8) for m=0, and the proof of Lemma 2 is

complete.

P P
Lemma 2'. Let 2, ¥, 0, 2, T, and V(f,x) be as in Lemma 2.
Assume moreover that 2=2' X9’ and £ CR", and that

0<k=io MESSM oy

Then there exists a constant C independent of f and 7 such that
for any points x’* and y"” in 2"

I So PV a2 =V &, 3D} SCLx" =" 1 f lloss .

Proof. From Jessen’s inequality, (3.11) and (3.2) it follows
that

I So tHVE 2, 2") = V(@ ', ¥ oo

<G en(E D) o o, 20+ U 2, 9 oo dt,

gCZS:tk*1h<MZtl£l>dt]l Fllose,

<Clz" =" 1"flos0e-
This completes the proof of the lemma.
The same argument as in the proof of Theorem 1 gives the

following:

Theorem 1’. Let £ be an open set in R" possessing the cone

property, and assume that =0 X 2" and ' CR". If [ — n—m _p

is not an integer, there exists a constant C such that for fe W"*(Q)

sup £, 2" —f (&, YD lltmner =Cllfllts.0-

%1, ytieorr l x' —y” , L]
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§4. Sobolev spaces with mixed norm
In this section we shall introduce generalized Sobolev spaces by
using “mixed norms”, and discuss the imbedding theorem for those
spaces.

Definition 2. Let 2 be an open set in R*, and assume that R'=
Six xS, where S,, -, S, are linear subspaces in KR’. Set x=
(%4, '+, %,), where x,€8,, -+, x,€S,. Then we define the L tanr
(2)-norm

4D Sl twrn-ma

su g ) Y L
o x(vg{ggm—l)(ﬂm))('”<Sg(xm) |f(x> [ x1> "') xm} ,

where xP= (%;,4, -+, X.), £ denotes the set of points x° such that
(%1, -+, %5, xP) €L for some xy, -+, x; and £9°(x“) denotes the set
of points (4,4, **+, %;) such that (x4, -+, x;, ) 0D,

The definition of the spaces W"®u 22" m(0) is the same as that
of the spaces W'#*"(Q), except that the L**™ ()-norm is replaced
by L@ 2= (0).norm.

We begin with the following lemma, which is a generalization of
Lemma 3.

Lemma 4. Assume that R*=S,;x---xS, and R”*":ax---xs\",
where S,,---, S, and §1, ,/§ are linear subspaces. Let EZ\ be an open
set in R”*°, and assume that the cone property (1.2) is satisfied with
2 and 7 replaced by 0 and #. For each 7 let @, be a bounded, uni-
formly Lipschitz continuous mapping from é: into S; such that 0;(x;)
= (%;, @;(x;)). Let 2 be an open set in R’ such that ¢=0,%X--- X0,
maps £ into 2. For f(@)e Lo (Q) define

(4.2 U, x) :ga[ F(O) +12+1w00(x)) | d2.

(i) If 1<p,<g;<<oo, j=1, ---, m, then there is a constant C inde-
pendent of f and ¢ such that

(4.3) [UE, 2 Mo, 1m0y n-mo SCE [ o, (o402
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holds for any 0<<t<{7, and f EL“P'""’")(/SE), where

n m
_ v;+o; v;
u=>, -
=1 p; nog

vi+o,—=dim(S,) and »—=dim(S;).
(i) If 1<p;<g;<<eo(j=1,---,m), and if either one of the condi-
tions
(@) I—u=>0, or (b) I—p=0, 1<pn<qm; Pmi1, ***s Ds=Dm
is satisfied, then there is a constant C such that

(4' 4) ” S:tlkl Uct)x>dt”0 (63 = qm),n—m, Q2

<CT"*|floug-s03

holds for any 0<<7T<T7, and f& LCPA""'”">(@.
Gii)) If I—u=k, 1<p;<q;<<oo(j=1, ---,m), and if either one of the
conditions

<a> l—/l'—k>0> (b) pM+17 "'7Pn§pm<4m» 1<Pm: or (C) pm+1, Sty

D= Pm, O<t<<n, 1<pm
is satisfied, then there is a constant C such that
T U, x lx—y] ,
(4. 5> “ SO !x—‘ylkﬂz h< t y >dt [’0,(41 e gm), n—m. 2 X0
ZCT"**fllos2,

where %(z) =min{l, ¢}, 0<e<—;1—~, ,%"—, and g=31-Y .

1 m i=1 g;

Proof. By the same reasoning as in the proof of Lemma 3 we
N
may assume that 2=R'*°, 2=R* and =0.
We shall prove the inequalities

(4- 6) ” U(t: xl’ R xm, x(m)> ”0,(ql,4--,qs),m—s,5xx---xs,,,

<o\ o PO () 1200 d,

and

xS,

() .
an Lt a5 12 s
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t"P

1 X _y(m) l kv to

<G

(m) __ am)
X XQ% F(@(m)(x(m)> + té(;ﬂ))dé(m}h( 1-75 ; y ' >,

where x and y are any points in S, X+ XS,, 0™ =0p.,X - X0,,

_ Vj—l"(f;' Vi — 2 Vi
PSR -5
=1 p; g’ 4 =1 {;

, €0,

and

F(2m)=|f(2, -+, 2m £™) o, (#1000, 0),§1 % - xS,y -
Since the integrals on the right side of (4.6) and (4.7) have
the same form as on the right side of (4.2), it is sufficient to prove
these inequalities for m=1. Consider the case in which s=1. By

Jessen’s inequality and (3.2) we have
(4.8) ” UU, x) ”0,41.12””(1(”)

ggAﬂ)dgcl> I S | F(0Cx) +18) | dB, 0.0y 0oy,
Q Q1
g l-—P SA . F(m(l)(x(l)) + té(D) dz‘(l) R

] b

where pzm— “and F(&)=|f(-, 2)|s,.5. An elementary

D q1

calculation shows that

(4.9) | V@ Tyomes p(LET Iy,

<GCa*h (%) i

Therefore, we have

U, x) lx—y|
” Ix_ylk+y+& h< t )”0

,a1, RV 9 (210) x RYFO (1))

L (Y @+ (ul?) lo o
I <1/£l2+|%|2>k+7+5 0,q1,R¥1

<G-L n (IO Fow o) +iaze,

= ” U(t’ x) ”0,41,1?"”(1“))' !

V1

where a=|x®—y®| and y= . Similarly we obtain the inequalities

1
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(4.6) (4.7) for s=0. Thus we complete the proof of (4.6) and
4.7).

The inequality (4.3) is the same as (4.6) with m and s re-
placed by # and m, respectively.

Now we consider (4.4) and (4.5). From Jessen’s inequality and
(4.6) ((4.7)) it follows that

T
4.10) N LG L

T
<\ tat( g0nn +i22d2a,
0 Qn

where
*y vi+o; i
0:2 z — — Z X ’
=1 p; =1 g,
j#m
and

g(é.,,J = ”f (21y R 2771, °tt 27:) “U (P1, %, Dn1, Pms 1, ==, Bn) , R0 (Z) »

T tl—-lU t, .
(4.11) I So !xfy]’ﬁz h< E: tyl >dt[[o,(ql,...4,,,,1>.,,_m,zav(z,,,)va(y,,,>

T el | X~ Yom| > T
—gclgo [ Y] 772 h( 7 Samg(a)m(xm/ +12n)d2m,

where 5=—3"-. Applying Lemma 3 (ii) ((iii)) to the function on

the right side of (4.10) ((4.11)), we obtainZ (4. 4)f((4.5)), where
we have used the fact that

lg2,) Ifo,p,,,,?,,,guf”o, (b1, 00, £y), RYHO

Noting that pmy, ***, P.=Pm, the above inequality is obtained from
Jessen’s inequality. Thus the lemma is established.

The following lemma is analogous to Lemma 2.

Lemma 5. Let 2, 2, ¥ and 0 be as in Lemma 4. Let K(x, 2)
be a bounded, uniformly Lipschitz continuous function whose carrier
is contained in R"XQ. For f& L (Q) define

V(t x) = SK(x, £ f(0(x) + 12+ 17o0(%))d2.
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If 0<k<<l, k<l—p, 1<p;<q;<<oo(j=1,--+,m), and if either one

of the following conditions

(a) l——,u>k,

) m=>0, 1<Pu<qm; Pmiss ***» Da=Dm,

() n=>m=>0, 1<<Pu; DPmis == D= DPm, k>0,
or (d) k>0, m=0,

is satisfied, then
T
! So t,_I V<t; x>dx % k.(ql.-",qm).n—m,ﬂgcTl._k—“”f”0, (Pr,= 7)., Q@

holds for 0<<T<T, and feL® " (2), where C is a constant in-
dependent of f and 7, and x denotes the same number as in Lemma
4,

The proof of this lemma is similar to that of Lemma 2. But we
have to use Lemma 4 instead of Lemma 3.

Using the above lemma instead of Lemma 2, by the same argument
as in the proof of Theorem 1 we have the following:

Theorem 3. Let 2 be an open set in K’ having the cone property,
and let S, -+, S, be linear subspaces such that R'=S,x.--XxS,. If
1<p,;<q;<<eo(j=1, ---,m), | —k—p=0, and if either one of the condi-
tions

(a) [—Fk—u>0,

(b)) m>0, 1<pu<qm; Pmis ***» Pr=Dum,

(©) n>m>0, 1<Pw; Pmn > D= DPm, £ is not integer,
or (d) m=0, k is not integer,
is satisfied, then there exists the imbedding mapping:

Wl,(m,---,ﬂ,,) (g) — W’?, (g1, qm), n—m (Q)

where

and y;=dim S;.
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§5. Boundary values of functions in W"?

In this section we discuss boundary values of functions in W'
First note that we obtain the following three facts by easy arguments;
(a) If feL?(R") and if for each a with |a| =[]

D~ D
SO DIP e L@ xRy,

(in the case where / is an integer, D e L*(R"))
then fe W"*(R"), where derivatives are taken in the distribution
sense.

(b) C(RHYNW"*(R%) is dense in W"?(R%), where

={x=(xy, -, x.), £,>0}, and I<s.

(¢c) Let 2 be a bounded open set in R”, and let ® be a one-to-
one C*-mapping defined in a neighbourhood of the closure £ of £.
Assume that the Jacobian of ® does not vanish on 2. If /<s, then
the correspondence

g——af:go@
is a bounded linear transformation from W"*(0(2)) into W"?(Q),
and its inverse

fg=fo0™
is also a bounded linear transformation.

We begin with the case 2=R".

Lemma 6. If 1<<p<<oo and if /—1/p=Fk is not integer, then
there exists unique bounded linear operator r from W*"?(R’) into

W*e*(R**) such that for feC*(R)NW"*(R.)
rf(x)=f(x",0), 2’ R

Proof. The uniqueness follows from the fact (b). It is enough

to show the existence of the operator.
From Theorem 1’ it follows that for f&C~(R.) N W"*(R%)

sup G20 —F & 30llunsz <y, .

Zy, yn>0 ] Xn—Yn ! i
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Therefore, {f(x’,e)}es is a Cauchy sequence in WUWI*(R*™). Since

W™ is complete, there exists
lim f(x',e)=g(x") in WW2(R"),
E->0
Thus, for each a=(ay, ***, .y, 0) with |a|= [k], and for almost every
(xl, yl) in Rn—l X Rﬂ*l
Dof(x',e) —Df(',e) _ Dog(x’)—Dg(y)

lim

€50 |z —y'|* lx"—y']" '
where o=Fk— [k] + n;l . Moreover, according to Theorem 1

sup | LLE) =D o sinrs <Ol

£ lx"—y']

so that by Fatou’s lemma we have

Dg(x")—Dg(y") _—
” le_yl,p ”0,x,R XR gC”f“ by Rn

Thus, g W**(R""), and the correspondence

/g
can be extended uniquely to the bounded linear operator from W*?(R")
into W#*(R**). The proof is complete.

The above operator is called the frace operator.

We now turn to the general case. Let £ be an open set with
compact C*-boundary I'. Then there is a finite open covering {0} ;-1 .. »
and C*-mappings @, defined in a neighbourhood O; such that ®; is one-
to-one on O, its Jacobian does not vanish on O;, and 0(£M0,) CR",
o(rn0;) c{x,=0}. For {O;} we can choose functions ¢;=C5(0;)
such that

0=<¢;(x)<1, and Jp;(x)=1 in a neighbourhoed of I

Let /<s, and let f& W"*(2). For each j ¢;f W"*(2N0,) and
l@if isono; Cillfll1,5. Set g;=¢;f0;'. Since g, is identically zero
in a neighbourhood of ©;(the boundary of O;), we may consider

that g;€ W"?(R%). From the fact (b) thereis a function g} C*(R")
such that
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llgi—gklliss<le.
Set

J’ g;k<m1<x>)r xEOJ';
HOR

0, otherwise,
then ffeC (RN W"*(2), and
loif =f s =<Cill gi—gFl1.s.8% »
<Cee.
Since fo(x) =1 —2¢p;(x))f(x) is identically zero near the boundary,

by using the mollifier we find that there is a function f§ in C~(R")

such that
[ fo—=fll1p0<le .

From the above results and the identity
F(x) =fo(x) + 30, (2)f(x)
it follows that
If = fF+ 0L
Therefore, C*(R") N\ W"?(2) is dense in W'?(Q).
Now assume that !/ ——;)-:k is not an integer and let 7, be the
trace operator from W*"?(R%) into W#?(R*™). For fe W"*(2) set

Tf:]z{To<¢jf°a)f1)} °f; .
Since all the operators
f=oif,
f=feo;t,
£=18 )
and 8—>g0°0;
are continuous and linear, y is a continuous linear operator from

wh(®) into W**(r').® On the other hand, if feC(R)NW"(2),
then

3) Let M be an n-dimensional compact C$-manifold. We say f& Wh* (M) if ¢ fode
WhHe(Rw) for every CS-coordinate system @ and every CS-function ¢ whose
carrier lies in the domain of @.
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gi=eife0;'€C(R),

r&i(x') =g,;(x',0),

so that for x&rI

rf(*) =21 g;(0,(%)) ,
=Z]3gj<d>j(x)> ,
=>¢;(x)f(x),
=f(x).

Therefore, we have

Theorem 4. Let £ be an open set with compact C*-boundary I

1

If /[<s, and if / —7 =Fk is not an integer, then there exists unique

continuous linear operator y from W"?{(Q) into W*?(I") such that
for feC(RHNW"(2)

rf(x)=f(x), on T.

Proof. The uniqueness follows from the fact that C*(R") N W"*(L)

is dence in W' ?(Q2).
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