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Introduction

In the present paper we concern ourselves with the study of linear

equations of types

CD «-ru)«=/
and

(2) TU)«=/f

where z is a complex parameter. As is well-known, integral equations

of type (1) have been studied succesfully by making use of the (clas-

sical) Fredholrn determinants. One of the important results is the
fact that the so called resolvent kernel is a meromorphic function of

z.

To treat linear equations of type (1) in a Hilbert space, it is
necessary to give another definition of the Fredholm determinants, for

the original Fredholm's definition of determinants can not be used any

more in an abstract theory. An extension of Fredholm's determinant

theory has been carried out by several authors. Among recent works

we mention Dunford-Schwartz [3], Gohberg-Krein [6] and Kuroda [9].

Especially the treatment in [6] is a very elegant one. The generalized

Fredholm determinant detv(l — zT) is defined for any compact operator

T belonging to the class CP of von Neumann and Schatten. This fact

enables us to obtain an abstract version of the classical Fredholm
theory.

The study of linear equations of type (2) requires somewhat
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different approach. Our method is essentially along the lines of
Gohberg-Krein [5].

In §1 we give preliminaries to the whole study. The contents of
this section is essentially included, e.g., in [3] except for Lemma 1. 1.
In §2 we define the generalized Fredholm determinant dety(l — zT)
and derive some of its fundamental properties. Our treatment resem-
bles in many points to that of [6]. However some results (for
example, Lemma 2. 7 (ii) and Corollary (i) to Theorem 2.5) are
stated in more general forms than those which have appeared in the
literature. In §3 we study linear equations of type (2). One of main
results can be described as follows: let =®o(£0 be the set of all bounded
Fredholm operators with index 0 in a Hilbert space § and T(^) be
a .So (©)-valued meromorphic function with finite rank singular parts.10

Then T(z)"1 (if exists) has the same property.

In the forthcoming papers, we shall study some related problems
to this subject.

§1. Preliminaries

1. NOTATIONS. Let £>, §1, ••• be Hilbert spaces and the set of all
closed linear operators T with domain j2?(T)c:§ and range 5i(T)c§!
be denoted by J?(§, §0- -£o(§, £0 and -®(§,§0 denote the subset
of -£(£,&) consisting of ail T"e-£(£>,&) with ^D(T) dense in £> and
^D(T)=§, respectively. All 7eJ3(§, §0 are bounded and the bound
(norm) of T is denoted by \\T\\. -@(£>, §0 is a Banach space with
norm || |j. For Tt=_C($,&*), 5R(T) denotes the null space of T,

{^e^(T); Tu = Q}. 5K(T) is a closed subspacc of §. If
£>, §0, the adjoint operator T* exists and belongs to JToCPi, §),

and T**=T.

We call Tej?0(§, &) a Fredholm operator from § to &, if
^(T)=dim9J(T)<oo, 5i(T) is closed, and /3(T) -dimm(T)i<oo^

oj(T) and /3(T) are called nullity and deficiency of T, respectively.

1) See p. 442.
2) ^(T)1 denotes the orthogonal complement of
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We define the index *(T) of T by *(T) =a(T) -0(T).
denotes the set of all Fredholm operators from § to fe, and we put

) ;« (T)= ;} ,y = 0,±l,-. If Te0,(&&), then
with«(T) = /3(T*) and /3(T)=^(T*). We write

for _£(§, £>) and define similarly -£„(£>), -23(£), $(€>) and

For TeEj?0(£>), we put ^-(T) = <Ue€; A- Te0,(£>)} and
= freC; ;i- Te0(§;} = U0/(T). The resolvert set, the spectrum, the
set of all eigenvalues and the set of all isorated eigenvalues with finite
multiplicities of T are denoted by p(T), *(T), a P ( T ) and
respectively. We put p (T) = p(T) U^(T) and <re(T) =0(T)e.
is called the essential spectrum of T. Clearly p(T)c$0(T) and

p(T) = {^fl>0(T);aa-T)=0}. p(T), p(T), 0y(T) and (P (T) are
open. We denote by n(X\ T)(<oo) the algebraic multiplicity of
, ie^(T),andby^(T) (resp.^(T)) the set of ^e^(T) (resp.^(T))
each repeated n(X\ T) -times. We put n(X\ T)=0 for A^p(T^.

For a set M whose elements are complex numbers, M° denotes
the set of all non-zero elements of M, and M*= (I; ^eM}. For
TeX0 we have that <r,(T)* = *.(T*), ^(T)* = fl)y(T*) (; = 0, ±1, • • • ) ,
p(T)* = p(T*), uXT)* = tfrf(T*) and £rf(T)* = ̂ (T*). The following
lemma will be sometimes usefull.

Lemma 1. 1. Z,e* Te^(§, §0 ^wrf Se^(§a, £)).

cy=o, ±1, »o
For the proof, see Shizuta [14] .

If Jf is a Banach space and C7 is an open set in Cm, we denote

by JL(JJ\ X~) and c5K(C7; Z) the set of all X- valued analytic functions

defined in U and the set of all X- valued nieromorphic functions in 17,

respectively. If U is an open set in Rm, we denote by C*(£7; X} the

set of all X-valued functions defined in U which are &-times continu-

ously differentiate, k = Q, 1, • • • . If X is the complex plane C, we

simply write cJ?(£7) for <JL(.U\ C), and define similarly JK(£7) and

C*(f7). If <r is an arbitrary set in Cw, <^?(cy) denotes the set of all
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functions /(£) which are analytic in some neighbourhood of 6. Let U
be an open set in C. For /<=cJK(LO, the order of / at a point a^U

00

is denoted by «(#;/). In other words, if f ( z ) = ̂ aj(z — a)j, an^=Q,
j = n

— oo<o&<°o, is Laurent's expansion of /(z) at z = a, then n(a\f}=n.

We denote by C(a, r) a circle in the complex plane with center

a and radius r.

Let & be a finite dimensional Hilbert space and SeJ3(£>). If

(<PJ\ .7 = 1> •"> 0> / = dim§, is a base of §, S^/ has the expansion:
/

S(pj = l>L1skj(pk, y = l, • • • , / . We define detS by detS = det(5;%)- detS doesk=i
not depened on the employed base and is determined only by S. It
is called the (usual) determinant of 5. If ,5^(5) = fa/; .7 = 1, • • • , / } ,
then

2. CLASSES OF COMPACT OPERATORS. We denote by Cx (£>, §0 the set
of all compact linear operators from § to §1. If TeCTC(£), §0,

[ T[ = (T*T)1/2 is a compact and non-negative self -ad joint operator in

&. Let (A/(T)} =^rf(| T|)° be the set of non-zero eigenvalues of 1 T\

numbered in the decreasing order. We say TeCj>(^, §0, Q<.p<°°,
if \\T\\f={£fi^Ty}llp<oom Note that

(1.1) ^(T)= min max ||T«|I,
i»i— ,«j- i] (« ,m)- . . - = c«j- i)-o

where {u1} •••, u,^} runs over the set of all orthonormal systems con-
sisting of ( /—I) vectors of §. We call ^(T) the /-th characteristic
value of T. If we put || 71||«, = sup-u/T)=>u1(T1), then we have

For p<g, C,(§, §0 cC,(£, ̂ ) with |j T||^H T\ ""H T\\y. If Te C>(§,

§0 and SeC,(§,,fe), then STeCP(&,&) with -^L = 4- + — and
r p q

(1.2)

(1.3)

For 1^^<°°, CP(jQ, £>0 is a Banach space with norm |j \\f. Moreover,

3) This follows from (1.11) and Riesz convexity theorem.
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if we denote by C0(£,£i) the set of all Te^(§, §0 with finite

dimensional £R(T) (dim5l(T) is sometimes called the rank of T),

CX§? €0 is the completion of C0(§, 4>0 with norm || \\p. In fact,

suppose that TeC/§, €0, 1<I/>O°. Then

where P/=( , P./)P; and { -̂} is an orthonormal system (in £>) consisting

of eigenvectors of 1 T . We put

(1.4) Tn=TEn.

Then we have

( T- TB)*( T- Tlf) = £i T* TB» = E'n \ T\ 2E'n

= S
j^n+I

Hence

II T- T.\\>= { S

The case p = °° is treated similarly. We call {T,,} defined by (1.4)
the standard approximation of 7eC,(£, §0- Note that ^(|T,,!)0=

Let Te^^,^)- Then Lemma 1.1 shows that 2p(T*T)a =
^(TT*)°, i.e. ^(|T|2)°=^( T*12)°. Hence reC,(&&) if and only
if T*eC/©,,§) (0<^<oo), and |[T||,= HT*||, (Q<p<^.

If yle^(^0,§i), TeC/&&) and fie^C^,©,), then (1.1) im-
plies that A(5r)<:||5!Ucr) and ^(TA) =ttJ(A*T*^\\

. Hence T4eC/©0,fe) and 5 Te €,(&,&) with

Now we give the definition of the trace of TfeCi (§)=(?! (§,£>)
Let F={fa; o:e2I} is a complete orthonormal system in §. We put
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Since 5i(T)fl4:> is a separable subspace of £>, (T/a,/a) vanishes except
for at most countable numbers of a, and that Ted(§) ensures the
absolute convergence of the above series:

This shows that -F(T) is a continuous linear form on the Banach
space CiO&). Let Sed (&,&), ^4e^(§1?§) and G be a complete
orthonormal system in §1= Then F(AS)=G(SA). Hence, if Z7e.3(§)
is unitary, we have F(t/*T£7) =F(Z7£7*T) =F(T). This shows that
F(T) depends only on T and net on F employed. Thus we define
tr(T) by

Obviously we have

for Te £,(§), SeC^S.^) and

Let TeCj(§) and P be a (not necessarily orthogonal) projection
such that 5i(P)D^(T). Then

(1.7) tr(T)=tr(PT)=tr(PTP).

Let TeCo(§) and P be a projection such that 5i(P)=>5i(T). Then

(1.8) ^(T)°

(1.9) tr(T)=

Hence, if PeC0(§) is a projection and JVeC°(§) is nilpotent, i.e.,
Nl = 0 for an integer /, we have

tr(P)=dim5l(P),

One of important properties of trace is the following duality: if
, then

4) ^(T)« denotes the closure of
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(1.11) ||T||,= sup |tr(ST)|,

where - + - = 1 and q = w is permitted.
P Q.

3. OPERATOR CALCULUS. Let TeJ3(§). A subset # of tf(T) is

called a spectral set, if 6 is both open and closed in <r(T). Let

/£cJ!(<y)5 and let Z) be an open set in C whcse boundary r consists

of a finite number of rectifiable Jordan curves, oriented in the positive

sense customary in the theory of complex variables. We call such an

open set D J-type. Suppose that D^6 and D'H {0(7") — 0} =$> and

that Da is contained in the domain of analyticity of /. Then we can

define the operator /(T)CT
5)eJ3(£>) by the following formula:

(1. 12)

Since (f- TT'e^CpCT) ; .$(§)), it follows from Cauchy integral

theorem that /(T)CT depends only on <y and /, and not on D (or 7-).

If GI and <j2 are two spectral sets of #(T), f^JK^a-^ and

then ^n^2 is also a spectral set of <r(T), and

(1.13)

For /(f)=l and ^(f)^f, we put /(T)a = P(tf; T)=P, and
= TCTe Clearly P^ is a projection, and PaT= TPa=T(r. If we put

tf' = tf(T)— <r, then Par = \ — PtF. Hence, putting ©a = 5i(P<r) and §a"

= 5i(PaO, we have the following decomposition of § and T:

(.direct sum),

In the above decomposition we denote by TCT and TV the restriction

of T in ^a and §ff/, respectively. This convention will cause no con-

fusion. For £ep(T) we have

5) We define /(T)# = 0 for empty set 0 for the sake of convenience.
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Considering analytic continuation of the resolvents of To- and TV, we
see that ff(T^=ff and tf(TV)=<y'. If TV is considered as an operator
in §, we have cr(TV) =tfU {0} (if </=£0) and

(1. 14) (f- T,)^= (f- TT'Pa + r1 '̂.

We write /(T) for/XT)^. Clearly 7V) = Tand PGr(T) ; T)=l.
From (1.13) and (1.14), we obtain

for any spectral set <r of
If jetf/T), we write P(/l; T) for P(W; T). Clearly «(-?; T)

= dim^R(P(^; T)) = tr(P(^; T)), /le^C^)- Note that Laurent's ex-
pansion of (f — T)"1 at £ = Ae<r,,(T) has the form

where P=P(.X; T), and JV=(T-;)PO; T) with -£(AOc^(P) and
JV' = 0, 0</^»U; T).

If Tej3(£>) and/e^CtfCT)), we have

(1-17) <r(/(T) )=/(<.( T)).

This is so called spectral mapping theorem. Let
and £e^O(/(T))) and (*°/)(O =*(/(£))• Then
and

(1-18)

More generally, if <r is a spectral set of <r(/(T)), then
is a spectral set of <j(T), and

(1. 18') £(/( T)),= (^o/) ( T),-^^^ .

Let reC/§), 0</)^oo, and /e^?(<r(T)). Suppose that /(0)=0.
Then^(f)=/(f)/feJ[(tf(r)) and /(T)=£(T)eC,(£). Under this
situation, we have the following spectral mapping property of another
type:



On the theory of linear equations and Fredholm determinants 425

(if dimd<oo),

(if dim£> = oo).

In fact, if ^e<r//(T)), tr-/^((4)n^(T) is a spectral set of

j(T) and a finite set of points in <sd(T}\ *={&, • • • , £„} • By (1.18')

-we have PG*;/(T))=P(>; T)=xPfe; T). Hence

»a;/(r))=tr(PU;/(r)))=^tr(P(ft ; T))=J>»(&; T).

Lemma 1. 2. L^ D &£ <zw open set of J-type and

(i) Let U be an open set in Rm and T(x^Ck(U;

Suppose that <j(T(#)) 25 divided into two spectral sets a(x] and
ff(xy so that <yO)cD and <sWr\Da = <i>. Then /(TOO)
(£7; 5 (§)).

(ii) L^ 17 be an open set in Cm and T(z*)^Jl(U',
Suppose that a(T(z)} is divided into two spectral sets a(z) and a(z)r

so that ^(z)cD and a(zyr\Da = ̂  Then f(T(z*)\^Jl(U; ^(-p)).

Ciii) Let U and T(z) be as in (ii). Suppose that T^z}^
Jl(U; .3 (£>)), j = l,2, •-, and T;(z)->T(z) in $($) uniformly in U.
Then each tf(T/(z)) is divided into two spectral sets tf/(z) and &j(z)f

so that tf;(2)cZ?, ^-(^)'n^a:r:r0 and aj(z)-*a(z) as ]-*<*>? and
in ^(§) uniformly in U.

4. SOME LEMMAS. We define a subclass JIQ(U\ C0(&)) of Jl(_U\
and the corresponding subclasses JK0(C7; C0(§)) and Q(f7;

C0 (§J), through CC'&J is not a Banach space. By T(z}^Jl,(U\ C0(&))
we mean that i) T(z}^JL(U\ .S(§)), ii) for each a e [7 there exists
a neighbourhood C/(0) of 0 so that in 17(0) T(z) has the expansion
of the form

V 1.20)

where ^(2)eo?(C7(fl) ; §) and %/z)* = ( , *,(*))
§* = ̂ (§, C), and iii) fe(^)} are linearly independent for z^U(a').
^/0(C7; C0(£))) and Ck

Q(U\ C0(§)) are defined similarly. However, for

6) This means that sup |\ —\'|->0 as /
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; C0(§)) we always assume that in the expansion (1.20)
;§) and *,(>)*

Lemma 1.3. o?0(£7; C0($)) c^(£7; d(£)), tfwrf ^?0(£7; €0(£>))
(§))c«^?0(C^; C0(§)). T/z£ s<z?^£ inclusion relations hold

if JL is replaced by 3tt or Ck. If T(z}

Lemma 1. 4, (i) Suppose T(z)^JL(U-

JIQ(U\ C0(£>)) z/ ^^fi? 0^/3; if for each a^U a neighbourhood
and P(z)^JL(U(a)\ ^(§)) ar^ attached so that PGz)ei:0(§),

necessarily orthogonal} projection (i.e. P(z)2 = P(z)

(ii) L^ U be a domain in Cm. Suppose P(z)
P(z) is a projection for each zef/. T^^ P(z)

f/" a^ 6>%/jy f/" T(£)eC0(§) /or SOM^ (or equivalently any} z^

(iii) // &;£ replace Jl by <3A or C\ the assertions of (i)
(ii) Ao/J /w the corresponding sense.

Proof. First we prove the if part of (ii). We note that if P0

and P! are projections and ([Po-PiiKl, then dim5i(Po) =
Therefore we have dim SI (P(z) )= const = &<oo for z^U. Take
and a neighbourhood U(a} of a so that ||P(2)— P(0)|[<1 for2:e
Take a base {?,; f = l, •«, *} of &(/>(*)). Since |[P(z) -

are linearly independent and form a base of
We put

(1.21) p.CO^CO?,, / = !,-,*.

We take a biorthogonal base {^y; y = l, • • • , A} for {^;(^)=^J • (^«»^y)
= 5 f y , and put

(1. 22) P./2) - (^(2), ̂ -), f, ; = 1, .-, ̂

Clearly pu(z}^<Jl(U(a}} and pa(a}=8lj. Hence if we take a suffi-
ciently small neighbourhood V(a) of a, the inverse matrix (#,-/(£)) =
(Ay(^))"1 of (A-y(^)) exists, and each g,/(2)e^?(F(^)). We put
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(1. 23)
i=l

Then by (1.21), (1.22) and (1.23),
(#); §*) and (^,-(2), ^-(2))=^ for 2e F(tf). Thus we have

(1.24) P(z)
.7=1

and hence P

The if part of (i) follows easily from (ii) and Lemma 1. 3, since

P(2) T(z) = TOO. To prove the only if part of (i), we have only to
construct a biorthogonal base {^-(2)} of {p/00} of (1.20) in a similar
way to (1.22) — (1.23) and define P(z) by (1.24).

Note that if we put

then we have

The proof of (iii) is carried over similarly.

Lemma 1.5. Let Pn^^JL(U\ -3(£)), n = Q, 1, •-,
PH(2) ^5 ^ projection for z^U. Suppose that Pn(^)eC0(§) and
PB00->Po(2) («->«») m ^(§) uniformly on any compact set of U.
Then P.OOe^oCtf; C0(§)) fl«d PB(2)->P0(2) (»-^oo) m dCSO
uniformly on any compact set of U.

The proof is quite similar to that of Lemma 1.4 (ii).

§2. Generalized Fredholm determinants

1. DEFINITION OF THE GENERALIZED FREDHOLM DETERMINANT OF ORDER v.
Let TeC*(§), 0<^<^o and let v be an integer not smaller than p.

Set

Since T"eC^(^)cd(£)), <rv(/i; T1) is a well-defined function on C.
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We note that ffv(t; T)€Ec5KfC). The only singularities of ^OU T)

are simple poles at ^C1 ({/!,} =(r r f(T)) and residues are positive integers

«U-; T) by (1.16) and (1.10). We define the function dv(t', T) on

C by

(2.1) _ O = ^ ; T ) ,

(2.2) fc,(0; T)=l.

Thus defined entire function ^(/l; T) is called the generalized Fredholm

determinant of order v associated with T. When there is no possibility

of confusion we write simply 3V(A) instead of dv(A
m, T).

Theorem 2.1. Let TeC,(§)> Q<:p<°° and let v be an integer
not smaller than p. Then dv(A; T) defined as above is an entire
function of L We have dv(A; T)^0 if and only if lep(/lT)e

Hence ft,Q; T)=0 if and only if ^e^CT). Moreover we have
HOT1; T)=»0; ^(- ; T)), ̂ eC, and hence 8V(A

2. EXPLICIT FORM OF THE GENERALIZED FREDHOLM DETERMINANT. Since

our definition of dv(A; T) is implicit, it is desirable to write it in a

concrete form.

Let TeC^(£>), 0<j£<°o. For the moment we assume that

lep(T'). Let D be an open set of J-type containing <r(T). We

further assume that OeZ) and l$Z)a. Define the single-valued analytic

function Log(l — f) on D as follows. On the component of D contain-

ing 0, Log(l— f) is taken to be on the branch of log(l— ?) such that

log 1 = 0. Denoting the components of D not containing 0 by Dk

(k = l, 2, • • • , ri), Log(l— f) on Dk is taken to be on an arbitrary branch

of log(l— f) depending on k. Put

(2. 3) /„(£) =Log(l -f) + f + .- H—-
\ v — 1

and

(2-4) ^(f)=^/,Gr).

Noting that Log(l-f), /»(f) and ^,(*) ecJ(tf(T)), we have
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(2.5)
and

(2.6)

If i^p, then /v(T)e C1^), and it is easily seen that exp[tr{/,(T)}]

does not depend on the arbitrariness in defining Log(l— f). In fact,

let Log(l— <?) and /X?) be corresponding to another choice of the

branches of log (I — ?)- Then we have

Log(l- T) -Log(l- T) =2r2nimjP(^ T),

where 2r is a finite sum and w/s are integers. Hence

tr{/,(T)} -tr{/XT)} = 2r2nim3-n^ T}.

This proves the above assertion. It should be noted that the choice

of D is also arbitrary.

Let now TeC^(&) be arbitrary and v be an integer >p. Then

detv(l— T) will be defined by the formula

(2.7) deUl-T)=exp[tr{/,(T)}], if leP(T),

-0, i/ le<r(T).

We shall state two lemmas on some properties of detv(l— T)

thus defined.

Lemma 2. 1. Let TeC^(£>) and let v be an integer not smaller

than p. Let ro be a closed contour such that i) r0 is contained in

p(T), ii) 7-0 is entirely inside C(0, 1) and iii) 0 is inside ro- Denote

the set of all points in <r(T) which are inside ro by 0Q and the set

of all points in <r(T) which are outside r0 by #1. Put Pj = P(61\ T)

and Tj=TPj, j = Q,l. Then we have

(2. 8) deUl- 3T) =det(l- TOdetCl- To),

where

and
det,(l-T0)-exp[tr{/,(T0)}].
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Proof. Let l<=p(T). Then by (1.15) we have

Hence it follows that

deUl-r)=exp[tr{/,(T)}]

Since T1; Log(l-TOeC0(§), we obtain

det,(l— Tj)=exp,

1L v—

If le*(T), then both sides of (2.8) will vanish. Thus we have the
asserted equality.

Next we shall examine det^l-T) for TeCo(£).

Lemma 2.2. (i) Let 5eC0(§) and let {/!,•; ;" = !, ••-,«} te *Ae
s#£ 0/ #// non-zero eigenvalues of S repeated according to multi-

plicities. Let PeC0(£>) be a (not necessarily orthogonal} projection

such that 5l(P)z)5^(5). Then we have

(2.9) det1(l-S)=det1(l
-7=1

where 1P is the identity in jR(P) and SP is the restriction of SP
= PSP to 5KP).

(ii) Let S and {^} be as in (i). Let, furthermore, fe; i = l,
• • • , / } be a base of 5i(P) and suppose that {fa; y = l, • • • , / } /s W-

orthogonal to fe} , f.g., (^-, ̂ -) =d{J. Put sif= (S<pjy fa) = (PSP<ph fa).
Then we have

(2. 10) det1(l-S)=det(fty-5lV).

Proof. Suppose that lep(5). Then we have by definition

det1(l-S)-exp[tr{Log(l-5)}].

Since 5eC0(§), it is seen that Log(l-S)=/1(S)=Sft(S)eC0(©).
By (1.9) and (1.19) (the spectral mapping theorem), we obtain
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tr{Log(l-S)}=]Log(l-^).
y=i

Hence

We have also

and

If le<y(S), each member of (2.9) is zero. Thus (i) is established.

(ii) follows at once from (i). The proof of Lemma 2. 2 is completed.

Let TeC^^P) and v be an integer not smaller than p. We shall

show that dety(l-^T)=^G*; T), /teC. Put

Clearly thus defined #00 is single- valued on C. Moreover d 00 is an

entire function of ^ by virtue of Theorem 2. 3, since in the proof of

Theorem 2.3 we need only the expression (2.8) of detv(l — ̂ T). Fix

^0eC so that lep(^0T). Let Z) be an open set of J-type such that

rfG*0T)cZ>, OeD and l$Z)fl. For any ^ belonging to a sufficiently

small neighbourhood t/(/O of ^0, we have also <y(^T)c/). Let us fix

Log(l-f) on D. Then Log(l-f), /v(f), gv(fi^Jl(<i(W) for all

Note that Z) is independent of ^e f/(^0). Thus we obtain

and

It is obvious that #„ Gt:T)e.J[( [/(>!„); .3 ($)) (Lemma 1.2 (ii)) and

(/t T)»ecjJ( [/(;,„); d (§)). Hence we see

Clearly we have
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= *Gl; T).

Thus 5(/l) is an entire function satisfying the following equalities

5(0) =1.

Hence 50) =detv(l — ̂ T) coincides with the generalized Fredholm

determinant 5V0; T). These facts may be summed up as follows.

Theorem 2. 2, Let TeC,(§) and let v be an integer not smaller
than p. Suppose that /r^^T). Then we have

(2.ii) 5,0; T)= —v — 1

3. DEPENDENCE OF THE GENERALIZED FREDHOLM DETERMINANT ON T.

Theorem 20 3. Let !<^<oo and let v be an integer not smaller
than p. Then, if U is an open set in Cm and T(z}^JL(U] C*(§)),
we have detv(l — T(^))e^?(f7). Similarly, if U is an open set in
Rm and T(*)eC*(E7; C/§)) (0<^<cx,), ^ ^^ det,(l~ T(^))e
C*(17).

Proof. Let T(2)e^(f7; C/$)). Let us fix ae C7, and choose
r, 0<r<l? such that C(0, r) Cp(T(0)). If £7(c) is a sufficiently small
neighbourhood of <z, we have also C(0, r) d/o(T(2')) for any z^U(a).
Let tf1(2) = {^etf(T(2)); Ul>r} and let ^(2) - Uetf(T(2)) ; UKr}.
We put P,CO=P(*,(2); TOO) and T,^) = T(z)Py(z) =Py(2) T(z),
y = 0, 1. Clearly Pj^eCo^). In view of Lemma 1.2, we have

- Hence it follows from Lemma 1.4 that
C0(§)). It is easily seen that P^

and T0(^)ecJ(£7(^); C/§)).

In virtue of Lemma 2.2, defc/(l— TOO) is expressible as

tr(T1(z))"-1exp[tr{/XT0(2))}].
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Since /XT0(2))=5-v(T0(2))T0(2)»etJ(C7(«);C1(£))) (Lemma 1.2),
we see that exp[tr{/v(T0(z))}] e<J[(f7(a)). It is also seen that

expFtrCr, (2)) + • • • + — ̂ --tr(T1(2)"-1)lec^([7(«)). Now it remains
L v — 1 J

to show that deti(l— Ti(2)) depends analytically on z in some neigh-
bourhood V(0) of 0. Using the expression (1. 24) of PI (2) and putting

^(2) = (TOOpy(*),^-00), we have by Lemma 2.1 det^l- TX00)

= det(0f-y — £ r.yOO)- Since £,yOOe<-?( VX0)), it follows at once that
det1(l-T1(^))e^(F(^)). Thus deUl-TOO) is analytic in 7(0)
and consequently in £7. The other part of the theorem can be proved
in a similar way.

Theorem 2. 4. Let l<p<^ and let v be an integer not smaller

than p. Suppose that TOO, Tn(z) (» = 1,2, »0e JZ(Z7; C,(£)). //
T, 00-* TOO («-»oo) m C/§) uniformly on any compact set in U,

then

uniformly on any compact set in U. In particular, if Tn->T in

C/£), ^^

^Q; T«)-*^a; T)

uniformly on any compact set in C.

Proof . The proof of this theorem can be done in a similar way

as that of Theorem 2. 3.

As a consequence of the above theorem, we obtain the following

Corollary. ([6], [9]) Let T1; T2ed(§). Then

(2. 12) deUl- T*) =det(l- TO,

(2. 13) detCCl- T0(l- TO) =det!(l- TOdetCl- TO.

4. POWER SERIES EXPANSION. Since ^y(/i; T) is an entire function of
/I, we can expand it in an everywhere convergent power series in L

We write

(2.14) ft,(;i; T^SaJV
«=o

and want to obtain explicit formulas for di10.
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Theorem 2. 5. (Plemelj's formula, [6], [11], [15] ) Let

!<^<Coo and let v be an integer not smaller than p. Then

W = 19 *<"> = ...= ai^ = 0,
(2. 15)

dM__ l-lj" U

. n-2 0

1

ffv 'O 'O

where

, (-1)"
n!

0 n-

6 ..
<?„

Proof. First we assume that UJ is sufficiently small. Then we

have a convergent series in

It follows at once that

the series being convergent in Cl(^). Hence we get

so that

Next let us put

where fe, •••,^-1} are arbitrary but fixed complex numbers. Then it

is obvious that

when U| is sufficiently small. We also have
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Combining the last two equations, we obtain

(2. 16)
»-0 * = 0 1=0

Equate the coefficients of /I""1 on the two sides of (2. 16). This gives

(2.17)

Solving the first n of these equations, we have

d. = -( — 1)"
n\

0i n — \

a2 0! n — 2 0

" " - . 1

<*n <7l

Since {^, ••• , tf j /_1} are arbitrary complex numbers, we may choose

<TI = ff2 = • • • = rfv-i = 0, so that d(A)=dv(A
m, T ) . Thus the generalized

Plemelj's formula (2. 14) is obtained.

Corollary. ( [9] ) Let Ted(§), !<^<^o and let v be an integer
not smaller than p. Suppose that P, QeJB(£>) are (not necessrily

orthogonal) projections such that PT=T and TQ=T, respectively.
Then we have

5. INFINITE PRODUCT REPRESENTATION.

Theorem 2, 6. ([2], [6], [10]) Let Te C,(£), KP<<*>, and let
v be an integer not smaller than p. Let {^} be an enumeration of
non-zero eigenvalues of T with repetition according to multiplicities.

Then we have

(2.18) ^0; T)-n(l-^ /)exp{^+.--+ —
— I

To prove the above theorem, we need to prepare a series of lemmas.
The first lemma is due to Weyl.
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Lemma 2, 3. ( [16] ) Let $ be a Hilbert space of finite dimen-

sion L Let U-(S)} and {& (S)} be eigenvalues and characteristic

values of S, respectively. Then we have

(2.19) ri
y=i

(2.20) SI
j=i y=i

Proof. See Weyl [16].

By means of the inequalities in the above lemma we obtain the
following estimation of deti(l— T), which plays a crucial role in the

proof of Theorem 2. 6.

Lemma 2.4. ([3], [6]) Let TedC©) and let {^(T)} be charac-
teristic values of T. Then we have

(2.21) |deUl-T)|^n(l + ̂ (T)).
.7=1

Proof 0 Let Tn=TEn be the standard approximation of T defined
by (1.4). Applying (2.19) to (l-EHTJ restricted on 3l(En) and

noting Lemma 2. 2, we have

It follows by the min-max principle (1.1) that

^((i-^r.) |5ic£0)^i-4-/i/r.), y=i, 2, -, «.
Since A/(TK) =/j/(T)? y = l, • • - ,» , we have

Letting n->w, we arrive at the asserted inequality.

Lemma 2.5. ([3], [6], [13])
{^(T1)} i^ ^^ enumeration of non-zero eigenvalues of T repeated
according to multiplicities. Then we have

(2.22)



On the theory of linear equations and Fredholm determinants 437

Proof. Since non-zero eigenvalues of Ttt and EnTEn coincide by
(1.8), it is shown by (2.20) that

If follows from the definition of Tn and the min-max principle (1. 1)
that

Hence

Since there exist enumerations of eigenvalues ^/(Tw) and ^(T) such
that ^(Tfl)-^/(T) (^2->co) for every j = l, 2, • • • , we have at once

Going to the limit &->oo, we obtain the required result (2.22).
Now we turn to the proof of a special case of Theorem 2. 6. We

state it as the following

Lemma 2.6. Let Ted(^) and let {Xj} be an enumeration of
eigenvalues of T repeated according to multiplicities. Then we have

(2.23) 510;T) = n(l-^/)
y-l

Proof. The following argument is essentially due to Carlemann

[1] . By Lemma 2. 4 we have

IfcO; T) [<n( l+UU(T))exp{Mi 3 ^(T)}.
;=i j=iv+i

Let us fix e>0 arbitrarily. Choosing N sufficiently large, we get

(2.24) Ifcd; T)|<exp(£U|)

for sufficiently large U|. Noting that SMy|<III ̂ il^00, we put
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Then we have also

(2.25)

for sufficiently large U|.

Now define r(z) by

rOO=*OC

where z = A3 and a)3 = l, co^l. Consequently,

Since ^U511/3<oo, the order of the entire function 7- (2) does not exceed

1/2. Then, by Wimann's theorem there exists a sequence of circles

centered at 0 and with radius rk tending to infinity, so that

(2. 26) |rCO i = |*00 1 1*0*0 ! |aO»8J) I>1

for z\ = U|8 = r*, * = 1, 2, • • - . Using the estimate (2.25) and (2.26),

we get for U[ =rl'*

when U| is sufficiently large. Hence it follows that

^0; T) <exp(3eU|)

for U ] = r 1/3, 1A1 being sufficiently large. Since Lemma 2, 4 implies

that the entire function <5i(/*; T) is of order not exceeding 1, we have

by making use of Hadamard's theorem

Thus we obtain for U|=ri / 3

] /I ] being sufficiently large. This gives ] b 1 <3e. Since e is arbitrary,

we have b = 0. In view of 5(0; T)=fl(0)=l, we see « = 0.

Lemma 20 7, (i) L££ Ted(§) anrf /e£ (/i/(T)} &g ̂ % enume-

ration of non-zero eigenvalues of T with repetition according to

multiplicities. Then we have



[On the theory of linear equations and Fredholm determinants 439

(2.27) tr(T)=SUr).
y-i

(ii) Let Te.3(§, £0 <wd Se^C^, £>). Assume that

(2.28) tr(ST)=tr(TS).

Proof. By Theorem 2. 5, we have ^1} = tr(T). On the other hand

Lemma 2. 6 shows that ^^^(T). Hence (i) holds, (ii) is an easy

consequence of (i) and Lemma 1. 1.

Proof of Therein 2. 6. Let lep(/lT). Then by Theorem 2. 2 the

entire function 5Cl°(^; T) is expressible as

By virtue of the spectral mapping theorem (1. 19) and Lemma 2. 7 (i),,

it follows that

=s Log(i-My) + to) + - +
Hence (2.18) holds. When le^OT), both sides of (2.18) will be

zero. This completes the proof of Theorem 2.5.

As a direct consequence of Theorem 2. 5 and Lemma 1.1, we have

the following

Corollary, (i) Let Te=.S(£,§i) and let Se .3 (&,&). Assume-
that STeC,(£) ^ TSeC,(&0, 0<^<cx,. Tfe^ we A00e

detv(l-ST)=dety(l-TS),

where v is an integer not smaller than p.

(ii) Let TeC,(£0, 0</?<oo? ^%J /^; v 6e an integer not smaller
than p. Then we have

detv(l-T*)=detv(l-T).

6. REPRESENTATION OF (i-^r)-1. Using a -S(§) -valued entire function

^5 (1-/IT)"1 can be expressible as
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_ 3 T^~i — 40; J- J
A J. ) ~~^YT7~Tr\~ 'OV(A, 1 )

We write

the series being convergent in J3(£>) for all A^C. We wish to give
explicit formulas for A^.

Theorem 2. 8. (Plemelj's formula, [6], [11], [15]) Let

and let v be an integer not smaller than p. Then

1 n 0 0

T 0 H - l " ' .

(2. 29)

rfy

"' . 1

T" (fn'""""(Fv 0

Proof e It is obvious that

In this equation we replace 5V(^; T1) and 40; T~) by the power series
expansions. It follows that

(2. 30)
«=0 «=0 «=0

Equating the coefficients of two sides of (2.30), we obtain

AM — 1ZI0 —I,

A™=d™+TA™i.

Let the expression of the right hand side of (2. 29) be denoted

by J£°. Then we have A™ = 1. By expanding the determinant in
terms of its first row, we get

n

Thus we see that both A™ and J?} satisfy the same recurrence formula
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and 4V) = 4V) = 1. Hence we have

The proof of Theorem 2. 8 is completed.

Sometimes it is useful to write

; T),
. T^\ _ iV7/(^; i j

The CX^-valved entire function JVV(^; T) can be expanded in an
everywhere convergent power series

It is easy to see that

7B DEPENDENCE OF J/^; T) AND JVVQ; T) ON T8

Theorem 2. 9. L^^ l<p<°° and let v be an integer not smaller

than p. Suppose that U is an open set in Cm and let TCz)e<JT(?7;
). Then we have Av(l\ T(^))e^(f7; ^(&)) and Nv(li T(z))

Proof . According to a result of Dunford-Schwartz [3] , the gene-
ralized Carlemann's inequality holds for any

where r is a constant depending only on />. By means of this inequality
we have

It follows immediately that

For an arbitrary compact set KdU, we put
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Hence we have

Since ^{eprK/n)nlP<.^>, the series
«=o

is convergent in -®0p) uniformly on K. Thus we have established

that 4,(1; T(2))e^(C7, ̂ (§)). It readily follows that JV,(1; T(z))
- T(2)4,(l; T(*))ecJ(t7; C,(©)). The proof of Theorem 2. 9 is now
complete.

Theorem 2. 10. Let l<,p<i°° and let v be an integer not smaller

than p. Suppose that U is an open set in Cm and let T(z), Tn(z)
(» = l,2,-)eo?(J7; €,(£)). // T.(*)->r(*) (»-*«>) in C,($) uni-

formly on any compact set in U, then

Ad; r.(*))-"A(i; TO)

in C*(§), ^^ convergence being uniform on any compact set in U.

Proof, The assertion of this theorem can be proved in a similar

way as that of Theorem 2. 9.

§3. Analytic properties of T(z)""1

1. DEFINITIONS OF Stt0(u-, CP($))» ^/0(c/; -#(£)) AND ^/0(f/; -0o(#)).
Let Z7 be an open set in C", and let T(*)ec5K(£7; €,(§)),

, and a?! be the set of all singularities of T(z). We say
eJ$/0(£7; C^(§)), if for each ^e^ there exists a neighbourhood

of a so that T^z)^JL(U(fl) ;€,(§)) and T^z) e <5
exist and T(^) - T0(» + T^z) for ze U(a) -^. c5K0(f

is defined in a similar way. We define a subclass -30(£0 of -®(€0 by

^0(§)=^(§)n^o(§). Of course ^0(§) is not a Banach space and
it is an open set in ^(§) (Lemma 3.2). By T(z)^Jl(U\ ^0(&))
we mean that i) T(^z)^JL(U\ &(W) and ii) T(z)e^0(§) for each
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z^ U. By TOO e^/0(C7; J30(£>)) we mean that i) T(z)
ii) if oh denotes the set of all singularities of T(z),
for z^U—a)! and iii) for each aeo^ there exists a neighbourhood
U(a) of a so that T0(z)eEc^(£7(tf);,®0(£)) and
C0($)) exist and T(z) = T0CO + TxCO for *e £7(0)-^.

Theorem 3. 1. (i) ^(C7; -3(£))nJ«(I7; C,(£))=o?(£7;

(ii) Z,££ T(z)e«_5J/0(£7; -®(€0) «wrf o>i #£ £/z£ singularities of
. // rcOec^tr-flh; C,(&)), l<p<™, then T(

Proof, (i) Let T(_z)^JL(^U] ^(©)) n^>/(f/; C,(§)). Take^eK
Then there exist a neighbourhood t/(<z) of <z and f(z)^<JL(U(a)*)
such that /(*)^0 in C7(^) and /(z) T(^)e^(C7(^) ; C,(§)). Let
o>o = fee 17(0) ;/(*)=0}. If ^^^o, T(z)ec^(F(«); C,(§)) for a
sufficiently small neighbourhood F(«) of <z. If a^(a0, we take
#e C/(<2) — o70. By translation and rotation of the coordinate we may
assume that 0 = 0 and ft=(0, • • - , 0, ft«). Since /(O, •», 0, 0) =0 and
/(O, • • - , 0, 6TO) ^=0, there exist em>0 and s>0 such that /fe, • • - , 2TO-1, 2m)
^0 for zer={zeC"; |2y |=e (j = l, • • • , w-1), \zn\=en}. Hence
rcC7(^)-a)0, and T(^)ec^(F; C^(§)) for some neighbourhood F of

r. Since T(z)^JL(U(fl) ; -S(£0), we have

n^ ^ j — ___JL__\...\ ^ ( C i > ' " > C w ) r f r
' ~ ~7o~~7vJr \ \ 7^ - ^S - ?> - -T-^«Ci(ZTT^) J J ̂ ey (Ci — 2j • ' ' (Cm — ̂ m)

for 2eF(«)-feeCOT; |zy|<ej (j = l, — , m-1), U,J<£,J. The right
hand side belongs to ^?(F(tf) ; C/©)). Hence T(z) e^( V(a) ;
and the proof is completed.

(ii) The assumtion and (i) implies T(z)ecJ[(t/— o^; C
Let a^a)!. Then for a neighbourhood f/(fl) of <2 there exist
e^(t7(«); ^(©)) and T^e J»0(£7(fl); C0(€>)) so that
To^ + TX^) for ze 17(0)- a*. Clearly ^(2)^^(17(0)-^; €,(§)).
We may assume that there exists /(z)eej#(C7(0)) such that
in £7(0), /(^)T1(z)e^?0(f7(^); C0(©)) and ^R E7(*) Cflio = fe
/(2)=0). By the same method as in the proof of (i) we can show
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that T*(z)^JL(y(a)\ C,(&)) for some neighbourhood V(a) of a,

Hence T(z)e Jf/0(C7; €,(£)).

Lemma 3. 1. L^ f/fo? ^ domain in Cm. Let T(z)^3tt,(U\ C0($))

rarf a?! te £/*£ s0£ 0/ <z// singularities of T(z). Suppose that there

exists Z,SE U-w, such that lep(T(*0)). TA** deUl-
singularities contained in al9 (1- T(z))

(3. 1) r(TCO) = - {(1- T(z))-1-!} = - T(^)(l- T(z))-

singularities of (l-TO))"1 c«d r(T(z)) <zr<2 contained in

Proof. Take a point 0e Z7. Then T(z) has the expression of
the form (1. 20) in a neighbourhood U(a) of a. By virtue of Lemma

1.4, we may assume that there exists P^z}^JL(_U(_d) ; C0(§)) with

P(X>2 = PO) and 3KTCO) c5i(P(z)) for each ^e C7(a) -^. We may
also assume that P(z) has the expression of the form (1.24). We put

P000=1--PCO, ^eC7(^). Then P,(z)^JL(_U(a)\ ^(§)) and P0(«)2

= P0(*). For ̂ e [/(fl)-^, lep(T(z)) if and only if
and

(3.2) (1

We put

(3.3) *,,(*)

using the expression (1.20) or (1.24). Clearly

Note that le/0(T(^)P(z)) if and only if det (ft-,— *„(*)) ^0. If we
assume that det(5f-/ — #17-(2))=0 in C7(«)— G?I, then by analytic continu-
ation we have l$p(T(£)) for each ze U—a)^ since U—ooi is connected.

This contradicts to that lep(T(z0)). Hence det(^-/ — ̂ (2)) ^0 in
f/(«) — oh . We put

(3.4) (

Then s^(z)ec5K(C7(fl)), and
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(3. 5) P

Hence P(z)(l- T(^)P(2))^e^0(f/(a) ; C0($)). This, together with
(3. 2), completes the proof except that of the assertion on det^l— T(z)).

By virtue of Theorem 2.3 det^!- T(z^^JL(U-^. Since
det!(l-r(2))=det(^ -*,-,(*)) in U(a) by virtue of Lemma 2. 2,
detCl- TOO) ec5K(Z7(fl)). Hence det^l- T(z)) e=c5K(E7), and a>n J7(fl)
- (ze t/O) -oh; det(Ay-^O)) -0}.

2. ANALYTIC PRORERTIES OF TO)-*. To consider the inverse of

T(2)6E^(C7; -SoCSO) (or T(z)GJUn(U; -S0(£))) we need the following
lemma.

Lemma 3. 2. ( [5] , [8] , [12] )
(i) Let Te (2) (§, §1). T/ZOT £A0r£ exists a positive number

e(T) wftA the following property, if SG&($,&) and ||S||<e(T),

(ii) L^ Te^Cfe^) anrf SeCcoC©,^). Tfew
^(T)) and K(T+S)=K(T).

Now we state our main results in this section.

Theorem 3. 2. Z,££ U be a domain in Cm.

(i) L0£ T(^)ec^(f7; -S0(§)) ««rf suppose that there exists

U such that ^(T(^0))-0, i.e. Oep(T(z0)). TA*» T(Z)^SE
c5K0(t^; -®o(§)) exists, and the singularities of T(^)^1 coincides with
(0= {z^ U; «(T(£))>0} (o> 25 locally represented as the zeros of
an analytic function),

(ii) I,e* T(2) te ̂  m (i) flwrf Ts(z)^JL(y\ -S(§)), .7 = 1,2, — .
Suppose T/(^)— >T(z) m -®(§) (j-*00) uniformly on each compact
set of U. Then on each compact set K of U, Ty^)"1^ JK0(^ ; -S0($))
exists for sufficiently large j (i.e. j^>N(Ky) and converges to TCz)^1

zw ^(§) uniformly on each compact set of U—o$.

(iii) L0£ TX*) ^ ^5 m (i) cwrf m = l. Then a is a discrete

set of points in U. Each a^co is a pole of T(z)~1eJ%(tf';
and Laurent's expansion of TfXT1 at z = a has the form
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(3.6)

where T,-eC0(§), j = l,--,l, T0(2)e^(C/(c); -S0(&)) /or some
neighbourhood U(a) of a, and

<3.7) r,

Proof. First we prove (i). If z^U-cD^^, then T(^)^1^

exists. If we take a sufficiently small neighbourhood FOO of

*x, there holds |[ T(z) - TCOK-^II rCO"1!!"1 for *e Ffe). Hence we£
have

(3. 8) T(*)- = {TOO

for «e7(«0- Since \\(.T{z)-T(z^T(_z^\\<±l2, the above series
converges uniformly on Ffe). Thus TCO^e^CVCO; ^. (€>)). If
c£a), then a(T(«))=^(T(a))=w>0. We take a base {w,-; ;' = !, • • - , n}
of 9l(T(«)) and a base fe; j = l, • • • , n} of a complementary subspace

2ft of &(r(a)) (i-e. 5l(T(a)) +2JJ=§7)). We take a biorthogonal
base {xy} for {u,} and put

(3.9) £

(3.10) f

Then f(z)^JL(.U; ^0(€>)) and TC^^e^C^) exists. Hence there

exists a neighbourhood F(fl) of <z such that TOO^

exists. Clearly T(^) = f ( z ) -R= (l-^T(z)-1) f(z), ze F(a), and

OeP(T(z)) if and only if leP(J?f(z)^). Since J? f(z) -1 e «_>?„( y (a);

, we have det1(l-^f(2)^1)e^(F(«)). Clearly le p(RT(_z} -1)

7) 50?i+5D?2 denotes the direct sum of the linear subspaces 30?i and 3D£2 of ©. Note
that the closedness of Sfti and 3#2 is always assumed in this definition.
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if and only if deUl-^TOz)-1) =£0. If we assume deUl-^TOz)"1) =0
in 7(<z), then ^(T(£))>0 for ze7(0). By analytic continuation we
have <*(T(z));>0 for ze U, since U is connected. This is a contradic-

tion, and hence det^l-^TOz)"1) ̂ 0 in 7(0). Hence we have (1-

te);.®)^)) and r(£T(*r) = - {(1
; C0(&)) by virtue of Lemma 3.1. Thus

(3. 11) T(zYl = fGO-'a

By Lemma 1.3 (z^lr(RT(zY^^^(V(a)] C0(§)). Hence

). Clearly o>n 7(0) - {*e 7(0) ; deUl-fl TOO"1)

Next we prove (ii). Fix a compact set K in C7 and take a com-
pact neighbourhood 7 of X". Since ^= (T(*); *e 7} c.30(§) is
compact in &(&) and -32 = -3(€0 --®0(§) is closed in -S(.<0), we have

inf |[rl-T8|[=

By assumption there exists a positive number JV0 ( 7) such that

I! T,(2) - T<X>|[^r5o for 2e V and ^JV0( V). Then {T/z) ; z<= V}

c^0(§), and hence T,-(»(=^(F; ^0(€»)) for ;^A^0(F). Take a
compact set .Kj contained in V— ta, and put

If we take a sufficiently large N(V\ we have |[ ^(z) -

8 = min <X 50 , f or z e F and ;^JV( F) . Since || ( T, (2) - T(z) ) T(z) -1 1|
<l/2 for z^K, and j^N(V), Tj(z~)~1^^0(^~) exists for such z and
.7, and

(3. 12) T,(z)-*= TC^)-1 {1- (T,(2) - T(z)) T^)-1}"1

1-0

Hence T,.(2)-1e^/0(F; .&($)) exists for j^N(V) by virture of (i),
and T,.(2)"1-*T(0)-1 in .3(£>) uniformly on ^.

Finally we prove (iii). Each #e<» is a pole of rC-ffTCz)"1) in
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(3. 11), and every coefficient of Laurent's expansion of
at z = a belongs to C0(§). This together with T(a) T, = Tt T(a) = 0

completes the proof.

Theorem 3. 3* Let U be a domain in Cm and T(z)^<3tt^U',

-®o (£>))• Suppose that there exists z^U such that az(T(20))=0,

i.e. Oe=p(T(20)). Then there exists TC*)"1 6=^(27; -S0(©))

Proof. Let a) be the singularities of T(2). Then T^)"1^

c5/0(£/— QJ; -®0(§)) exists by virtue of Theorem 3.2 (i), since £/— <y
is a domain in Cm. Let &eo). By assumption for a neighbourhood

tf(0) of a there exist T0(2)e=o?(17(flO; -30(€0) and T^eJftoCZ/GO;
€00t>)) so that T(2) = T0(2)4-Ti(2), 2eJ7(a)-oj. With no loss of
generality we may assume ^(T0(a)) =0. In fact, suppose that «(T0(fl))
= ^(T0(«)) =^>>0. By definition we may assume that 7i(2) has the ex-
pression of the form (1.18) with linearly independent fe(2); y = l, ••• ,&}

(<3:), §). Without any loss of generality we can assume that

> • • • > P/(0) ar^ linearly independent modulo 5i(T0(«)) and ^/+1(«),
(«) e 51 ( To («) ) . Adding appropriate vectors ^+1 , • • • , ^+B ̂  to

); / = !, • • • , /} (if necessary), we can make a base (<?i(#), •••,^/(«),
• • • , 0?ft+B-/} of a complementary subspace of 5i(T0(«)). We put

^y (2) = 0>y for 2 e C7(a) and j = k + l, •••tk + n—l. Obviously {& (a) ;

y = 1, • • • , k + n~ 1} are linearly independent, and hence fev(2) ; j = l, • • • ,
k + n — l} are linearly independent in a neighbourhood Vi(0)(c£7(0))

of #. Let {«/; ./ = !, ••- ,«} be abase of 37 (To (a)) and {%/; / = !, - 8 - ,^}
a biorthogonal base for {«/}. We put

for ze7i(a). Clearly i(z)eo?(Vi(fl) ;.&($)) and «( 0 (a ) )=0 .

Since T(«) = T0(2) + (7;(z)-.R(z)) in F(a) and r,(2) -l?(z)e
^o(F(c); C0(§)), the assumption a(T0(<z))=0 is justified.

It follows from a(T0(c))=0 that there exists a neighbourhood

F(«) of « such that T0(2)"1e^?(F(e) ; .S0(£0) exists. Hence we have
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TO) = (1+ TiCO To(z)-1) ToOs), *e 7(0).

Since TiGO TQ(z)^^^U(.V(_a) ; C0(§)), the same argument as in the
proof of Theorem 3.2 (i) shows that (1+ T^z) Tofcr

exists, and r(- T^z) To(z)-1) =1- (1+ 7
; C0(£)) by virtue of Lemma 3.1. Hence

x (1 + T^OO T0(*rr- T0(*r- T0(*rF(- TX*) T0(*
-®oOP)) by Lemma 1.3. Thus we have completed the proof.

Theorem 3.4. (i) Let U be a domain in Cm, and let
c5K0(*7; C,(§)), l<^°o. If there exists z,^U such that

(ii) Zrf T(£)e^0(^; ^(S)). TA^w det1(l-T(z))ec5«(Z7).1

Proof. To prove (i) we have only to show F(TCz)) eJ^oC^;
But thit is evident from Theorem 3.3 and 3.1 (ii), since

(ii) Let a) be the singularities of T(z). Then dett(l- T(z))e
<Jl(lJ— a)) by virtue of Theorem 2.3. Let tf^o). Then for a neigh-
bourhood £7(0) of a there exists T^z}^JKJJ(^d}\ C^d)) and TxCz)
e^0(t7(0) ; C0(§)) so that TO) = ToO) + T±(z) for ze £7(0) -co. By
the same argument as in the proof of Theorem 3. 3 we may assume
that *(l-ro(0))=0, i.e. lep(T0(0)). Hence (1- T0(2))-1e^(F(0) ;
^0(€>)) in a neighbourhood F(0) of 0 (Theorem 3. 2). Thus l-T(z)

= {l-r1(z)(l-ro(^)"1}(l-31o(^)), ^£7(0), and det^l- T(*)) =
det1(l-T1(z)(l-T0(2))-1)det1(l-T0(£)) by (2.12). Since T^z)

x (1- To(z))"1ec5Ko(y(0);Co(©))> det^l- T(z))ecSK(y(0)) by virtue
of Lemma 3. 1.

In addition we give a sufficient condition that makes 1— Tej30(£0
possible.

Lemma 3.3. Let T0e.S(£>) w#A ||T0]!<1 and T^C..^). //

Remark. In the forthcoming papers, we shall give some appli-
cations of the results stated in this paper. We shall also give more
detailed argument on the problem of §3 in the case m = l. One of
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applications is a generalization of Weinstein-Aronszajn formula. Con-

cerning Theorem 3.2 (iii), for example, we can prove that

is a simple pole of T(z)-1 if and only if 5i(T(fl)) 4- T'(*)
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