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A Classification of Factors

By
Huzihiro ARAKI and E. J. WooDS*1

Abstract

A classification of factors is given. For every factor M we define an
algebraic invariant roo(M), called the asymptotic ratio set, which is a subset of
the nonnegative real numbers. For factors which are tensor products of type
I factors, the set roo(M) must be one of the following sets: (i) the empty set.
(ii) {0}. (iii) {!}, (iv) a one-parameter family of sets (0, xn; n = Q, ±1, •••},
OO<1, (v) all nonnegative reals, (vi) {0,1}. Case (i), (ii), (iii) occurs if and
only if M is finite type I, !«,, hyperfinite type Hi, respectively. Case (iv) con-
tains one and only one isomorphic class for each x, and they are type III.
The examples treated by Powers belong to case (iv). Case (v) contains only
one isomorphic class and it is type III. Thus we have a complete classification
of factors M which are tensor products of type I factors, roo(M)^ {0,1}. Case
(vi) contains 1^ ® hyperfinite Hi and also nondenumerably many type III
isomorphic classes.

Using the factors in the cases (ii), (iii), (iv) we define another algebraic
invariant />(M) which is able to distinguish nondenumerably many classes in
case (vi).

1. Introduction

In the Murray-von Neumann classification of factors (Murray and

von Neumann [11]) both the type IIn and type III classes are known

to contain nonisomorphic factors. In this paper we give a further

isomorphic classification of factors on separable Hilbert spaces. This

classification is based on a detailed study of factors constructed as

infinite tensor products of factors of finite type I (hereafter referred

to as ITPFI factors). Examples of ITPFI factors were first given by

von Neumann [12]. Several authors (von Neumann [12], Pukanszky

[14], Bures [6], Araki [1], Moore [10]) have determined the type of
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some of these factors in the Murray-von Neumann classification.

Recently, Powers [13] has shown that these examples contain a one-

parameter family of mutually nonisomorphic type III factors.

Sec. 2 contains some definitions and elementary lemmas concerning
ITPFI factors. In Sec: 3 we define the asymptotic ratio set roo(M)c
[0, oo ) for ITPFI factors M=§§MV in terms of ratios of eigenvalues

XVJ of density matrix states cov on the component factors Mv. We
show that roo(M) must be one of the following standard sets

S0= {0}

&={!}

Sx={Q,xn',n = Q, ±1, ±2, • • •} ,

Soi={0,l}

S«=[0, oo).

We give some elementary properties of r^CM), and discuss the one-
parameter family of examples Rx, 0<#<1 given by von Neumann
[12] . Sec. 4 consists of a basic technical lemma. In Sec. 5 we prove

that #eroo«8)A/v) if and only if (8)MJ,^J?jr(8)((8)AfJ,) and thus that
r«x,(0Mv) is an algebraic invariant. Our method of proving that two
factors are nonisomorphic is based entirely on the strong operator

topology, in contrast to that of Powers [13] which uses C*-algebra

techniques. In Sec. 6 we use this result to define r^CAf) for arbitrary
M by #eErM(M) if and only M~~M§§RX, 0<#<1 (if ^er^M), *=£0
we include ^er^CM) also). We give some elementary properties

of rco(M), including its relation to the Murray-von Neumann classifica-
tion.

The remainder of the paper is devoted to a study of ITPFI
factors. In Sec. 7 we prove that the class 5TO contains one and only
one isomorphic class and it is type III. Sec. 8 contains a number of
technical lemmas which are needed for the classification of ITPFI

factors belonging to the classes Sx, 0<A:<1. In Sec. 9 we prove

that r00(M)=5, if and only if M~~RX, 0<>;<1. The factors Rx are
type III if 0<#<1, and they are the factors discussed by Powers
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[13]. Thus, except for the class S0i, we give a complete classifica-
tion of factors which are tensor products of type I factors. We also
give some useful criteria for calculating r^CM) from the eigenvalue
lists {&vi\ j = l,--nv, v = l,2,--}. In particular a sufficient condition
that roo(®Mv)^=S0i is that there exist subsequences v ( m ) f j ^ ( m ) y j 2 ( m )
such that ^(-u.o^-H-^O, i = l,2 and /U/%^1. In Sec. 10 we study
factors M=®MV belonging to the class S0i where Mv is type Iz for
all v. M is then either 7TC0 hyperfinite IIj or type III. We con-
struct a nondenumerable family of mutually nonisomorphic factors
belonging to the class SQ1. In Sec. 11 we define another algebraic
invariant p(Af) by #ep(M) if and only if M®RX~~RX, 0<*<1. We
construct factors in the class Sol which give a nondenumerable variety
of jo(M). In Sec. 12 we apply our results to determine the isomorphic
class of some factors which have been studied previously in the
literature. In particular we show that certain ITPFI factors which
occur in the quantum theories of infinite free Bose and Fermi systems
at a finite density and finite temperature, belong to the class 5TO.

We shall use the following notation. If H is a Hilbert space,
then J3(j£0 denotes the set of all bounded linear operators on H, and
1 denotes the set of all multiples of the identity operator. All Hilbert
spaces are separable. !„ denotes the set of all positive integers
{1,2, •••} . We shall also use 1^ to denote a factor of type T^, but
this should not lead to any confusion. We assume that the reader is
familiar with the standard notation and terminology for von Neumann
algebras (Dixmier [8]). If the von Neumann algebras §1 and S3 are
algebraically isomorphic (unitarily equivalent) we write 2I—5B (SI~S3).

2. ITPFI Factors

This section contains some basic definitions and elementary lemmas
concerning ITPFI factors. We discuss the notion of the eigenvalue list

of a vector relative to a type I factor, and some related topics. We
give a sufficient condition on the eigenvalue lists of the reference
vectors for two ITPFI factors to be unitarily equivalent. We state
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some known results concerning the type of ITPFI factors in the

Murray- von Neumann classification.

A family of matrix units on a Hilbert space H is a set of partial

isometries e{j1 i,j = l,---n (n may be infinite) satisfying e* = ejiy
n

eijekl = dj!ieil, and S^.-i—l. Any type /„ factor contains and is spanned1=1
by such a family of matrix units.

Let H be a Hilbert space, Md<B(H) a type I factor. Then we

can write H=H1(g)H2 and M=<B(H^®1. If £ is a vector in H then

it defines a normal state on ^(H^) by

(2.1) ,004) = (,0,

Hence there exists a nonnegative trace class operator pj^lB(H^) such

that J2(yl) = Trpfl^4. Let p0 = ̂ ^Pi be a spectral decomposition of

p.o where each P{ is one-dimensional, ^-2>0 and ]LUt-=!I<0|!2. If £ is a

unit vector then pa is a density matrix, that is Tr ^ = 1.

Definition 2. 1. Let Q^H&H^ M=-S(#0(g)l. By the eigen-

value list of J2 relative to a type I factor M we mean the list C*i,4"')
of eigenvalues of the operator p.3 in M defined by

(2. 2) Tr p5^4 -

ordered so that ^>^-"^:0. We denote it by Sp(£/Af), or Spj?
if M is understood.

if some A has multiplicity M then it occurs m times in Sp(J2/M).

It should be noted that Sp(£/M) and Sp(^/Mx) are identical except

that the zero eigenvalue can have different multiplicity.

Definition 2.2. Given H=H1<S>HZ, M=$(H^®1, ti^H. By a

standard diagonal expansion of J? relative to M we mean a choice of

complete orthogonal bases \lrli} ^2i for H^, H2 respectively such that

(2.3) ^=S^//2^le0^2,-

where /li^/Q^- ••>(), - '̂s in one of {tyu} and {ty2i} are all normalized,

i|r's in the other are normalized or 0, and >U = 0 if ^ii or ty2i = Q.

It is known that a standard diagonal expansion exists (see, e.g.
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definition 2. 1 of [2] ) . Note that the list of non-zero A{ is identical

with the non-zero part of Sp(£/M).

Definition 2.3. Given H=H1®H2, M= .3 (#0(8)1, ^^H. By a
standard set of matrix units for M, Mr relative to Q we mean
operators uijf v{j defined by

(2. 4) «,-y

(2. 5) Vij

where tyu, tyzi is a choice of orthonormal bases for HI, H2 respectively
for a standard diagonal expansion of Q relative to M. If ^ = 0 for

some i, we define uis and uj{ for such i and any j to be 0. If t/r2l.=
0 for some &', we define % and vn for such z and any j to be 0. We
identify Sp(0/M) with the set of h for which ^K-^0 and Sp(5/M0
with the set of b for which i/^-^O in (2.3).

We now give a precise definition of an ITPFI factor. Let

H= ® (Hv, ft)
veA

be the incomplete tensor product space (ITPS) of the Hilbert spaces
Hv which contains the product vector ,0 = (8>ft, QV^HV, 0<n|[ft|[<cx).
In this paper the index set A is always countable. If @ and ^4 are
understood we just write H=(&HV. We assume the reader is familiar
with the standard properties of infinite tensor products (von Neumann
[12]). We note that 0%, belongs to the same ITPS as ®ft if and
only if (8)%i/ is in the strong equivalence class of 0ft, that is

(2.6) S||ft-^||<oo.
i/eA

This is equivalent to

S!l-(*v, ft)|<°o and X l-||%v|||<oo

In both cases, O^nHftH^oo is assumed.

Definition 2. 4. We define a canonical mapping n from 3$<iHv} to
-3CH") by 7r5= ((8)10(8)5 where S<=B(HV) and lw is the identity

operator on H*. "if SIc^(J^) we define n 21=
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Definition 2.5. Given an ITPS H=§§(HV,Q1?) and von Neumann
v&A

algebras S[1/c.3(jHv) we define

If the 3lv are factors, then ®SIy is a factor. In the following we will

be concerned with factors §§MV where Mv is type I. We shall denote

these factors by R(HV, Mv, £v', v<^A) or R(HV9MV,QV} or R(MV, £„).

Unless the contrary is stated explicitly, Mv is type /„,, 2<;#v<;°o, and ̂ 4

is infinite. If JdA we write #(/) - ®HV, Af(/) =(g)Mv, £(/) =(g)^.
ve/ ve/ i/e/

If £„ and <\K are in the same strong equivalence class, then ®^rv is

in §§(Hv,tiv} and hence R (#„, Af,,, Qv} =R(HV, Mv, ^. We shall

use this repeatedly.

Definition 2. 6. Any factor M which is unitarily equivalent to

some R(Hv, Mv, £v; v^A) as given above where Mv is a type Iny

factor, 2<^y<Coo and A is infinite is called an ITPFI factor.

We recall that a von Neumann algebra M is called hyperfinite if

it is generated by an increasing sequence AfxCMaC--- of finite type

I factors, i.e.,

An ITPFI factor is clearly a hyperfinite factor. It is known that all

hyperfinite factors of type lit are isomorphic (Dixmier [8] , theorem

III. 7.1). Since an ITPFI factor is not finite type I, it must either

be infinite or (isomorphic to) the unique hyperfinite Hi factor. We

shall have several occasions to make use of this remark.

Lemma 2.7. Let ^ e H= ® (.Hv, tiv}. Given e>0, there exists a
VGA

finite JdA and •&J<=H(J') such that

(2.7) !k-^/®(<8>£v)ll<e.
ve/c

Proof. Araki and Woods [2], lemma 3.1.

Lemma 2. 8. A countable tensor product of ITPFI factors is an

ITPFI factor.
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Proof . Let Af „ = R CH^, MMV , Q^ ; v e ^4 J , /* e A be ITPFI factors.

Let H^=0 (H^ , O . Let ̂  = ®J2MV , and

Af=(g)Af l 4 .
/ueA

Choose e^XX XeA*<°°. By lemma 2.5 there is a finite /Mc^ and

•^G

(2.8)
Ve-^jLl

Thus (8)[^®(®^)] is in the strong equivalence class of
M^A ve/jJt

It follows from the associative law for tensor products that H is

(unitarily equivalent to) the ITPS

(2. 9)

Thus M is an ITPFI factor. Q.E.D.

Corollary 2. 9. The factor R(HV, Mv, J2V) where Mv can be type

7oo i s an 1TFFI factor.

Proof. Consider each type /TO factor Mv as an ITPFI factor and

apply lemma 2. 8. Q.E.D.

Lemma 2.10. Given H=H1®H2, M=&(HJ®1. Then M has

both cyclic vectors and separating vectors if and only if dim HI = dim H2 .

If dim//i = dim.H2<00, let ^^H have the standard diagonal expansion

^ = S^Wir-(8)'^l2f Then the following three conditions are equivalent.

( i ) J2 is cyclic for M

(ii) J2 is separating for (M)

(iii) no ^- = 0.

Proof. Assume dim H2>dim H± . Since M is spanned by (dim H^2

linearly independent elements, we have dimM0^(dim/f1)
2<;dimfl'

and Q cannot be cyclic for M. Similarly, dim HI > dim H2 implies Q

cannot be cyclic for M' and thus & is not separating for M. Thus
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the existence of both cyclic vectors and separating vectors for M
implies that dim H± = dim H2 .

If dim HI = dim H2, then we may label complete orthonormal bases
{i/rlf-} and {<\/r2z-} of Hi and H2 respectively by the same index i, and
Eq. (2.3) with ^,->>0, 2j^<°° gives the cyclic and separating
vector.

In the remainder of the proof we assume that dim H1 = dim H2<.°o.
If some b = Q then H^^2j is orthogonal to MQ and Q is not cyclic
for M, hence (i)-»(iii). Similarly, if some b = Q then -4r^®H2 is

orthogonal to M'Q and £ is not cyclic for Mr , It follows that Q is

not separating for M, and hence (ii)-»(iii). If no ^/ = 0, let ui} be a
standard set of matrix units for M relative to the given standard

diagonal expansion of Q. Then «/,-£ = ^'V-i/vS^i- Since the standard
diagonal expansion of Q must contain a complete basis for at least

one of HI, H2, and we have dimHl = dimH2<^y it follows that MQ

contains a basis for H. Thus (iii)-»(i). By a similar argument £

is cyclic for M', hence separating for M and (iii)-»(ii). Q.E.D.

It should be noted that if dim HI = dimH2=°°, then the condition

that J2 is cyclic for M is not equivalent to the condition that J2 is

separating for M. To see this, let ^S^'J^i*®1^.- where ^=£0 and

I/PI/ is a complete basis for Hl9 but the summation does not run
over a complete basis for H2. Then J2 is separating but not cyclic

for M.

Corollary 2.11. Given H=H&H2, dim ̂  = dim H2, M=
The set of all cyclic and separating unit vectors for Mis dense

in the set of all unit vectors.

Proof. Given e>0, >&(=H, M = l. Let t/r = S /t-^0^ be a
1=1

standard diagonal expansion of -^ where JV=dim5i. Choose n<.°°,

n^N so that S ^<e, and let ̂  = i] ^/2^l8-(g)^2l- . Then H^-^U^e.
i=m-l »-=i

Now choose orthonormal bases (&«,/ = !, 2, ••• for /f&, k = l,2 such that

®ki = ̂ ki, i=l,-~n. Let •^//=S^/a^i,-®^2,-, then ([^-^([^e. Let
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where

e,->0, Se,- = e. Then [|5il=l and by the same argument used in the

proof of lemma 2. 10 J2 is cyclic and separating for M. We have

ll0-^T = SG*}'a-tf')2<2e. Thus ([£-^11-0 as e-0. Q.E.D.
Let Rd^(H^) be a von Neumann algebra. Let P=EEf where

E, R' are projections in Ry R' respectively. Then

(2.10) RP={PAP]

is a von Neumann algebra on PH. In particular if R is a factor, RE
f

is isomorphic to R. Thus by using projections in this way, one can

either shrink or enlarge R' without changing the isomorphic class of

R.

Lemma 2.12. Given R(KVfNVf^ there exists R(HV,MV,QV*)

R(Kvy Nv, -I/TV) such that Qv is cyclic and separating for Mv.

Proof. Write KV = KV£§KVZ where Nv=3)(Kvl*)(g)l. Let nv =

vi, J+={v. dimKvz>nv}y and /_={v: dim Kv2<nv} .

If v^/+ let ^^S^f^u®^/ be a standard diagonal expansion

of <\K relative to A^. It follows that there is a projection PV^N'V
such that Pv^v = ̂ v and dimPvKv = nl. Define HV = PVKV, Mv=(Nv)Pv

and o)v = tyv. Since P+= n (7rPv) is a projection in R(KV, Nv,tyv\ ve/+)'
i/e/+

it follows that R GK, , JVV , ^ ; v e /+) and R(HVy Mv, CDV] ve/+) are

isomorphic.

If v^/_, imbed ^2 as a subspace of an 7vdimensional space /fv2.

Define Hv = Kvl®Hv2,Mv = $(Kv^(g)l, cov = ̂ >v (imbedded in #„)• Let

Pv be the projection onto Kvl®KvZ. Then P_=n(7rP I,) is 'a projec-
ve/_

tion in R(HV, Mv, a>v\ v^J-Y and it follows that R(HV, Mv, cov; v^/_)

is isomorphic to R(JTV, NV)^', ^e/_). For v£/+U/- define HV = KV,

Thus we have R(HV, Mv, a)v; ve/) isomorphic to

where Hv = Hv&>Hn MV=$(HVJ®1, \ CDV\\ = \\^V\\, dimHvl =
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dimHvZ for all v^J. It follows from corollary 2. 11 that we can

choose vectors QV^HV which are cyclic and separating for Mv such

that \\c0y— @v\\<2~v. Hence 0£y and &<»„ are in the same strong

equivalence class (see Eq. (2. 6)) and R(HV, Mv, a)v)=R(Hv, Mv, £„).

Q.E.D.

Given HV=HV±®HV2, Mv=tB(Hv^(S)l, let Qvl, tiv2 be unit vectors

in Hv. If there exist unitary operators UV=UVI&)UV2 such that UVQV1

is in the strong equivalence class of &V2 then UR(MV, J2vl) U~* =

R(Mv,fiv2) where U=®UV (note that ®UV is not considered as an

operator on the ITPS ®(HV,QV^), but as an operator from ®(Hv,Qvi)

to ®(Hv,Qv^)}. The following lemma states this condition in terms

of the eigenvalue lists.

Lemma 2. 13. Given Hv = Hvl(&Hv2y MV = B(HV1)(&1 and unit

vectors £vl, QV2^.HV. Let Sp^/M^) = {^}, i = l, 2. If

(2. 11) S,[1-S,«^-)1/2] --^S([4]1/2- [^-]1/2)2<-
£ v,j

then R(MV, J2vl) and R(MV, ^2) are unitarily equivalent.

Proof. Let •$$ and ^} be orthogonal vectors corresponding to

4/ in a standard diagonal expansion of Qvi, i = l,2. It is evidently

possible to choose i|r's so that ^5 and ^2? are normalized or 0

simultaneously. We also supply, if necessary, additional indices so

that ^ are complete. Define unitary operators

Then Uv£vl is in the strong equivalence class of £V2 if

Q.E.D.

The following lemma gives some known results which we shall

have occasion to use

Lemma 2. 14. Given M=R(MV, £„) where Mv is type Lv,
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w, and
1) M is type I if and only if

(2.12) Sv!l->U<<~

2) M is type IIj if and only if nv<^ for all \> and

3) If ^><5 for some <5>0 for all v, then M is type III if and
only if

(2.14) S ^ inf { I (W^-) - 1 1 2, O - oo
v,i

for some (and hence all) positive C.

Proof. For the type I conditions, see Araki [1] and Bures [6] .
For the type 1^ and III conditions, see Pukanszky [14], Bures [6],
and Moore [10]. Q.E.D.

The type I and Hi conditions also follow from our results (see
definition 8.2, lemmas 8.14, 8.15, 8.16 and theorem 9.1).

3. Asymptotic Ratio Set for ITPFI Factors

In this section we define the asymptotic ratio set for ITPFI factors
and give some of its properties.

Consider R(HV, Mv, Qv\ v^A), and a finite subset Id A. Let
Sp(^/Afy)={^}, then any ^eSp(j2(/)/M(/)) is of the form
^=n^ i J 6 ( V) for some function k(y).

i/e/

Definition 3.1. Given R(HVfMv,tiv; v<^A) and a finite IdA9

for any #cSpG0(/)/Af(/)) we define

(3.1) J(#)=SAejr*.

Definition 3. 2. The asymptotic ratio set of M=R(Afv, £„),
denoted by r«x,(M, ,0), is the set of all #e [0, oo] such that there
exists a sequence of mutually disjoint finite index sets IndAt n^I**,
mutually disjoint subsets Kl, Kl of Sp(^(/K)/M(/«)) for each n
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such that A^Kl implies ^0, and a bijection $n from Kl to Kl

satisfying

(3.2) 2U(#i) = ~

and

(3. 3) lim max \x-

Such a sequence (/„, Kl
n, #») is called an ^-sequence (A"i and j?H

are to be regarded disjoint even if they contain the same eigenvalue
as long as the total number does not exceed 4he multiplicity of the
eigenvalue).

As defined here, r^ (M, J2) could depend on the tensor product
factorization M=§§MV as well as on J2. However, it will be shown

that roo(M,J2) is an algebraic invariant of M (Theorem 5.9) and
therefore depends neither on the vector J2 nor on the factorization.

Since we do not need to indicate explicitly the possible dependence on
the factorization in the following, we shall not do so.

It should be noted that in definition 3.2, Qv need not be a unit

vector. Let Sp(ft/My) = Gu, •••O- Then S^-HI^II2^! in general.
i=l

«y

However it follows from 0<n([^|[2<oo that S^-^l sufficiently fast
1=1

that

Lemma 3.3. Given e,B>0 and x&*,(M, Of) there exists an x-

sequence (/„, Kl, 0W) satisfying

(3.4) \I-^K^~^K^\<em.

Proof. Without loss of generality, we can assume limefj l = 0. Let

(/»,£i,i/O be an ^-sequence. Let

Since

(3.5)
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we have

Sll-Q.loo
and Eq. (3. 2) gives

Thus

(3.6) n[Q.
«>#

for arbitrary N. It follows from Eqs. (3.5), (3.6) that we can

inductively choose mutually disjoint finite index sets Am, m^I^ such

that

(3.7) \l-ILQH\<Sm/2
neAm

and

(3.8) n[Q,-Jl(£i)]<V2.
n<=Am

Define Im=\JJH. For each /I eSp £(/„,) we have A=IlA(n) where
n<=Am n^Am

X(n) eSp £(/„). Define ^(/l) as the smallest n^Jm such that

if such n exists, otherwise define wO) = °o. Define

: w(;0=£°o, ^(»Q))eLi, A(n)=£Q for

For ^eJTL define

if

Using Eq. (3. 3) we have

lim max \x—$mJt/Jt\
m->°° Aetf^

= lim max max \x — tynA(n)/A(ri) \ =0

thus

(3. 9) lim max | x ~ $U/^ 1=0.

If AeSpJ3(/m) then Jl^^iU-BiiL only if /l=0 or A(w)$L^UL2
B for all

m. It follows that
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(3.10)

where we used Eq. (3.8). It follows from Eqs. (3.10), (3.7) that

Eq. (3. 4) is satisfied. It follows from Eq. (3. 9) that

Since lime^O, Eq. (3.10) then implies that linUCK'i,) =

Thus S^(^ri) = °° and (Im,Kn,$^ is an ^-sequence. Q.E.D.

Corollary 3. 4. If #erTO(M, J2) there exists an ^-sequence

(/„, K I, 0J satisfying

(3.11)

(3.12)
m-^oo

1)"1 if

Lemma 3.5. Given R(HV, Mv,tiv}, SpC0v/Afv) = U,,}. If there

are subsequences v(iw), Ji(w), yz(w) such that ^^.n^-^^i^O and

^w.yac-.)-*^, then V^i^

Proof. Let /„= {v(w)}, -K"i= {^Clll)lMlB)}, f = l, 2 and ^^c^.yiw

,y2(»)- Clearly (/„, #4, «O is a (/12/^0 -sequence. Q.E.D.

Lemma 3.6. rTC (M, £) — {0} is a multiplicative subgroup of

(0, oo).

Proof. Let x^i^(M, ,0) — {0} . Choose an ^-sequence (In,Kl,Kl,

$„) as in Corollary 3.4. Then (/„, K\9 Kl, 0V) is an ^-sequence.

Let x, j;eroo(Af, J2)— {0}. Choose x and ^-sequences (/„, A2', 00

and (/2, ̂ T;1', 00 as in Corollary 3. 4. Choose subsequences pn,

/oo such that Ix
Pn and /J, are mutually disjoint. Define In =

Ki= a^^e^^e^}, *. = 0;.*;.. Then

(3.13) lim max | ̂ 3; - 0B^/^ | = 0.
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Also

(3.14)

thus X^Cfi^)^00, and (/,, Kn, 0«) is an ^-sequence. Q.E.D.

Lemma 3.7. r,x,(Af, J2) is closed.

Proof. Let Xp&^M,!?), # = lim #,. Without loss of generality
we can assume xp<.y for some y<.°° and all p. It then follows from

Corollary 3. 4 that there exist ^-sequences (7J, jfiTJ1', 00 such that

for all p, n. For each p^I^ choose np inductively such that Ip
np is

disjoint from Ilq for q<p, and such that

(3. 16) lim max \xp- $,*/*] =0.

It follows from Eq. (3.15) that S J (#*,) = <*>, hence (Ip
np, Kp

n
f
p, tft

P=i
is an ^-sequence. Q.E.D.

Lemma 3. 8. Given R(MV, J2V) where Mv is type !„,,, and

{^/,y = l, — «v}. If Sil-^i|<°° then rTO (Af, fi) - {0} .

If SU-^i --00 then le

Proof. We have 0<nl!J2j<°o and thus S^=l!^l!
j=i

where Sl^vl^00- By lemma 3.14 (which depends only on definition
3.2) rTC(M) is unaffected by the change Avi- »Avj/\\Qv\\. Since the con-

dition S 1 — /ivii^00 is also unaffected by this change, we can assume

S^y = l for all v.

If S 1 — ̂ i|<°° then !̂-*l, hence ^2->0 and Oer00(M, J2) by

Lemma 3. 5. Let (/„, Kl
m, $„) be an x- sequence for (M,£f).

Since tvi^Q and Sil-/U!<°° we have H^i>0. Let Am) = n/U,
ve/w

then nwA (r}>0 which implies that 2L(1— ̂ m))<°° and thus

) = co if and only if tff^K* for infinitely many m. Since
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implies that jtf"0-*!, it follows that x=Q, hence i»(M, £) = {0} .

The second part of the lemma is more difficult, and we consider

separately three different cases for {AVj} . Case (i), AV2 has an

accumulation point ^2>0. Let /^(^-^ as &->°o. Then ^(*),i must

have an accumulation point ^>A2 and ^/^er^M, J2) by lemma 3. 5.

It then follows from lemma 3.6 that ler^CM, J2).

Case (ii), /U->0, ^!->l, S^2=°°. We can remove all v with

^2 = 0 and then reorder the remaining ones so that we have

(3.17)

which implies that

(3.18)

For anys>>0 let

(3. 19) Ie= {v:

It follows from Eq. (3.17), (3.19) and the ratio test that

(3.20) S^2v,2<^.
V^IE

Thus we can inductively choose mutually disjont finite sets JH, n

such that

(3. 21) I] 12V 2> 1
V^Jn

and

^3. 22) 1 1 ^2v+i,2/^2v,2 1 <Cen

for all v^Jny where e«->0. In this way we obtain a subsequence

such that

(3.23)

and

(3. 24) lira ^2J/(/)+il2/^(/))2 = 1.

Let 7y= {2v(j), 2v(;) + l}, JPJ= {^w^^^+i.i}, -K"J= {^y), 1/2^+1,2} and

$/ the unique bijection from K] to jfiTy. Since ^i->l it follows that
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(Ij,Kj,fa*) is a 1-sequence, and

Case (iii), ^2-^0 and either S/U^00 or /U has an accumulation

point ^i=£l. It follows in either case that

(3.25)

Let

if ^iA_! =

(3.27) P

(3. 28) ylv

If S^2<°o it follows from Eqs. (3. 25) and (3. 28) that for all

we have

(3.29) S^v=°°.
•Pj/>Ar

If ^j has an accumulation point ^=£1 then there is a subsequence

v(y) such that ^(/),i-^i, and hence ^vcy)->l — ̂ , and Eq. (3.29) holds.

It follows from

(3. 30) S (l-e)" = e-1, 0<e<l
w = 0

that

for a fixed ^. Hence

(3.32)
^J.^i-2P;1 *=3 -

which implies that for each v there are disjoint pairs (Ivk9 ^,ft+i) such

that

(3. 33)

and

( 3 . 3 4 ) - - 2 - - - , .
A 4 4
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Let /„= {v} and let K I, Kl contain the first and second members
respectively of these disjoint pairs with ^vAvk = AVtk+i. It follows from
Eqs. (3. 29) and (3. 34) that we can inductively choose mutually
disjoint finite subsets Ln such that

(3.35) 2X
i/eL«

and

(3.36) l^<f>vl/X>l-2/n if

which implies that l^r^M, J2). Q.E.D.

Theorem 3. 9. Let R(MV, £„) be an ITPFI factor. Then
, 10) must be one of the following sets: Sx,Q<x<^l, SolJ S^.

Proof. The sets Sx,Q<^x<^~L, SQ1, S^ are consistent with lemmas
3.6 and 3.7. By lemma 3.8. ^(M, 0) is nonempty. If ^(M, J2)
is not one of the sets S0, Sly S01 consider the set of all / such that
0'erooCAf, J2)-{0}. By lemma 3.6 this set must be of the form
(ril, n = Q, ±1, •••} for some 0</<°o, or be dense. In the former

case we have ioa(M,Q)=Sx, x = e~l. If the latter case holds then
rTO(M, £) = [0,°o ) = 8^ by lemma 3. 7. Q.E.D.

We now discuss some standard cases which have received some
attention in the literature (von Neumann [12], Powers [13]). The
following definition introduces our notation for these examples.

Definition 3. 10. Let M=-R(Hvy Mv, £„) be an ITPFI factor

where dim Hv = 4=y Mv is type I2, and Sp(^v/My) = (^, ^2) independent

of v. We denote the factor M by Rx where x = X2/^.
Clearly rTO ( J?0 = S, . By lemma 2. 14, ^?0 is type !«, , J?i is hyper-

finite It, and j??,,, ^^0, 1 is type III. Powers [13] has shown that
Rx is nonisomorphic for different x. In the following we shall rederive
this result in a more general context.

We now give some elementary properties of tensor products of

ITPFI factors. More detailed results will be given later. Let Al9 A2

be disjoint index sets and let A = A1\JA2. Consider the ITPFI factors

^, i=l,2. Then M1®MZ=R(HV,MV,QV',
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Clearly x^r^Mi, £) implies x^.i00(M^M2y J2). Thus we obtain

Lemma 3.11. Given R(Afy , £„)* R(JVa, ojpa). Then

r^M®N, fl(g)^) :DrTC(M, 0) Ur-C/V, ^) .

If either ^(M^) or rTC(JV, i/r) is STO, then

Definition 3. 12. Given Q<lly 12<°°. If /i//2 is rational, we

define (/j , /2) = / where / is the largest number such that both 4 and

/2 are integer multiples of /.

Lemma 3.13. Given Q<.XI, X2<,1, R(MV, £„), R(^Va, i/ra) and

rTO ( Af, £) - 5,, , r^ (A^, i|r) - S,2 . Let ^ = g-'i , JTZ = ̂ "/2. If ljl« is irra-

tional then

(3.37) r

If /!//2 is rational then

where x =

Proof. Follows from lemmas 3. 6, 3. 7, and 3. 11. Q.E.D.

The following lemma proves that we can always take Qv to be a

unit vector.

Lemma 3.14. Given R(MV, £„). Let Q'V = QV/\\QV\\. Then

and

Proof. Since

(3.38)

we have

(3.39) S|i-(«,ft)l=S!i-W!K°o

and thus (g)^— (g)^. Let Sp(^/Mv) - {/Wh then Sp(^/M,) - {avi}

where

(3.40) «,/ =

Let (/„, Kn, 0n) be an ^-sequence for R(MV, ̂ v). The one-to-one map
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Xvj->a.vj defines a sequence (/„, Ka
n
l, 00- Eq. (3.38) gives

(3.41) lim n\\av\\
2=l

and thus S^(^«) = 0° implies that

(3.42) ix#:') = <~.
Eqs. (3.40), (3.41) imply that

(3.43) tnfiL/ !*=<&*/ ft

where /*->&", ^np.-^^l^a. Thus (/„, K£ , $0 is an ^-sequence for

R(MV, £*)• Since the argument is reversible, !«, (Af, £) = r^ (M, £fl) .
Q.E.D.

Lemma 3.15. Given R(Nvy^v) there exists R(M"I/, j?^)

such that £„ is cyclic and separating for Mv and T00(M,&^) =

Proof. Construct Mv, ^ as in lemma 2.12. Since §p(cov/Mv) =

we have ^(Af, o))=roo(^, ^). Let Sp(a>y/Mv) ={#,-} and
let my be the number of Aa

vi = Q. If mv=0 let

(3.44) ^ = ̂ .

If mv^0 let
e,)^- if 4,^0

(3. 45) 4,- = ,l
v/mv if ^, =

where

(3. 46) Sv = 2~vmin {%k; Xa
vk ^ 0}.

Now choose Qv as in lemma 2. 12 where Sp(^v/Mv) = {Xb
vl}. Let

(/„, jfiTj1', 0") be an ^-sequence for R(MV, 0?^)- The one-to-one map

^;->4j defines a sequence (/,, K?, 0J). It follows from Eq. (3.46)
that

(3.47) lim n(l-ev)=l
m->oo i/>w

and thus S /l(JS'f) = °o implies that

(3.48)
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Since //^jfiTf implies //*=£() it follows from Eqs. (3.44-47) that

(3. 49) lim max ] 0X/V -4>lt f / i f \ = 0

where if-* if, </>&'-*$*&*. It follows that (/„, Kb
n
l, 0J) is an ^-sequence

for R(MV,J2V). Conversely let (/„, Kll, 00 be an ^-sequence for

R(MV, ^). Let K be the set of all ff^K*, n = l,2,-- which contain

hb
vi as a factor where ^- = 0. It follows from Eqs. (3.45-46) that

and thus we can remove all jmb^K from Kbn , n^I^. The above

argument can then be reversed and the sequence (/„, K?, 0») deJSned

by ftj-^Kj is an ^-sequence for R(Afv, a>v). Q.E.D.

4. Basic Technical Lemma

In this section we prove a basic technical lemma which is con-

cerned with the following situation. Let M be a type !,„ factor on a

Hilbert space H and let J2 be a vector in H. Let ( ^ i , - - - ^ « ) be a

possible eigenvalue list, that is ^i^^2>-">^«>0. Let Gui , - - - /O be

another possible eigenvalue list. Suppose the list of products &&}

approximates in some suitable way the eigenvalue list Sp(£/M).

Then it should be possible to find a type ln factor MI such that

(M, Q) is in some sense approximated by (Mi®M2, $i®02) where

Definition 4, 1. Let M be a factor on a Hilbert space H, N a

type I factor, NdM. We say that 0ejff factorizes JV in M if



72 Huzihiro Araki and E. /. Woods

Lemma 4.2. Given 0<e<l, a Hilbert space H, a type I factor

Md3}(H), a unit vector Q^H3 (h,--^ satisfying /?i>^^r-->^^0

and S^ = l- Let Ki,~-Kn be disjoint subsets of SpC0/M) such that

each j?fy contains & elements and Ae^ implies /l^O. Let <Dj be a

bi jection from K± to K*, j = 2,~- n. Let Z, = Sp (Q/M ) - U .K, . Let
y=-i

e' = min(e, h/h for ^=£0). If

(4. 1) max max
/=2 Ae^!

and

(4.2)

then the following situation holds. There exist projections

P'^M', a type !„ factor NdMPP', and a unit vector ®<^PP'H such

that

(4.3) H(l

(4.4) \\PP'Q-Q\\<c*

where cn depends only on n, 0 factorizes N in MPPr and

Proof. Let ^^S^a^ia^^a be a standard diagonal expansion of

j? (relative to Af). We reindex the a)a^LJjfiO as follows. Order the
3=1

elements of KI by ci)lLi^>a)12^>--^>&ik, and let (Oji = <l>jU>ii, j = 2,-~n.
Let ^a3, fa0 be the standard matrix units for M, Mr associated with

this expansion. Define

(4.5) P= SS «,/.„.1=1 j=i

If ^B = 0 choose ^ so that ^^=0, ^+1 = 0, otherwise choose /> = w. If

then Eq. (4.1) implies that «,/=£() since by assumption

Hence %,/y^O for i, i' = l---p. Since {o)y/} is a subset of

SpC0/M), Uujfjf^O for f , f / = !•••». (See definition 2.3.) Define

(4.6) P7=SS%.,/.f=i j=i

Then «,-/,,-'/', /, fv= !,•••» and %,«'/', /, i'=l,--p are matrix units for
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M,P' and M'PP, respectively in PP'H. Define matrix units e"/', v,

4 = 1,2 by

eJ} = S*-i«,/.« e}J=S*-i»i/./i
/72l_N-l« ,. ^Z__\T^P ..
0*V ~~ 2-j i = i W/; , // e,- / — 2-i i =1 " /,- , // .

One can easily verify that these four families of matrix units commute

and that they are irreducible on PP'H. Thus we obtain

(4.8) PP'H=®(HV,®HV2}i/=i

where gJJ are matrix units for .23(^)01. Thus dimjffu = »,

i2 = ̂ , dim ̂ T2i = dim H22 = k. We have

(4. 9)
i=l 7=1

where ^qiij^Hlq®H2qiq = l,2. Thus

(4.10) ]|(i

For £>/> Eq. (4.1) gives a)z-/<(e/)2^i/<eXy since s/^e<l. Since

p^>l and S^iy^l we get

(4.11)

Now choose orthonormal bases i/rf for Hvq such that ty9lij = ^

Define

(4. 12) 0J-— ^ 5l/2_,_ll/^_,_12

(4.13)

We have

Eq. (4. 1) gives

hence
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(4. 16) \lPP'a-01®0't\\*<p(*'y<.tu*.

Since |I0i||2=X^ = l, it follows from Eqs. (4.13), (4.14) that

(4.17) !k1(g)(92-!91(g)!Z>;!! = !k2-^|[=[i-{i](a)UA)}1/2|.
y=i

Eq. (4. 15) gives

(4. 18) |i] ix-y-iU-S(^A) !<2n£'<2?*£,-=1 y=i ,=i y=i

where we used S»i/<Il, S<»i/<^l and e /<e<l. Since S*,-
j

ll-5>,/!<£ we get

(4. 19) I l-SG»iyA) |<(2«+l)e.

Eqs. (4. 16), (4. 17), (4. 19) now give

(4.20)

where

(4.21)
Q.E.D.

We remark that if the dimensions of M, Mf are consistent with
setting P=P' = 1 in lemma 4. 2, then it is possible to choose P=P' = 1
in lemma 4. 2. However we shall not make any use of this fact.

5. Algebraic Invariance of r^M)

In this section we prove that r^ (M, J2) given by definition 3. 2

for ITPFI factors M=R(MVy £„) is an algebraic invariant.

We note that given an ITPFI factor R(Afv, £„), by lemma 3.14

we can assume 11^,'f^l. Unless stated explicitly to the contrary, we
shall always take |[̂ |[ = 1 in this section.

Lemma 5.1. Given M=R(MV, &v\ v^A), aer^CM, £), x<,l
and 0<e<l. Then there is a finite subset Ic:A, projections P, P/ in
M(/), M(iy respectively, a unit vector 0ePP'#(7), and a type Is

factor ATcM(/)pP' such that
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(5.1) !|(PP'-i)£(/)i[<£

(5.2) \\PPW) -0\\<e

(5.3) Sp(0/AO = (J, 1-J)

where x=(l — X)/A, and 0 factorizes TV in M(/)PP'.

Proof. If # = 0 choose e' = e, e" = e2. If x=£Q choose ef = min(e, x),

e" = xll2e'. By Lemma 3. 3 there exists (/, K1, K2, 0) such that

(5. 4)

and

(5.5)

where cz is given by lemma 4. 2. Eq. (5. 4) implies that

(5.6) max |

The result now follows from lemma 4. 2. Q.E.D.

Lemma 5. 2. Let M be a factor, P a projection in M If M is

infinite then M— MP®L. If P is infinite then M— MP.

Proof. Two projections E, F^M are equivalent (with respect

to M), E—F, if there is a partial isometry U^M such that U*U = E,

UU* = F (Murray and von Neumann [11]), which implies that

UMBU*=Mf. Thus if P is infinite then P-l and MP-M If M

is infinite, then for any P^M there exists a family of projections

P.-eAf, ^/TO such that SP,- = 1, P,-P,— 0 for all i>;, and P,~P

for all f. Let Mu= (P^P/; ^4eM} = {^5; 5eMPj} where J7,yeM,

U?j=Uji, UijUkl = djkUil9 ^f- = P,-. Then Af=(8)My which is unitarily

equivalent to MP®L. Q.E.D.

Definition 5. 3. Given M=R(MV, ^2V) where Sp(£v/Afv) = U>;}.
We define

Lemma 5.4. Given M=R(HV, Mv, Qv\ v^A), N=R(NOC,

where all Na are type I2. If ?(N, ^) cr00(M,^) then M
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Proof . We shall use lemma 5.1 to construct a projection

such that MP is an ITPFI factor and MP—Ma®(®N}°° where

means the tensor product of N with itself infinitely many times. Let

Sp(^a/#«) = Uo 1--O, *a=(l-J«)Ai^l. By corollaryS. 4 there

exist ^-sequences (a, n) = (1%, K I1, 0?) for M^^M, such that

^C8T?I')>l/3 for all (or,«). Let l(a,k) be a one-to-one map of the

pairs of positive integers (a, K) onto the positive integers. In the

order of increasing I (a, k) we inductively select a subsequence n(a, k),

a, k^L such that 7?(a.* >n /?('«',*') = * for all (</,#) with /(«',£')<
l(a,k'). Now reorder the sequence A = 1,2, "-into a double sequence

k = l(ifj\ /, ye/*, where l(i, j} was introduced above. Let Mai-
03 00

= ®Af(/g-), £a,- = <8>£Gr&) where /,°/ = /?(«,/(.-./))• By constructiony=i j=i
xa&a>(M(Ifj'), ^(/Sy); j ^ f o o ) for each ^ and f. Now choose ea/>0,

S^a^00- For each (a,£), it follows from lemma 5.1 that there is

a set 7a; which is a finite union of the /£, j^Ioo, projections

, P'ai^M(Iaiy, a unit vector 00ii^PaiP
f
aiH(Iai') such that

(5.7) II0«-P

(5.8) il-(0a,

where

(5. 9) S«l = P«lP;i

Also there is a type I2 factor JVai-c(Ma,)Pa,p£,, such that (^af- factorizes

JVa,- in (Af«)p«,p^, and Sp(^a,-/j!VflU)=^a, 1-^). Thus (Mai^PatP^ =

Mb
a&Nai where 0« = 0J,.®0a/. Let P=nP«, P'=nP;f. It follows

from Eq. (5.7) that P, P'^0. Let ^T=-4- U/a,-- Since (Pai- is in the/\
strong equivalence class of Sal we have

(5. 10)

By construction we have (S)(Nai, ®ai)~~N for each i and hence
ct=l

®f(®a^aO^(®^Vr)°°^®l-(®a^)(8)^. Since MrP/-MP we have

. If M is infinite, then by lemma 5. 2 M~~MP®L and
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thus M~~M(&N. If M is hyper finite I^ then MP is also hyperfinite

IIj, and M— MP hence M—M®N. Q.E.D.

Corollary 5.5. If #erTO(M, J2) then M

Lemma 5. 6. Given 0<xl9 x2<,I. Let x± = e~l1, x2 = e~l2. If

/i//2 is rational then

where x=e~(llj^ and (/!, 4) is given by definition 3.12.

Proof. By lemma 3.13 x&^Ri^R,^), hence by corollary 5.5

RXI®RX2~~(RXI®RX^®RX. Since ?(Rxl®RJc:Sxy it follows from

lemma 5.4 that RX^RX®(RXI®RJ. Q.E.D.

The converse result to corollary 5. 5 will be proved in lemma 5. 8.

For this purpose we need the following rather lengthy lemma.

Lemma 5. 7. Given a finite type I factor M, a unit vector Q,

* and operators 012eM, f^Mf, ![012||, U/12|K2. Let

Oi,^) = (^ 1 — ̂ )> x = X2/Xlf e2i = e?z, /21 = /i*. Suppose that either of

the following conditions hold:

(i) ^ = 1, £<

(5.11) ||fe^

(5.12) lkia^

(ii) *=£! and

(5.13) ![£21£i

(5.14) Uj^euQ-K^fjM2^, (y) = (12) or (21)

and s is sufficiently small that

(5.15) (1-<

and
J-A

(5. 16)
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where

Then there exist disjoint subsets K1, J^2cSp(^/M) and a bijection

$ from K1 to K2 such that

(5.18) max |

(5.19)

where a, b are positive constants depending only on L

Proof. Let H= H±(g)H2 where M= .3 (#0 (g) 1. Then

V-l 1 /2^ ^> ^^

be a standard diagonal expansion of J2, and let ua&, v^ be the

associated standard matrix units for M, Mf respectively.

We consider first the case ^=£1. Since uaaiv^ are a complete set

of orthogonal projections, Eq. (5. 14) gives

(5. 20)

Interchanging (/3, y) and (a, f), taking the complex conjugate, and

using (alB,eJiQlad*=(Qla,eiJQ1Lid we get

(5. 21) SI (Pa A) 1/2 (^la , ̂ ifl) - Gfc A) 1/2 (^23 , ' Aa) | 2 < £ -

Eqs. (5.20), (5.21) and the triangle inequality \\x\\ + \\y[\>\\x+ y\\

give

(5. 22) {S| (PoA)1/2+ (wA)1/2l2l (flioA/Sia) - (^A-^a) |2}1/2<2s1/2

and thus

(5. 23) S (P3 A) I (Sloe , ^10) - (^23 , /, Aa) I 2 < 4£ .

Eq. (5. 21) can be rewritten as

(5. 24)
SI
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Eqs. 5. (5.23), (5.24) and the triangle inequality give

(5. 25) S{G>«A)1/8- G*A)1/2}2I tea, 4-^3) !2<9£.
Define

(5. 26) L= (fe 0) : 1 1- (Mi/

Eq. (5. 25) now gives

(5. 27) S P3 I (0ia ,

Since SPs| (flla, &M |2=|[e21fi||2, Eqs. (5.27), (5.16) give

(5.28) ^ps\(.^,e21SlB)\1>A
(a,3)eL

Let

Lf= {0: (a, j9) eL for some «}.

For jSeL7 we define

(5.29) <*(& = {«: («,P)eL}.

Let

(5. 30) L"

Using Eqs. (5.28), (5.30) and Sp3 = l we get

(5.31) S Sp3i(^ia,fe^i3)

From HftiU^Z, S«| (fila, e2As) I2=lk21fiis!l2^4 and Eq. (5.31) we

obtain

(5. 32) Sos^- S SocPsI (J0ia,
3eL" 4 Set"

Let

(5.33) Kn={&^L":

Define A^ by

(5.34) (l-

Let

(5. 35) K.=
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It follows from Eqs. (5.26), (5.29) that a^a(f?) implies

Since 0<<S<1 we have (H-^)<(1-^)"1 and thus

(i - 5) x11 y0
/2< pa

a
/2< (i + «) *i/2

Pf < (i - 5) -
It now follows from Eqs. (5.33), (5.34) that

(5.36) £c UKtt+N+m.

Consider an arbitrary KdL". Let #={«e*(/3): pE^K}. Let
x\ x\

N(K) be the number of elements in jST, j?T respectively. Using Eq.

(5.30) and ||&ilK2 we get

(5.37) -^

<S S ICf l la , ««01B)|S

We now construct subsets Klc:Kn, KlaKn and a bijection $H

from JTi to Kl such that ^w/3e^(^). If ^B is nonempty, we order
x\

the elements in jSTM, Kn respectively by

(5. 38) p

and

(5. 39) P

Since a^e/ST, we have an^a(0nk) for some 0nk^Kn. Since Eq. (5.24)

implies that <*(/3Bi) is nonempty, there exists some anj^a(@Hl). Thus

(5. 40) Pam/PBnk ^> Poinjp&m ^ P<Lmi/PB*

and it follows from Eq. (5.26) that ^Kle^(j9Ml). We include 0Hl&Kl

and define 0«/3Jll = ajJli. Let w be the smallest integer such that

Let A be the largest integer such that pnm<N(Kn}. If

we are done. If p»>Q we proceed as follows. Assume that

($ntm^ for any />!. Since ^(^WlB2+i) is nonempty by Eq.
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(5.30), we must have a(@n,m+i*) = {o^i}. It follows from Eq. ;(5. 37)
/\

applied to j?T= {|9Bl, j3B2, ••• j3B,m+i} that ^ must contain at least two ele-

ments. Thus there exists some anj^<x.($nt^ for some j>l and

We have

and it follows from Eq. (5.26) that ow^^Cfti.m+i) which is a contradic-
tion. Thus aC&.m+i) must contain some oLnhj>\. Let j(n, 1) be the

smallest y>l such that aw^<*G3n,«+i). By a repetition of this argu-
ment we obtain a sequence

(5. 42) l<y («, 1) <; (»,2) <•••</ («, JO

such that

(5. 43) ^c«,*)^G3Mi,m+1), * = 1, ---A.

We include /3B>WZ+1, /3M>2wz+1, ••• pn,Pnm+i<^Kl
n and define

(5. 44) 0«j3«,*»+i = <*„,./(,,,«,£ = li •" A-

It follows from Eq. (5.26) that

(5. 45) max| *1/2-

By construction .K"^ contains at least N(K^/m elements and

(5.46) ^

We now proceed to define the desired sets K1, K2. Since the KH

defined by Eq. (5. 33) are mutually disjoint, it follows that the K\ are
mutually disjoint. We note that Eq. (5. 15) implies that N^>3 where
N is defined by Eq. (5.34). It then follows from Eq. (5.36) that Kn

and KP are disjoint if p<,n. By induction on n, we define K1 to con-
tain all pp, 0^Kl, n^L such that for any tf^K\, p<n and
the conditions

(5.47)

(5.48)

are satisfied. We define <f>p/3 = ptttff. Eq. (5.47) eliminates at most one
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/3 for each $' taken into K1 and thus at most half of the j9 which would

be otherwise available. It follows from Eq. (5.36) that Eq. (5.48)

eliminates at most 4 of the available pff for each p/ taken into K1 and

hence at most 4/5 of the pff which would be otherwise available. The

net effect of these two conditions is to reduce the total number of

available pff by a factor of at most 10. Since the eliminated pff are

never larger than the p/ taken into K1, it follows from Eq. (5. 32) that

s
Since J>l/4 by Eq. (5.16) we have m<^32 and thus

(5.49) S p, > 1/10240.
Pp^Kl

Thus Eqs. (5.18), (5.19) are satisfied by Eqs. (5. 45), (5. 49) and the

proof is complete for the case ̂ =£1.

We now consider the case A = l. Let

(5. 50) L= {fe j9) :

Using Eq. (5.12) we have

and thus
-^ V 1

Pa
(Qi,&)^L

Using Eq. (5.11) we have

and it follows that

(5.51) S
(cc,0)eL

Let

!/={&: (a, 0) eL for some
(5. 52)

"

Using Eqs. (5.51), (5.52) and Sfts = l we get

xr~i \r~i [ f r\ .
y> | y>.| |03 I \Ml(X.1 t

and thus
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(5.53) S Pf>r/8

since \\e2l\\<,2. Given any KdL", let = {<*e<*(/3) : /3elO and let

JV(jK" ) be the number of elements in K. By the same argument used

to derive Eq. (5.37) it follows that K contains at least rJV(jfiT)/8

elements. Let m be the smallest integer such that m^Sr"1. We or-

der the elements in L" by p^>pff2>-". We define K° to contain

Pun Ppm+i9 Pi>2m+i> '"' By the same argument which follows Eq. (5.39) we

can obtain elements ^«^<#(/3KW+1) such that au=£aj for any j <n. We

define <t>Ptjnm^ = pan> By induction on n, we define JP to contain all pffn,^1

such that pflnm+13=<l>pfijm+1 in Sp (Q/K} for any j<.n. This condition

eliminates at most one ^ for each p/ taken into -K"1, and thus at most

half of the pfl which would be otherwise available. Since the eliminated

Pt, are never larger than the pffr taken into K1, it follows from Eq.

(5.53) that

(5. 54) S P>m-l
r/16 > 1/2048

petf1

(where we used Eq. (5.51) to obtain m<32). Thus Eq. (5.19) is

satisfied. We define K*= fopip^K1}. It follows from Eq. (5.50)

that

(5. 55) max $p/p <[ 2e
ptEK1

and thus Eq. (5.18) is satisfied. Q.E.D.

Lemma 5.8. Given M=R(Afy, £„). Then M~~M®RXJ

implies that

Proof. By lemma 3. 15 we can assume that M has a cyclic and

separating vector. Since Rx has a cyclic and separating vector, we can

assume that M®RX has a cyclic and separating vector. Then M—

M(&RX implies that M~M§§RX and we have

(5.56)

(5.57)

(5.58)
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(5.59) fl., = l

where dim fiwl= dim HnZ = 2, Sp(0H/.S(#;2l)(g)l) = (/1, 1-^) and # =

Let

(5. 60) 0, - A1/2Cl ® Cl + (1 - >

be a standard diagonal expansion of $„, and let wj/, v"j be the associated

standard matrix units for Rnl , Rn2 respectively. Choose some unit vec-

tor ®M^HM and let 0 = 0M®((S> 0«). It follows from lemma 2.7 that
M = l

for any Qn e { J?Kl , .Z?M2}
 x/, UQJ^JV for some fixed JV<°o, that

(5.61) limdiO^H- 110.̂ 11} =0.
K->txj

Case (i), ^=^0, 1. Define

(5. 62) (?«, = ̂ ulj - K11^ , (y ) = (12) or (21)

where (^, ;2) = U 1-/1). Then

(5.63) 07,0 = 0.

Also

(5.64) \\ul^\\z = L

Let ew >> 0, em->0. It follows from Eqs. (5.61-64) that we can choose

a subsequence n(m), m^JL, such that

(5.66)

We have M=(&MV1 M' = §§M'V. We will prove that there exist mu-
veA v^A

tually disjoint finite subsets Jm^A, and e,"eAf(/M),

\\eZ\\, \lfTj\\<2 satisfying

(5.67)

(5.68)

where (y) = (12), (21) and (eT,)* = e7,, (/3)*=/3J. For m = l, this
follows from Kaplansky's density theorem13 applied to the hermitean

and antihermitean parts of u^"'\v^'"\ Assume that Jm,e?;,fTs exist for

1) Dixmier [8], Sec. 1.3.
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111 = 1, ~-k-l. Let Jk= Uill/.. Then we have M-
where M(/*) is a finite type I factor. If M is infinite then M—M
CA-/*) by lemma 5.2. If M is finite then both M and M(A~Jk')
must be hyperfinite 7/j and again we have M^M(A — /*). By assump-
tion M and M(A—Jk) have a cyclic and separating vector, hence
M~MG4— /*). Thus we can repeat the above argument with M

replaced by M(A—Jk) to obtain /*,£?/,/?,. It follows from Eqs.
(5.65-68) that

(5. 69) !ia-1/2^-^r1/2^)^i(<£,w [i + r1/2+ (i-
(5.70) U

Since e,«-»0, it follows from lemma 5.7 that for m>N there exist
j^^cSp(J2(/J/M(/w)) and a bijection <f>m from jfiTi to ^ such
that (/„, KL, <£m, m>N~) is an ^-sequence.

Case (ii), # = 0. Retain Eq. (5.64) and replace Eq. (5.63) by

(5.71) Mla0 = 0.

Then choose a subsequence n(m) such that Eq. (5.66) holds and

(5.72) \\u^

The remainder of the argument is a straightforward repetition of the
above argument, and we omit the details.

Case (iii), x = \. Since Rt is type 7/i, M—M®R^ implies that
M is not type I. Lemmas 2.14 and 3.8 then imply that lerTO(M).

Q. E. D.

Theorem 5.9. The asymptotic ratio set rTC(M) given by defini-
tion 3.2 for ITPFI factors M, is an algebraic invariant of M.

Proof. By corollary 5.5 and lemma 5.8, ^er^M), 0<Lx<Ll if
and only if M^M®RX. By lemma 3.6, tfGEr^M), *>1 if and only
if ^er^M). Q. E. D.

We recall that M=R(MV>^ where Mv is type InvJ2<Lnv<iw is
an ITPFI factor (corollary 2.9). We now show that all non-zero #e
roo(M) can be calculated directly from definition 3. 2 even if some of
the nv are infinite. It should be noted that a direct application of de-
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finition 3.2 may fail to give a 0-sequence, even though

Consider M=I00(g)RlL, then 0^rTC(M) but the only x-sequences allowed

are # = 1. However this is not a problem since if some wv=oo, then

we necessarily have O^roo(M) since M is infinite.

Lemma 5.10. Given M=R(MV,Q1} where Mv is type Inv,2<^nv

<lc>o and nv=w for some v. Then r^CAf) contains 0 and all #e(0, °o)

for which there exists an ^-sequence satisfying the conditions of defini-

tion 3.2.

Proof. By assumption nv=&=> for some v and M. is infinite. By

lemma 5.2 M—M®RQ and 0<=rTC(M). It remains to show that

#er00(M), #^0 if and only if there exists an ^-sequence for M.

Let SpC0v/MO= Utf}. By lemma 2.14, M is type /« if and only

if S(l-^!)<oo. By lemma 3. 8, rco(Af) = S0 if and only if Mis type

/« if M is an ITPFI factor. Thus S(l-^i) = °° if and only if

l^roc(M). Since the proof of lemma 3. 8 remains valid even if nv=°°

is allowed, 2(1 — /U) = °° if and only if there is a 1-sequence for M.

Thus it remains only to consider #=£0,1.

We construct a projection P^M such that MP = R(MV,^) has re-

sequences if and only if R(MV, J2V) has ^-sequences, #=£0,1. For each

v choose mv<<oo, mv<^nv such that

(5.73)

Let

be a standard diagonal expansion of Qv. Define PV&)1^MV by

flrvu if j<Lmv

lo if j>mv

and let P=<8)vGP,,(8)l) eM We have

IIP^II2^ n [||̂ |[2-s ^ >o

where we used Eq. (5. 73). We have MP = R(MV, J#) where Sp(^/Mv) =

Oi/i, •••^*J. Let (/«^;2,^w) be an #-sequence for R(MV,^)- Clearly
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(/,, jK"i,0») is also an ^-sequence for R(Mv,J2y). Conversely let

(/„,-K"J, 0W) be an ^-sequence for R(MV,J2V), #^0. It follows from

definition 3.2 and Eq. (5.73) that we can omit all /jL^Ki,i = l,2,

n^I^ which contain some Xvj,j>mv as a factor. The argument is

then reversible, and there exists an .^-sequence for R(MV,^)- By

lemma 5.2, M~~MP®RQ. Hence r^CMp) cr^M) and #$roo(Af) im-

plies that R(MV,£Q does not have an ^-sequence. Conversely, if

j^er^CM), JC^O, 1, then M cannot be R±^)RQ. Hence MP cannot be

a finite factor and by lemma 5.2 M—MP^)R0—MPj which implies

that MP = R(MV,G'V) has an ^-sequence.

6. Asymptotic Ratio Set for Arbitrary Factors

In the preceding section we proved that for ITPFI factors M,

M), 0<;#<;i if and only if M~^M®RX. In this section we

use this result to extend the definition of roo(M) to arbitrary M. We

give some properties of r^CM) for the general case.

Definition 6.1. Let M be any factor. We define r^CM) by

^EEr^CM), 0<#<1 if and only if M~~M®RX. If #eErro(M), x^Q

we include ^~1^r«x,(Af).

We shall need the following result which is due to Sakai [16].

Lemma 6.2. Let M, N be factors. If M is type III then M®N

is a type III factor.

Lemma 6.3. M is finite if and only if roo(M)=0 or Sx. M is

type III if ^er^CM) for some 0<*<1.

Proof. If roo(M)=0 or S± then 0<$rTO(M) and Mis finite by

lemma 5. 2. Since I?, is infinite if #=£1, M finite implies that M

if *=£! and hence roo(M)=0 or SlB If #erTO(M) for some

then we have M<~£-M®RX where Rx is type III. It follows from lemma

6. 2 that M is type III. Q. E. D.

Schwartz [17] has given a type Hi factor M such that Mis non-

isomorphic to M®Ri. Thus there exists a type IIt factor M with
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Lemma 6.4. rBB(M(8)JV)z)r0o(Af)Uroo(^)

Proof. M^M®RX implies M®N^M®N®RX. Q. E. D.

Lemma 6.5. If roo(M) — {0} is nonempty, then it is a multipli-

cative subgroup of (0, oo ).

Proof. By definition xr^&^M) - {0} if and only if

-{0}. For #e(0, oo ) define

«(*) =

Let #,;yeroe(Af)-{0}. Then we have M

which implies that M— M(g)(7?aW®J?a(,)). Since #, ;

it follows from lemma 3.6 that xy ^^(R^^R^. Thus M— Mg)

£«(„) and ^3; EErTO(M) - {0} . Q. E. D.

Lemma 6.6. Given #1, #2^roo(M), 0<#i, #2<Cl. Let Xi = e~lt,i

= 1,2. If /!//2 is irrational then r0o(M) = 500. If /i//2 is rational then

(see definition 3.12).

Proof. If Jd.^er.CAf) then M~~M®RX1^M®RX.&RX2. By

lemmas 3.13 and 5.6 we have r00(Rxl(£)RX2) =SX where %=<*> if /t//2

is irrational and x=e~°1'1^ otherwise. We have Rxl®Rx^Rxl(&RX2®Ry

for any y^Sx. It follows that M^M®Rxl®Rx2®Ry^>M®Ry and

hence jyGEr^M). Q. E. D.

Definition 6.7. Given 0<C^<C1. Let K denote some sequence

(kv\ i^e/TC} where kv is either a positive integer or oo. Let p^<p2<"'

be the set of all prime numbers. We define S(x,K) as the subset of

[0, oo) containing 0 and xnlm for all integers n and all integers m =

Uvp
n

v
v where 0<inv<.kv.

Corollary 6.8. For any factor M, r^CM) is one of the following

sets: the empty set 0, S0, S0i, Sl9 Sm or S(x,K) for some 0<A:<Cl

and some K.

Proof. Follows immediately from lemmas 6. 5 and 6. 6. Q. E. D.
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We note that if K= {kv} where kv = l for all v, then S(x, K}

= SX. If it can be proved that ^(M) is closed, then ioo(M) must be

one of the sets <t>, Sx (0<;#<;i), Soo, S0i- The following lemma was
obtained as a result of our effort, as yet unsuccessful, to prove that

is closed.2)

Lemma 6.9. Let Af be a factor and ^erco(M), w = l,2, , 0<

XK<1, limxn = x. Then there exist subfactors Mn of M and Nn of

M' and a vector % such that

(ii) Ma=(U«MM)" and Na=((JnN,,y are factors isomorphic to (8>#r,.

(iii) Ha^MaX=NaX .

(iv) i is separating for M and M'.

(v) Restricted to Ha9 {Ha, %, Mn, Nn9 n = l, 2, • • •} are unitarily equiva-

lent to {(®Hm)9(®xm)9RXn9RXtt9n = l929~'} where RXn is the

commutant of RXn in Hn and %„ is a cyclic and separating vector

of Rxn in Hn.

(vi) Let Mi = M«nM, Nb = N f
a ^ \ M f . MQ=(MaUMby and JV0^

(NaUNby have the property that M = M0®M"C and M' =

N0Q)NC where Mr and 7VC brings MQN$. to its orthogonal com-

plement.

(vii) Restricted to MQNQx, M0 = Ra®Rb, N0 = Rf
a®Rr

b, Ma = Ra®l, Mbb

(viii)

Proof. We first construct Mn and Nn,n = l,2-- which satisfy (i),

(iii), and (v). Let ey>0, Sey<oo, RXj = R(H(l\ Ru
v\ fl)^), Sp((5(iV^(?)

= {^/, 1 — ̂ -}, ^/=(l + ^y)"1 and 0(i} be cyclic (and separating) for j?£y).
Since Rxl is type III, M—M®RXI implies M^M®RX1. Thus we

can write

2) The authors are indebted to Dr. D. J. C. Bures for pointing out a loophole in an
earlier version. For the rest of the paper, the reader can skip this lemma.
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Af=Afrt®AfCl,

where Mrl~M, Hl =
 /^>H(lJ,Mm=R,i. Choose a unit vector fa in

and let

We set Afi = 1® Afci> , A^ = 1® M^, .

Since Mrl~M~M®R,u we have M^—M^lg)^ and we can write

where ^C2)^MrlA,M.

By lemma 2. 5, there exists a finite subset /! of indices v and a unit

vector fa of Ha=Kt®(® H™)

Let

IT _ /Ov 1T(2) TLf _ /Ov D(2) TLf _ D(2)/Ov / ^ D(
jO2 — vcy " v > ^**(2) — \CJx •**• i/ > •Lvl-rZ — -"- vcV V ^<-> •**-

Vqr/l 1/5;/l Ve/1

Then

M=Afr2(g)M(2)(8)Af(1),

, (^z is a product vector and

We set

By repetition of this argument we obtain a sequence of Hilbert

spaces Hj-,Hrj, factors M"a), MrJ, and vectors *, e #/ , 0, e #, such that
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where

We then set

which satisfies (i) by construction.

Since

{@j} is a Cauchy sequence. Let

By construction

is a type I factor. Let the minimal projection of Qn defined by ln be

En . Then En@j = Q, for j^>n and hence Enx = 1. Namely, % = lrn

and QM is irreducible on

1.VJL nA, J .V M / i «

From this, it follows (II MK)% and (n JVH)% span the same space Hw

n<N n<N

^%/®((8)^) and hence (iii) follows. Furthermore, % considered as a
H<AT

state on Mn, Nn, n = l, 2, ••• is the same as the product state of %/ and

hence Ma,Na and % restricted to Ha is unitarily equivalent to R(H,t,

Af(',),%„) and (g)%« on (gjfl",. This proves (v).
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Now we proceed to the other conditions. Let E be the projection

on M'TL. By (iii), MaM'x=M'x and hence E commutes with both Ma

and Na. Since M is a factor of type III and E^M, M—ME and we

consider ME on EH instead of M on H. Then (AfB)£, (Nfl)E and .£%

= % replace the role of Mn,NH and %. Obviously (i), (iii) and (v)

are satisfied. In addition, % is now cyclic for M' and hence separating

for M. Henceforth, we drop ( )£. A similar procedure using

makes % cyclic for M without losing its cyclicity for M'.

If % is separating for M, then Ma\ Ha~~Ma and hence Ma-

Similarly Na—&)RXn. Thus (iv) and (ii) are proved, (viii) is then
«

immediate.

We consider R™ in M^ = (&R™ and denote the corresponding type

I2 factor in Mn by Mnv. Similarly we write Nnv for R™'. We now

proceed to (vi) and (vii). Let u"" and v™ be standard matrix units of

Mnv and Nnv relative to 0("\ Let /(«, v) be a one-to-one map of («, v)

to the natural numbers and let

We now verify the following properties for

(a) rZA

(r) (£#, btvA) Ctz) = (Oar, 4C,z) for any C, e (M,,,, U ̂ «) '

(5) If -4eM,U then TavA = A.

The property (a) is easily checked by calculating [14™ , t"vA\ . (/3)

follows from

(r) follows from %*vlfr= ^iftx, [C,, «S] = [C^, »K] = [^, »K] =0, SwK»K
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-1 and 2^ = 1. W follows from SM«M?* = I-A
Let rjv^4 be any operator in R (Ur^4)w, where w denotes the weak

G Z,>G

closure. Since TL
NA is bounded by (j3), this set is non-empty by the

weak compactness. By (a), (0), (?-) and (fl), we have

(oO r^eAfnAf;, for all

(130 i

for any C,e(P>= n (M.vUNnvy
/(«i/)>L

(5') If^eM;,r^4 = A

For each sequence /= {&'„„, /,„}, /(w, v)<,L, let

Then

n

because S^JriM = S^M^/ = A Furthermore rL(/)^4eM, by (a/) and
tj ij

(PL). Hence rLA^M0.

Let P be the projection on the subspace spanned by U Q(L)%. Then

(/) implies that M0=PMP on PH. Exactly the same argument can

be done for N. Since PH obviously contains MOJ/V0%, (vi) follows.

Since % is separating for M and N, we have only to prove (vii)

on restrictions of the relevant algebra to the state given by %. Since

% gives a product state for (Mb\JNby, (MHV\JNnvy', n, =1,2,--- , we

have

We now prcva that M'Q=NQ on M^N^ which proves Sb =

Let F be any projection in the commutant of M0 on M0JV0%. Let

i be the projection on MFH. Since
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MFH= MQFH+ MCFH= FH+ MCFH

where MCFHA_MQN^ . Furthermore, F^M'. Hence, by (vi), we

have FeEAT0. Q. E. D.

The following lemma will be used in lemma 6. 11 where it is

needed only for the case that all 2lv are type I factors. For the case

where all 2L except one are type I factors, it has been proved by Araki

([3], lemma 5). We give here a stronger lemma, based on the result

of Tomita [19] that (SIOSSy^TOS7. If either II or 93 is a finite

type I factor then one can easily prove that (21(8)83)' = a'(g)S3/. The

following proof then provides an alternate proof of lemma 5 of [3]

(without recourse to Tomita's general result), because a type 1^ factor

is an ITPFI factor.
00

Lemma 6.10. Given the ITPS H=®(HV,QV~) and von Neumann

algebras 21, c,® (#„). Then (®Sk)'=®3C

Proof. Let 31=® 81,. Clearly SI' =3® K- For any TeSl' and

any finite index set / define T7e^(/r(/)) by

Then

and

Now let

N={S: 1(0}, (S-

be a weak neighbourhood of TeST. We construct SeJV, Se®Sl^ as

follows. We can assume [|0y||^l,y = l, •••», *"=1, 2. By lemma 2.7

there exists a finite set / and vectors T/rJe-fiTC/), |[^|I^1 such that

Then for any S we have

| OP}, (S- r)^) - O}®fl(7c), (S-
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It follows that S= T/®1 gives the desired 5. Thus we have §Tc
Q. E. D.

Lemma 6.11. If M has a cyclic and separating vector, then

rBB(M)=r0.(M/).

Proof. Since M, Rx have cyclic and separating vectors so does

M®RX, thus M—M®RX if and only if M-Z-M®RX9 and similarly for

AT. Using lemma 6.10 and R'^R, it follows that M^LM®RX if and

only if M'^M'®RX. Q. E. D.

1. Classification of ITPFI Factors -The Class Soo

In this section we prove that all ITPFI factors in the class 5TO are

isomorphic. This result is obtained by generalizing lemma 5. 4 to ar-

bitrary Na. For this purpose we introduce the notion of an (#2, •••#*)-
sequence.

Definition 7.1. (/„, Kl, Kl, >~Kp
n\ 0J— 00, » = 1, 2, — is called an

(#2, •••#*) sequence for R(Mv,^) if Kl,-~Kp
n are mutually disjoint

subsets of SpC0(/.)/M(/0) and (/., jfiTi, jffi,^), J = 2,'~P is an *r

sequence for

Lemma 7.2. Given R(My, ^) and x2, •••^er00(M, j?). Then there

exists an (^2, -~XP)- sequence for

Proof. Let (7^, Jt}*, ̂ )? k^I^ be ^/-sequences, j = 2,~-p. By

corollary 3.4 we can assume that ^(7f^)>l/2(l + #/)~1 for all /, ^.
We can inductively choose subsequences k(j,ri),n = l,2, ••• such that

//,*(/,«) are mutually disjoint. Define /^^//./.a^o and let

(7.1)
y=2

For all ^eSp(J2(/M)/M(/M)) we have

(7. 2) J= n ^
;=2

Define

(7. 3) ^1= {AeSp£(/B) :^(;) eJSTJ. for all j =2,
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aO'O if ;'=£;"
(7.4) (0y) (/) =| . . .,_ .

fn c:^ ITj liirt(.(•v) K „ = $„&„

for j = 2,--,p. By construction, (!„, Kl, K'„,$'„*) satisfies Eq. (3.3)

for each j = 2, --p. We have
P P

(7. 6) A(Kfy = nX (KJ M )^>2~~ p n (l + ^y)"1I>0

which implies S^C-^i) = °°. Q. E. D.
The following three lemmas are straightforward generalizations of

lemmas 3. 3, 5.1, and 5. 4 respectively.

Lemma 7.3. Given R(MV, J2y),^2---^erro(M, £), and eK>0. Then
there exists an (#2, •••^-sequence (/„, ^Ti, ̂ Ti, 0i; y = 2, •••/>) satisfying

(7.7) il-ix#<)]<£w.
1=1

Proof. The proof is essentially identical to that for lemma 3. 3

with L*, Kjl,i = l,2 replaced by Vn,K
l
m, i = l,'~p and iK,0OT replaced

by &i,#jm,j = 2,-p. Q.E.D.

Lemma 7.4. Given M=R(HV, Mv, Qv\

S ,̂- = l, and 1>£>0. Let Xj = b/Al9 j = 2,—p. If ^erTO(M, J2) fori=i
all y, then there is a finite subset 7c^4, projections P, P7 in M(7),

respectively, a unit vector <D^PPfH(I}, and a type //, factor

)Py such that !I(l-PPO^(/)II<e, ||(2)-PP^(/)i|<£,

= 0i, •••/i/>), and (2) factorizes N in

Proof. Define

(7.8) £
/ = min{e/(^

W if

.-, n2 if jry = 0.

By lemma 7.3 there exists a finite Id A, disjoint sets K1, •-

JPcSpC0(/)/Af(/)) and bijections 0y from jfiT1 to jfiTy, > = 2, ~-p satis-

fying

(7.10) max | x, - 0 WA* <e7, J = 2, -/>
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and

(7.11) |l-SJ(ff')l<*/(c,+/01=1

where cp is given by lemma 4. 2. Eq. (7. 10) implies that

The result now follows from lemma 4. 2. Q. E. D.

Lemma 7.5. Given Af=R(Afy , £,,), N=R(Na, ^a). K f(JV,^)

) then M

Proof. The proof is essentially identical to that of lemma 5. 4

(with lemma 5.1 replaced by lemma 7.4). Q. E. D.

Theorem 7.6. Given ITPFI factors M=R(MV, £„), N=R(Na, ^a).

If rTO(M)-rTC(AO=Soo, then Af-JV.

Proof. For any ITPFI factor Af=R(Afv, £„) we have f (Af, £) cSTC.

Thus it follows from lemma 7.5 that T00(N)=S00 implies N~~N®M.

Conversely r00(Af)-500 implies AT—Af(g)JV, and thus M—N. Q. E. D.

Definition 7.7. We shall denote the ITPFI factor Af with rTO(Af)

= Soo by R^.

8. Some Technical Lemmas

This section contains a number of technical lemmas which are
devoted to proving the result that for ITPFI factors Af, rooCAf)-^ if

and only if M^RX (theorem 9.1). The basic idea is to exploit the

condition for unitary equivalence given by lemma 2. 13. The main

results of this section are given in lemmas 8. 3, 8.11, 8. 14, 8. 16.

Definition 8.1. Given a type /„ factor Af, a unit vector Q,

Sp(£/Af ) = fa , • • -/lj . We define
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and

(8.1) 3X(M,^= min S [?? - (*

where the minimum is taken over all ^-tuples of integers (^1? •••#&„).

Note that the expression on the right-hand side of Eq. (8. 1) does

not change when mj-^mj+m. Thus the %-tuple of integers (mly ~-m^

which gives the minimum in Eq. (8. 1) is determined only up to an

additive integer. This ambiguity could be removed by requiring that

m1 = Q, but this is unnecessary for our purposes.

Definition 8.2. Given 0<#<1, Af=R(Afv ,^). We define

(8. 2) d,(M, £) - SA(MV , 4,)

where dx(Mv,Qv*) is given by definition 8.1.

Lemma 8.3. Given 0<*<1, Af=R(Afv , 4), *erTO(M), d,(M,J2)
<oo. Then M^RX.

Proof. Let Mi = R(Afv, ^i) where Sp(^i/Mv) = {avy; ; = 1, •••«„}

and ojv/ are defined as follows. If %=Q let ow = l, avj- = 0, y = 2, • • •w v .

If x = l let avj = nv1,j = l, ~°nv. If 0<^<1 let

where (mvi, •••mvnj) gives the minimum for 5,(Mv,^y) in Eq. (8.1).

By construction f(Mv,^)c5 jC and thus RX—RX®M^ by lemma 7.5.
By lemma 2.13, d,(M, J2)<oo implies that M^M±. Thus ^e^CMO

and M^M^RX by corollary 5.5. Thus M^M^Mi®Rx~~Rx.

Q. E. D.

The following lemmas are devoted to proving the converse result,

namely that d,(M,i0) = oo implies that roo(M)^S*. The basic idea

is to use the central limit theorem to obtain the existence of some

jyerTO(M), y^Sx (except for x = Q where we use lemma 3.8).
nv

Lemma 8.4. Given Xv= {/U, ••%„„}, /U-> 0 and X ^ = !• Let //„*=i
be the probability measure on Xv defined by A/({^})=^> A^XV. Let
Kl,Kl be disjoint subsets of Xv and let $„ be a bijection from Kl to

^^. Assume Q&Ki. Let
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(8.3) ,00 = log fovVtf, ̂ etfj.

Let sv be the random variable defined by

(7 00 if

(8.4) s,00=<-7(0-JO if
I 0 if

Let

(8.5) YN = fls,
v = 1

and

(8.6)

If

(8.7)

and

(8.8)
v Ae/fJ

then for any fixed 0<Ca<;oo we have

(8.9) iim(n/ocar*GO)=o
A -̂̂ oo j/=.l

JV

where XN(a) is the subset of n Xv defined by \YN\<^a.
V = I

Proof. The mean of sv Is

(s. 10)

Since S ^<[1 and |^0)]^^ we have

Thus <5V> is bounded. The variance of s,, is
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Using <5y> = 0(5j) for one factor of <sv>
2 and Eq. (8.10) for another,

we get

(8.11) *v = 2S^,G

It follows that <rv->0 and S^v=°°. It now follows from the central

limit theorem for bounded variances (Loeve [9] ) that

approaches a normal distribution as JV-»oo. Since S^v^00, the finite

interval [ — a, a] gives a vanishing contribution as N->°°. Q. E. D.

Lemma 8.5. Given R(MV, Qv\ v<^A). Let X=Sp(J2v/AQ. Let

Kl, Kl, fa, ^0), dv be as in lemma 8.4, except Kl may contain O's.

If

(8.12)

and

then roo(M) = Soo. Here the terms with vO) = ~~ °° are excluded from

the sum in (8.13).

Proof. We will use lemma 8.4 to prove that e~'ereo(M) for

arbitrary 0</<°o, which implies that roa(M)-=S0o. By (8.12), we

can restrict v such that 0$j?T^.

Let ()<;/•< °o be given. Let A/ be the probability measure and let

sv be the random variable defined in lemma 8. 4. Let / be any finite

subset of A, and define

(8.14)

Let -X"(/,0) be the subset of II SpCa,/Afy) = Sp(J2(/)/M(/)) defined
i/e/

by I YX/)|<I0. It follows from lemma 8.4 that there exist mutually

disjoint subsets Inc:A, n^I^ such that
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(8. is) (n A,)CYC/,, 1/20x1/2.

We now construct an ^-sequence (/w ,Li,-\K) as follows.
For peX«-Sp(^(/;l)/M(/K)) the equation

(8.16) p-H ^00,^

defines the function ^(p), v^ln. Let

(8.17)

and define
f minimum * EE /. with | y(In, a,p)\>l/2l

(8.18) ^'^- for all

Let

(8.19) Li = {p

(8.20) L^{p

We define a bijection iK from Li to LI as follows. If y <>(/„, p),
define

r^v(p) if ^
(8. 21) ^v(^Hp) = J flT^vGO if ^V(

Mti if ^

where 0,;1 is the inverse of the bijection $„. If v >«(/„, p), v^/« define

(8.22)

Let

By construction we have

(8. 23) ^-26

Since 5(/,z)->0 we have

(8. 24) lim max | ̂  - ^p/p | = 0.

Also by construction we have

(8. 25) 1 - x (Li) - ^ (Li) < ( n A.) (JTC/. , 1/20 ) < 1/2-
i/e/?z

It follows from Eqs. (8.24), (8.25) that
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Thus (/„, Z4,i/rrf) is an ^-sequence. Q. E. D.

Lemma 8.6. Given 0<#<°o, Af=R(M,,, £„; ve^4), disjoint sub-

sets jfiTJ, ^JcSp(^/Afy), and a bijection 0V from ^TJ to Kl. If

(8.26) SS [^1/8

then there exists some #erTO(M), #=£1. If we also have

(8.27) \log(<f>vt/t)\<a

for all A^Kl and all v, then there exists some *eroo(M), £

Proof. First we throw out from Kl and Kl all ^ and ^M for

which A = ̂  = 0. Since Eqs. (8.26), (8.27) are unaffected by the in-

terchange of X and <?M, we can assume 0U<J and thus $VA/A e[0, 1]

for all X^Kl and all v. We define a subset S of [0, 1] as follows.

Let ew>0, ewl->0, we/eo. Given ^<j9, let

(8.28) ^(«,0) = S S U1/2-(0^)1/2]2.
v As/Ci

0,,A/Ae(a,/3)

Define

(8.29) 5-{j^: ̂ (^-e., x+em) = °° for all m}.

We now use the fact that [0, 1] is compact to prove that 5 is non-

empty. If #$S then there is some fiinite integer m(x} such that

(8. 30)

If 5 is empty then we have a covering of [0, 1] by the open sets

TwOO), x e[0, 1]. It follows that there is a finite collection /(#i, w(^i)),

— I(Xp,m(xp)) which covers [0,1]. Using Eqs. (8.30), (8.28) we get

(8. 31) S S U1/2-(^)1/2]2<S Sfe— £,(,,),

which contradicts Eq. (8.26). Thus S is nonempty.

Let %^S. It follows from Eq. (8.29) that we can inductively

choose subsets Ll(x)c:Kl such that

(8. 32) lira max 1 x - fcl/l I = 0
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and

(8.33) S S U1/2-(^)1/2]2-oo.
v AelJoO

Let

If #=£1 it follows from Eqs. (8.32), (8.33) that

(8.34) 2X# 00 ) = <*>•
V

It follows from Eqs. (8.32), (8.34) that (v, Ll(x),fc) is an ^.-sequence.

If # = 1, then R(MV,,0V), ZiOO> £JOO and $„ satisfy the conditions of

lemma 8.5 and we have r00(M)-500. If Eq. (8.27) is satisfied then

Sd[e'at 1] and thus ^erro(M) for some e~a<^x<l. Q. E. D.

Lemma 8.7. Given 0<^<oo, alfj>09 —a

v^Ioo. Then the following statements hold.

(i) The conditions

(8.35) S«,y(^/2-l)2=oo
V,J

(8.36)
"-/

are equivalent.

(ii) The conditions

(8. 37)

(8. 38)
IO-

CS. 39)

are equivalent.

Proof. Let f(y)=el — l. For any ?e[ — «, «] we have

It follows that for yvj ^[ — a,a], there exist positive constants C± , C2

such that

from which (i) follows. Statement (ii) follows from a similar argument.

Q. E. D.
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Lemma 808. Given ai, •••«„> 0, S«y = l, and — oo<< Xj<i°°, j

1, --n such that

(8.40)

Then

(8.41)

Proof. The left hand side of Eq. (8. 41) is

By the assumption, this is the same as the right hand side of (8.41).

Lemma 8.9. Given 0<*<1, ̂ , ••%>(), S ^- = 1. Then there
1=1

exists an w-tuple of integers (nil, --mt^ such that

(8.42) k--?

where ^- is defined by

(8. 43) AJ = en

Also

(8.44) max|?/l<|log#|.

Proof. For any ~oo<;^<:oo we define integers mJ(a),j = 1.J -*n

by

(8. 45) e*xm>

Define ^G*D by

(8.46) AJ = e1l'

It follows from Eqs. (8.45), (8.46) that

(8.47) 0^(«)<Uog*i.

Define -q^a) by Eq. (8.43) with mj = mj(a). Then we have

(8.48) */«)=*;GO-*GO
where
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Eq. (8.42) now follows from Eqs. (8.47), (8.48). Using Eq. (8.45)
and S^/ = l we get

(8.49) x<e-™^l.

Eq. (8.44) now follows from Eqs. (8.47), (8.48), (8,49). Thus mj

= nij(oL) for any a. satisfies the lemma. Q. E. D.

Lemma 8.10. Given 0 < x < 1, Al9 • - •*„ > 0, S/lf- = 1 and al9 • • °an > 0.
Then there exists an n- tuple of integers (mly ••• m,) satisfying the

conditions of lemma 8.9 and a subset / of {1, •••«} such that

(8. 50) sup ] Vi-Vj <(4/5) | log x \
i', ye/

and

(8.51) S Wvi-*;)2>(l/9)i! W*i-*y)2

»,ye / i ,y=i
i<j «<j

where ^ is defined by Eq. (8.43).

Proof. Consider the m](a), tf/G*) given in the proof of lemma 8. 9.
We will show that one can choose OL and / so that Eqs. (8. 50), (8. 51)
are satisfied.

It follows from Eq. (8. 48) that it is sufficient to prove Eqs. (8. 50),
(8.51) with j)](a) replaced by 7/j(a). It follows from Eqs. (8.45),
(8.46) that

(8. 52) ?/C*+/3) =?XoD -/3(modulo \ log x\ ).

Thus we can consider the ^(a) as defined on a circle of circumference

1 log x\ . Choose the interval ^0?a) = [va,T?a+ (1/5) I log x\ ) on this
circle such that S «/ is a minimum. We choose a=^. Then

77^6Ex4(77a)

110.=^— a is 0 and this interval is [0, (1/5) | log x\ ). Let

(8.53) A={y:v;(a)

and define

(8.54) ^7= s•

By construction we have
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(8. 55) S a, <S a,, k = 2,3, 4, 5.
ie//i zeJ f e

Now &iGJi , i z ^ A z j fs^/fg implies that

(8.56) i^-^KSl^-^I.

It follows from Eqs. (8. 55), (8. 56) that

(8.57) ^15<4£25.

By similar arguments we have

(8.58)

(8.59)

(8.60)

(8.61)

Let 7=U4. It follows from Eq. (8.53) that Eq. (8.50) is satisfied.
£ = 2

We have

(8.62)
*,/
i<

and

(8.63) S ^,^(^-^)2 = i] ^*i.
i .ye/ * . /=2
i'<y

It follows from Eqs. (8. 57-63) that Eq. (8. 51) is satisfied. Q. E. D.

Lemma 8.11. Given 0<#<1, M=R(MV, £„), r00(M) = 5,. Then

Proof- We will use lemmas 8. 7, 8. 8 and 8. 10 to translate the

condition dx(M, £) = oo into the conditions of lemma 8.6 with |log(<jM

/^) « <2< 1 log x \ . It will then follow that there exists some y ero

x<y<I which contradicts r^M^S*.

Let Sp(£v/Mv) = {Avi, ~°bnv}> By lemma 3. 15 we can assume

for all v and j. Use lemma 8.10 to choose integers Owvl, • • •M V W y ) and

subsets 7vc{l, •••«„} such that |^-|<C|log^ ,

(8.64) sup l^-^/l <(4/5) | log *|
i, /e/y

and
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(8.65) S aw^(^,-
»,/e/ t f'•<;

where ?„; is defined by

(8.66)

and

(8.67) «,, =
1=1

Let M1-R(MV, J20 where SpO#/Af,,) = W, —*„„„}. By Eq. (8.67)

f(Mv>10i)cS, = rco(Af) and thus Af—Af^A^ by lemma 7. 5. We have

Af (g) Af± - R (A/, (g)Mv, £,® J2D where Sp Ca,

= !,•••«„}. We define disjoint subsets jfiTJ,

and a bijection 0V from .K"i to J^J by

(8. 68) jfiTJ - {iviavj : i, j e 7tf and f <; }

(8. 69) Kl= (lviavj : i, j e= /, and /

(8. 70)

For A = ^l.a^eJBLi let

(8. 71)

It follows from Eqs. (8.64), (8.71) that

(8. 72) | logGMAO 1 <(4/5) I log * ]

for all X^Kl and all v. Using Eqs. (8. 66), (8. 67) and definitions 8. 1,

8.2 the condition dr(Af, £) = °o implies that

(8.73)

By lemma 8. 7 this is equivalent to

(8.74) S^(^"-l)2=oo.

Since S^ = S^vj = l, it follows from Eq. (8.66) that

(8.75) S^.(^-l)=0.

Using Eqs. (8.74), (8.75) and lemma 8.8 we get

(8.76) S S ^^(^-^02=°°.
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By lemma 8. 7 this is equivalent to

Eq. (8. 65) now gives

(8.77)
v i,j^Iv

By lemma 8. 7 this is equivalent to

(8.78) oo =

It follows from Eqs. (8.72), (8.78) and lemma 8.6 that there exists

some *'eroo(M),0<|/K(4/5)|log*|. Q. E. D.

The result that rco(Af)=S, implies that d,(M,£)<oo for x=Q,l

can be obtained directly from the known conditions for M to be type

I JIj respectively which have been stated in lemma 2.14. However it

seems worthwhile to use our techniques to give an independent deriva-

tion of these results.

In the proof of lemma 8.11 we made frequent use of the fact that

the yvj were bounded, a condition that does not hold when x = l. In-

stead of modifying the proof of lemma 8.11, it seems simpler to use

the following two lemmas.

Lemma 8.12. Let xj9 j^K be a finite set of real numbers such

that

(8.79) S*/ = 0.

Then there exist disjoint subsets K1, K2dK and a bijection 0 from K1

to K2 such that

/'O QA"\ X~^ f A* M. \ 2 ~^^ "ST"! «2
\^o. ou) _s i \%>j -^<K/V *^ / ' •X'J'

jeK1 j^K

Proof. Order the index set K by #i>#2I> ••"!>## and choose m

so that either N=2m or N=2m+l. Let a=xm+i. Let K1={l,—m},

K2= {N—m+1, •••N}, and define ^(j)=N—m+j, j&K1. Let
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By construction, if j^K1 then y3 and y#j) have the opposite sign.

Thus we have

(8.82) S (*,

where we used the fact that y} = Q if j^Kl[JK2. Since ]>]#/ = 0 we

have

(8.83)
j=i j=i

Q. E. D.

Lemma 8.13. Given ^, •••^2>0, S ,̂- = l. Then there exist dis-

joint subsets K1, K2d{Ai, •••<^ l l} and a bijection 0 from K1 to ^T2 such

that

(8.84) S [^1/2

Ae/fi

Proof. Let

(8.85) dj = ??

Then

and using S^- = l we get

(8. 86) 3=w-i

We also get

and thus

(8.87)

Since

(8.88)

we have

Using Eqs. (8.86), (8.87) we get
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(8. 89)

Since ^2-^a = fl.-0,, the lemma now follows from Eqs. (8.88), (8.89)

and lemma 8. 12. Q. E. D.

Lemma 8.14. Given M=R(MV, £„), r00(M) = S1. Then d^M, ,0)
<oo.

Proof . Assume di(M,J2) = °o. Then we have

i/ y=i

where Sp(Qv/Mv') = {/U, •••/U,}. It follows from lemma 8. 13 that there

exist disjoint subsets Kl, KldSp^Qv/Mv) and a bijection $v from ^J

to Kl such that

(8.90) SS U1/2-(^)1/2]8=oo.
v Ae/iTi

It now follows from lemma 8. 6 that there exists some ^er^M), x=£l

which is a contradiction. Q. E. D.

Finally, we consider the case x = Q. We first prove

Lemma 8.15. Given M=R(MV, J2,), Sp(0,/Mv)= U,i, —^U,}. The

conditions

(8.91) S|l-^i|=oo

(8.92)

are equivalent, where |[J3,,|| = 1.

Proof. We have

(8. 93) d»(M, fl) = S [(l-

Using (1— /11/2)2;>0 we obtain the inequality

(8.94) |!

It follows that
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(8. 95) d0(Af, £X2S(l-^iX2do(M, si)

Q. E. D.

Lemma 8.16. Given M=R(Afy, £„), rTO(M) = S0. Then d0(Af, £)
<00.

Proof. By lemma 3.8 r00(M)-S0 if and only if S|l-^il<°°-
By lemma 8.15 S|l-^il<°° if and only if d0(M, £)<°o. Q. E. D.

All the discussions in this section are valid even if we allow \\QV\\Z

= l + 5v=£l. This is due to the following situation. Let (1 + ft,)^
0,, 4- = 0~X-> #=£v/!|S,,||. Then Sp(^/Mv) - {/Q if Sp(4,/Afy) - U,/}.
By Lemma 3.14, r^CM, 0')=r~(M, Q). On the other hand,

<oo implies Sl^|<°°. If S«v/ = li then
y

Thus if we adopt the Definition 8. 1 and 8. 2 for ||0V|| =£1, then d,(M, £)

= CXD and d,(Af, J2/) = 0° are equivalent.

9. Classification of ITPFI Factors -The Classes S,

In this section we apply the results of the preceding section. We
prove that rco(M)-S;c if and only if M—RX, 0<*<;i. We obtain
some useful criteria for calculating r«»(M).

Theorem 9.1. Given M=R(Mv,av),rtlo(M) = Ss, 0<*<1. Then

Proof. By lemmas 8.11, 8.14, 8.16 roo(M) = 5, implies that
d,(Af, J2)<oo. By lemma 8.3, roo(M) = 5, and d,(M,lfi)<oo implies

that Af-^,. Q. E.D.
We remark that we can prove Theorem 9. 1 for # = 1 without mak-

ing any use of the condition di(M, ^)<C°o. Namely, by lemma 5.2
M is infinite if and only if Oer^CM). Thus r00(M) = S1 implies that
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M is finite. Since leroo(M) implies that M cannot be type I, M must

be type IIlB Since all hyperfinite type IIj, factors are isomorphic

(Dixmier [8], Theorem III. 7. 1) we have M-^R±.

If M is an ITPFI factor, r00(M)^501, then by Theorems 7. 6 and

9.1 M must be isomorphic to one of the factors RXJ 0<;#<;i or Ro*.

However, the calculation of rTC(M) by a direct application of definition

3. 2 may be a nontrivial problem. The following two lemmas give some

useful criteria for calculating r^CM). The first lemma is a straight-

forward variation of lemma 3. 5.

Lemma 9.2- Given M=R(MV,GV),MV type ln for all v, and
xx

$&(&„/ Mv)= {h, -•%„} independent of v. Let SG*i, • • •^«) be the intersec-

tion of all sets 5 such that

(i) 5 is one of the sets SXJ 0<^#<[1, S0i and

(ii) b=£Q implies that ^-/^eS, i,j = l,-~n.

Then

Proof. Since SOi, •••O is nonempty, it must be one of the sets

SxySolyS00. Thus SQi, •••O is the smallest asymptotic ratio set con-
XN

taining all ^-/^-, ^=£0. It now follows from lemma 3. 5 that SOi, -"O

croo(M). It follows from definition 3.2 that r00(M)cS01, — O.

Q. E. D.

Lemma 9.3. Given M=R(Af,,, ^), Mv type I. for all */,

= {^vi, ""^J and

(9. 1)

If

(9. 2)
t/ y=i

XS XX

then roo(Af) = S(^i, •••^) (see lemma 9.2 for the definition of S(/!i,---

O)- If 5(/d, •••/1K) = 501 in addition then Af— jR0®l?i. If J = °o and

^.^0 for all ; = 1, •••» then r00(M)-500.

Proof. By Eq. (9.1) and H^||-*l, we have ]£Uy = l. By lemma
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n
3.14 we can assume S^/,— 1 (note that this does not affect whether

or not A is finite). Let M1 = R(MV, $0 where SpC^/MJ^ {^, •••/O.

Case (i), J<oo. By lemma 2.13 M—M-^. By lemma 9. 2, roo(Mi)

= S(^, •••/(„). If SOi, •••-O = S0i then f(MO cS0i and by lemma 7. 5 we

have 7?o®-ffi^^?o®-Ri®M1 since rooC/?o®#i) = S0i. Since 0, lerTO(M1)

we have M^M^®R^ Mt—Mt®!?!. Thus MI—M^R^R^—R^R^

Case (ii), J=c>o. Consider M®M1=-R(M,0MJ/J A,®^). By

lemma 3.5 f(Mv, ££) c=roo(M) and thus M—M®Mi by lemma 7.5.

We have Sp (£„ ®&V/MV ® Mv) = {^.-^: i, ;" = 1, •••«}. Define

(9.3) Jrj^

(9.4) #J =

and a bijection ^v from j?TJ to £"J by

(Q R^ A ; ; — ; ;\*'• *J J *Pv**itiAj — AI///IJ )

Define t}vj by

(9.6) XVj-=(?vjXj.

It follows from Eq. (9.1) that

(9.7) lim^=0,y =

We have

By lemma 8. 7 this is equivalent to

(9.8)
V j

Since Sy^y = Sy^ = l we have

(9.9) S,W'-1)=0.

It follows from Eqs. (9.8), (9.9) and lemma 8.8 that

Using lemma 8. 7 again this is equivalent to
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Since ^=£0 for all j, it follows from Eq. (9.1) that this is equivalent
to

(9.10) SSW,(*vf-**)8=~.
V i<j

For X = XviX^Kl let

(9. 11) *0) =log(^/J) = *„-*„.

It follows from Eqs. (9.7), (9.10), (9.11) that the conditions of lem-

ma 8.5 are satisfied and we have r0o(Af(8)M1) = Soo. Q. E. D.
The statement that J<oo, S^, •••^) = S0i implies M—R,®R^ is

nontrivial since the class S0i contains more than one isomorphic class
(see Sec. 10). If ^ = 0 for some j then we can have zf=oo but rTO(M)

^5M (see lemma 9.4).

If M is an ITPFI factor, r00(M)^501, then by theorems 3.9, 7.6

and 9.1 M must be isomorphic to one of the factors Rx, Q<^x<^l or

j?oo. The factors j??* can be obtained as tensor products of type I2

factors (see definition 3. 10). If Af=R(Afv , £„), SpC^/AQ = (;y> l-^)

and ^->1, then 0^rTC(M) by lemma 3. 5 and thus M-^R1. However we

have

Lemma 9.4. Let M be an ITPFI factor, r00(M)^51, S01. Then

M can be obtained as Af=R(Afv , £„) where M, is type I2, Sp(^v/Afv)
= (^,1— O and ^->1.

Proof. By theorems 3. 9, 7. 6 and 9. 1 M must be one of the fac-
tors Rx, 0^^<Cl or j??oo. RQ as given in definition 3. 10 is already in
the desired form. By lemma 3.13 and theorem 7.6 R^Ry^R^ if

#,.)>=£ 0,1 andlog#/log y is irrational. Thus it remains only to prove
the lemma for Rx, 0<#<1.

Given 0<JC<1, choose integers Nj for each j^Ioo such that

For each v^jL satisfying

(9.12)

let

(9.13) i-
*1)"1 if v is even.
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Consider M=R(MV,£V) where Sp(£v/AQ = U,, 1-^). Then f(Af,£)

dS* and RX—M§§RX by lemma 5.4. We construct an #- sequence

for R(M"V,£V) as follows. Let Im= {2m-l,2m}, we/TC, #i = {(1-

^2m-i)^2«}, -K"»= {^2«-i(l--^2m)} and let 0W be the unique bijection from

Ki to IK. Then

(9.14) 4>»l/l = x

for ^elK and all m. If JelK where y = 2m satisfies Eq. (9.12) then

we have

(9. 15)

It follows from Eqs. (9.12), (9.13), (9.15) that

(9. 16)

It follows from Eqs. (9.14), (9.16) that (7M , K^ , 0m) is an ^-sequence.

Thus ^er00(M) and M^M®RX~~RX. Q.E.D.

In Sec. 10 we consider ITPFI factors Af=R(Mv, £,) where M, is

type I2 and r«x,(Af) = S0i. Lemma 10.1 is the analog of lemma 9. 4 for

these factors. However it is not known whether or not all ITPFI fac-

tors in the S0i class can be obtained as tensor products of type L fac-

tors.

10. The Class S0i

In this section we give some elementary properties of tensor pro-

ducts M=®MV of type I2 factors Mv where roo(M) = S0i. We prove

(lemma 10. 1) that M is either hyperfinite //j®/-, or is type III with

^->1 where Sp(,Qv/Mv) = (Av, 1—^). We give some conditions that such

factors are nonisomorphic. Theorem 10. 10 gives explicitly a nondenu-

merable family of mutually nonisomorphic type III factors with r«,(M)

= OQI-

Lemma 10.1. Given M=R(MV, J2,), Mv type I2, Sp^/M,) = U,, 1

-/I,), r«x,(M) = S0i. Then either M—RQ®R± or Af—R(Mv ,^),

(^,l— X) and -̂>1. In the latter case M is type III.
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Proof. By lemma 3.5, roo(M) = S0i implies that the only allowed

accumulation points of Xv are 1/2 and 1. If 1 is the only accumulation

point the first part of the lemma is trivially satisfied. If 1/2 is the

only accumulation point, then by lemma 9.3 rro(M) is either S^ or £«,

which is a contradiction. If 1/2 and 1 are accumulation points then we
can write M=MQ^)Mt where MO,M! are tensor products of type I2

factors such that AV->1, 1/2 respectively. By lemma 9.3, i^CMi) is

either St or So=, hence we must have r00(M1') = S1 and M^—R^ by theo-

rem 9.1. TOO (Mo) must be either 50 or 5W. If roo(M0) = S0 then MQ

—R0 by theorem 9.1 and M^R^R^ If rTO(Mo) = 501 then MO—

Mo®./?!, hence M— M0.

If M— R(My>l00, SpC0VM,,) = GC,l-;0, where X~*l then lemma

3. 8 implies that S(l — -O ==0°- n then follows from lemma 2. 14 that

M is type III. Q. E. D.

Definition 10,2. Given 0<^/i</2<-", //-*°° and positive integers

JVi, JV2, ••- . Let

(10.1) *,= (l + e-l3)-1,N1+'» + Nj-1<v^N1+- + Nj.

We denote the factor M=R(My,^) where Sp(0v/MJ = U,, 1--O by
N,;l2,N2; -.] or

Lemma 10.3. Given M=M [/y, JVy] . Then rTO(M) = 50 if and only

if

Proof. We have M=R(Mv,^y) where
By lemma 3.8 roo(M)-50 if and only if S(l-^)<°°. Since

(10.2) l-^

we have

(10. 3)

Q. E. D.

Lemma 10.4. Given M=M[l},N/] where lj^>(Nj + !)/,-. If

" - oo then rM (M) - S01 .

Proof. Consider any finite set I containing only ^>N±-{ ----- i-JV/.
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Then the interval between different points log //,

is at least 7/+1 . Since lim 7y = oo it follows that r^ (M) c S0i • Since

S0 is excluded by lemma 10.3 we have rTO(M) = 501. Q. E. D.

It seems likely that lemma 10. 4 should still hold if the condition

7/4-1 >(A^--4-l)7/ is replaced by

(10.4) limW//,+1 = 0.

We remark that one can obtain sequences (// , N}} satisfying the con-

ditions of lemma 10. 4 by choosing TV/ larger than elj and choosing 7m

larger than 7J-(TVJ-+1) for each j.

Lemma 10.5. Given 7>0, M = M [ n j l , N j ] where the n} are inte-

gers. Then M®RX—RX where x = e~l.

Proof. Clearly f(M) dSx and the result follows from lemma 5, 4.

Q. E. D.

Lemma 10.6. Given 0<7, 7'<ooj M=R(MVJ £„)=&![>,/, N,] where

the HJ are integers. Let x = e~*, xk = e~l"k, k^I^, If d^^CM)^^ (see

dejfinition 8.2) then M®Rx,+RXk. If this holds for all k^L, then

M®RXl—R00. Otherwise let K be the minimum k such that
<oo, then

Proof. Since Xi&^MtgtR^ it follows that ^(M®^) is ei-

ther Soo or 5^ for some &£/«,. By lemma 8. 11 rco(M®jR,1) = S,fc im-

plies that ^ft(^®^i)=d^(^)<00- First two conclusions then fol-
lows. Conversely, if d,A(-M)<°° then M§§RXl®RXk—RXk by lemma 8. 3.

Hence ^(M) crTO(J?,fe) = S,A. Since S^cS,,, implies *^*

= SJfe for the minimum k with finite d^(jW) and hence

Corollary 10.7. Given 0<7, 7/<oo, M1 = M[njl) Nj], M2 =

where the nitn', are integers. If dx(M2) = oo, ^ = e"' then

Proof. We have r^ (A/i ®#4) = S, . By lemma 10.6,

implies that rTO (M2® ^?J ^= S, . Q. E. D.

We remark that given Ml9 M2 as in corollary 10.7 where

we can obtain rro (MO = r^ (M2) = 501 and also d*(Af2) = oo by taking
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sufficiently large for each j.

Lemma 10.8. Given M, = M [/, , Nj] , M2 = M [/J , N,] where

= °o. If I'j-lj-^k as y->oo then ^^(M^M,).

Proof. We have M{ = R(Miv, £,-„), i = l,2. Let My = Mly(g)M2z,,

J2v = £lv(g)J22l,. Then M±(8)Af2 = R(Afv, J2V). Let

(10. 5) ^ - (1 + g-'j)-1 (1 + e1'*)-1

(10. 6) /!*

where JVX+ ••• + JV/_1<v^JV1+ •••N /. Then ^1? ^2^Sp(^y/MJ. Let

/„= {^}, jfiTi= {//„/}, i = l,2 and <f>vjLtvi = juv2. We have

do. ?)
It follows from Eq. (10. 6) that

Thus (/y,^,^) is an ^-sequence for Mi0M2. Q. E. D.

Corollary 10.9. Given 0</<°o, M± = M [»,/, JV;] , Ma = M [»;/,

where % , ̂ - are integers and rTC (Mi) = r^ ( M2) = S0i . If

(10.8)
(10.9)

then

Proof. Let 7kf3 = M[(^+l)/, Nj]. By lemma 10.8,

M8). We can write M1(g)Afs = M[»1/, JVi; («i+l)7, ^; ^2/, AT2; ...]. It
follows from Eqs. (10.8), (10.9) and lemma 10.4 that ^(M^Ms)

= S01. Q.E.D.

Theorem 10.10. There exist nondenumerably many mutually non-
isomorphic factors M with r^ (M) = SQ1 .

Proof. Let Mt = M[lj+k,Nj],Q<.k^l where 1M > 2 (JVy +!)(/,-

+ 1) and l>lNje~lj = w (this last condition can be achieved by choosing

JVy sufficiently large for each .;). By lemma 10. 4, rTO(MJ =r«x,(M*0MA)

= S01. By lemma 10.8, e*"*'erco(Af»0MA0. Thus ^^A7 implies that
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Q.E.D.

11. Another Algebraic Invariant for ITPFI Factors

In this section we define a second algebraic invariant p(M) for
ITPFI factors M, and use it to analyze further the 501 class.

Definition 11. 1. Let M be an ITPFI factor. We define the
algebraic invariant p(Af) as the set of all x^ [0, 1] such that

Given M=R(HV, MV9 J2V) we note that d,(M, J2) as given in
definition 8.2 does depend on the vector @ = ®&v. However if
^C^K^0(#v, £„) then d,(M, £) = oo if and only if d,(M, ^) = 00.
Thus by a slight abuse of notation we can write dx(M) = °° if
d,(Af, o/r) = °o for any (and thus all) ̂ =®'i

Lemma 11. 2. Given M=R(MV, £„). Then

Proof. Assume d,(^)<°°. Since dX^)<°° it follows that
d,(Af<8)^)<°°. Since jceroo(M(g)/?,) we have RX—RX®M by lemma
8.3. Conversely, by lemmas 8.11, 8.14, 8.16 RX—RX®M implies
that d,(M(g)^)<cxD and thus d,(Af)<°°. Q.E.D.

Lemma 11.3. Given 0<^<1, Af=R(Mv, ^), x^p(M). Then

Proof. By definitions 8.1 and 8.2, d,i/-(M, £)^d,CW, £)• The
result now follows from lemma 11. 2. Q.E.D.

Lemma 11. 4. Given ITPFI factors M, N. Then

Proof. We have d,(Af(8)JV)<°o if and only if d,(M)<oo and

. The result now follows from lemma 11.2. Q.E.D.

Lemma 11. 5. p(^?0) = [0, 1)
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Proof. We have #ep(l?,) if and only if Rx-^Rx®Ry which is

the case if and only if y^reo(RJ = Sx. This argument gives

Q<iy<Ll. p^R^R^ now follows from lemma 11. 4. Since

R^RX for any *GE [0, 1] we have p(R^=<!>. Q.E.D.

Lemma 11.6. Let M be an ITPFI factor. Then Oep(M) if and

only if M~~RQ, and lep(Af) if and only if M—R^

Proof. By lemma 11.5, Oep(J?0). Conversely, if OeP(M) then

RO—RQ^M and it follows that M must be type I since RQ is type L,.

Since the definition of an ITPFI factor excludes finite type I, we have

By lemma 11.5, lepCffO- Conversely, if lep(M) then R^R,.

and it follows that M must be finite since R^ is type 1^ . Since

M cannot be finite type I, and all hyperfinite Hi factors are isomorphic,

we have M—R^ Q.E.D0

In the remainder of this section we consider tensor products

M=®MV of type I2 factors Mv.

Lemma 11.7. Given 0</, ^<oo, M=R(MV, £v) = M[njl,

where the nj are integers (see definition 10.2). For each j choose

an integer p3 so that \dj\ is a minimum where

(11.1) dj=pjk-njl.

Let y = e~k. Then rf,(Af)<oo if and only if

(11.2)

Proof. For each j, choose mf so that (0, mf) gives the minimum

for dy (Mv , Q^ in Eq. (8. 1) where 2 N, < v < S ^ . Let
i i

(11.3) 8j = mjk-njl.

Since l<(l + ̂ *)/(l + «c*y+1)*)<«* and a similar inequality holds for
— k, \7?'j\ is bounded by k. Hence we have

(11.4) dy(Mv, J3y)=
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where the second term is

)1/2]"2 and yields the main contribution. Thus

(11.5) d,(Afy, J2y)= v j

Since HJ-^W (see definition 10.2) it follows that d^,(M) = oo if and

only if

(11. 6)

Since \dfj\<ik it follows from the same argument used to prove lemma

8. 7 that Eq. (11. 6) is equivalent to

(11.7) S^~"'/(^)2=0°-y

Since ^— >co, it follows from definition 8.1 and Eqs. (11.1), (11.3),

(11.4) that there is some finite / and some fixed e>0 such that for

all ;>/, if either ^-<e or <5y<e then mj=pj and dj = dr
j. Since we

also have \dj\, \ d'j \ <*-^-k , it follows that there exist positive con-
£

stants Ci, C2 such that

(11.8) C i l^^ l^ l^Cz l^ l , j>J.

It follows from Eq. (11.8) that Eq. (11.7) is equivalent to Eq.
(11.2). Q.E.D.

Lemma 11.8. Given /, &i, • • • & , , e (0, <*>) such that kjl is irra-

tional, i = l,-"n. Then there exists an ITPFI factor M such that

and

Proof. Consider M=R(My, J2J =M [(;!)/, JVy] where we choose

NJ as follows. Define

(11.9) e/l. = min m^- (;!)/|, f = l, — »
»z,

where the minimum is taken over integers mt. Since kjlis irrational

we have ey,->0 and it follows that we can choose NJ sufficiently large
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for each j such that

(11.10)

It follows from lemma 11.7 that e~ki^p(M}, i = l,~'n. By construc-
tion we have

(11.11) $.-,1(^,40=0 if

and thus

for all je L. It follows from lemma 11.2 that e~3l^p(M), yeL.
Q.E.D.

Corollary 11. 9. The ITPFI factors constructed in lemma 11. 8
belong to the class 501.

Proof. The algebraic invariant p(M) is not one of the sets
given in lemma 11. 5. Q.E.D.

We note that since the e/f defined by Eq. (11. 9) are bounded, it
follows from Eq. (11. 10) that

(11.12)

If the condition given in lemma 10. 4 were satisfied we would have
ty<y> which contradicts Eq. (11.12). Furthermore, since Eq. (11.10)
is the only condition the ty must satisfy, they can be made arbitrarily
large. Thus Eq. (10.4) is not a necessary condition that rM(M) =

»^01 •

We now use lemma 11. 7 and some results from number theory
concerning the approximation of irrationals by rationals to construct
more examples of ITPFI factors M in the class SQ1. Given Q<k,
/<;°o and an integer n. Choose an integer m such that d= mk — nl\ is
a minimum. We have

d=nk\(l/K)-(m/ii)\.

We recall that a real number f is said to be approximable by
rationals to order p if there exists a positive constant c depending
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only on $ such that the inequality

(11.13) \£-m/n <c/np

has infinitely many rational solutions m/n with nX). It is known

that all irrational numbers are approximable to order 2, and that irra-

tional number f whose continued fraction has bounded partial quotients

cannot be approximated to any order higher than 2. The set of all

irrationals with bounded partial quotients has measure zero, but it has
the cardinal number of the continuum. It is an easy matter to con-

struct irrational numbers which can be approximated to any degree

P>2.

Lemma 11. 10. Let f"1 be a positive irrational number which is
approximable by rationals to order p = 2 + e, e>>0. Given 0<C/<C°o

there exists an ITPFI factor M such that e~l, 0~*'ep(M) and

g~9/$,o(M) where 0"1 is any irrational with bounded partial quotients.

Proof. There is a positive constant c and an infinite sequence

of integers mJ9 w/X), y^L such that

(11.14) \^

Since w,->0 we can order the ns so that they are increasing. Con-

sider M=M[njl9 Nj] where the Nj will be chosen later. By construc-
tion de-,(M)<°o and thus g-'ep(M). By lemma 11.7 ^'

if and only if XJVyg~*''d5<<°o where

(14. 15) dj < ngl(c/n!b = cSlnjl~£.

Thus we have £~c/ep(M) if

(11. 16)

Now let d be any positive irrational number with bounded partial

quotients. Then there exists a positive constant 7- such that

(11. 17) min 1 0'1 -

where the minimum is taken over all integers m]. By lemma 11. 7
if and only if ^NJe"H'ld^0y=^ where
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(11.18)

Thus e~ei&p(M) if

(11.19)

Choose NJ so that

(11. 20)

then Eq. (11.19) is satisfied. Since the % are strictly increasing we

have %;>/. Thus

and Eq. (11.16) is satisfied. Q.E.D.

It is not clear whether or not the algebraic invariant p(M) will

prove to be a useful tool for the program of classifying all ITPFI

factors. Thus it is not known whether or not p(M^=p(M2}

implies M^—M2, or even whether p(M)=p(Rx) implies M—RX,

0<C#-<1 (if # = 0, 1 see lemma 11.6). Furthermore it is not clear

whether or not all sets ,o(M) allowed by lemma 11. 3 actually occur

for some M, although lemmas 11.8 and 11.10 suggest that lemma

11. 3 may be the only simple general property of p(M)=

For further classification of an ITPFI M, we may use roo(Af(g)JV),

where N runs over all ITPFI. Again we do not know whether

rc»(M1(g)JV)-r00(M2(g)^) implies MI = M2.

12. Some Applications

In this section we determine the isomorphic class of some factors

which have been studied previously in the literature [1], [3], [4],

[5], [7], [15], [18]. In particular we show that certain factors

occurring in the quantum theories of infinite free Bose and Fermi

systems at a finite temperature are isomorphic to the factor R^.

We consider first some factors associated with the Fock

representation of the canonical commutation relations (CCR's). Let K

be a real Hilbert space and let HF(^T) be the complex Hilbert space
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on which the Fock representation UF(/)? VF(g), /, g^K of the
CCR's over K is defined. Let Kly K2 be subspaces (closed linear

subsets) of K. The von Neumann algebra

(12. 1) R&MK) = {U,(A VF(ir) ; /e #„ *e JQ"

was introduced by Araki [1] . In the following we assume the reader

is familiar with the results and notation of [1] . Given Kl9 K2 we

define

The commutant of R(Kl9 KZ/K) is R(K$9 Kt/K) and its center

is R(jK4, KS/K). Furthermore it is unitarily equivalent to the tensor

product of a maximal abelian algebra RC/f4, K5/K^@K^), a type I

factor R(Ke, KQ/K^), and a factor R(K7, K8/Ko). Therefore we are

interested in the factor RCfiTi, K2/K) when any two of Kl9 K2y Kt,

Kt have zero intersection. In this case there exists a unique closed

linear operator 0 from a dense set in K^ into Kt which is defined by

the requirement that the graph of <f> is K2 in K=K-i@K^. It follows

from Theorem 2' of [1] that R(Kl9 K2/K~) is then determined up to

unitary equivalence by the spectral measure and multiplicity function

of the nonnegative self adjoint operator oL = 4^<t> on K^. If the operator

a has only a discrete spectrum, then RC/fi, K2/K} can easily be con-

structed as an ITPFI factor. It is known that R(^, K2/K) is type

I if and only if a. is a trace class operator, and that otherwise it is

type III [3]. If the spectrum of a. is continuous then R(Kl9 K2/K)

can be considered as the analog of an ITPFI factor for the continuous

tensor product introduced in [2] . In the following we show how the

factor R(Kl9 K2/K} can be obtained as the factor generated by a

certain reducible representation of the CCR's.
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Let W be a real Hilbert space and let K=W®W. The Fock
representation of the CCR's over K is given by the equations

(12.2) HFCfiT)=HF(^)®HF(WO

(12.3) UF(/1®/2)=UF(/1)(g)UF(/2)

(12. 4) V,(^e^0 = VF(^)<S>VF(^0.

Let p be a (possibly unbounded) selfadjoint non-negative operator on
W. Then the equations

(12. 5) Up(/) =UF( [1 + P]

(12.6) VP(^)=VF([1 + P]1

define a reducible representation of the CCR's over the domain D of
the operator p112 on W, The operator algebra

(12.7) RGO={0p(/), FP(^):/, *<=£}"

is a factor (see Sec. 4 of [4]). If we define subspaces of K by

(12.8) #i=

(12. 9) K2=

then

(12.10)

It follows from a straightforward calculation that the operator $ from
-K~! to JTi" discussed above is given by

(12.11) *(f® ?'*(.! +prltf)=2pf@-2pll*a + pyltf

where / is in the domain of p, and that

(12.12) a = fy = 4p(l + p').

It now follows from the above discussion that any factor R(Ki, K2/K)
can be obtained as R(p) for some p.

If the spectrum of p is discrete and is given by <U?I; n^lJt then
R(p) can be constructed as an ITPFI factor R(M,2, J2W) where Mn is
type L and Sp(Qn/MH) = {^(l-^)"1: k = Q, 1,2, —} where #„ =

~1 (this follows either from Eq. (10.52) of [1] or Eq. (A17)
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of [4]). It follows from lemma 5.10 and definition 3.2 that if /I is

an accumulation point for the eigenvalues AH then #eroo(R(p)) where

#=:/l(l + ;0~1. Dell' Antonio [7] has shown that any R(p) is unitarily

equivalent to some R(^) where pd has a discrete spectrum only. In

the construction of [7] , pd satisfies the condition that the operator

is Hilbert-Schmidt. It follows that any point A in the continuous

spectrum of p will be an accumulation point for the eigenvalues of

pd. Thus p having a continuous spectrum is a sufficient condition that

RGO~tf..
The representation of the CCR's describing a nonrelativistic

infinite free Bose gas at a finite density and finite temperature with

no macroscopic occupation of the ground state is of the form Up(/),

Vp(^) where the operator p has a continuous spectrum (see Eqs.

(4.10-13), (5.2) of [4]). Thus the von Neumann algebra

(UP(/), Vp (£•)} " in this case is the factor Roo.

Let U(/), V(^) be the representation of the CCR's describing a

relativistic free Bose field where /, g are suitable functions defined on

R3. Let A be any open region in R3. In the local observables

approach to quantum field theory one is interested in the von Neumann

algebras

(12. 13) RGO = (U(/), VU) : support /cj}"-

We now construct R(A) as R(K^ K2/K) where K is the real Hilbert

space L2(j??3). We define an unbounded nonnegative self adjoint operator

o) on K by

(12. 14) (co/) (Jfc) = (kz+ m2)1/2/(&) (m > 0)

where /(&) is the Fourier transform of /G*0- The operators U(/),
V(gO are defined on the Fock space HFCfiT) by

(12. 15)

(12.16)

where D is the domain of «1/2. Given AdR3 we define
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(12. 17) KQ= {f^K: support /cJ}

(12.18) K,= {^

(12.19) K2={c*-Il2

Then R(J)=J?(JfiT1, K2/K). The operator 0 for this case is

where P is the orthogonal projection on KQ, and Px is the orthogonal

projection on KI. Thus R(J) is determined by the spectral properties
of the operator

(12. 20) a = fy = P! (o>1/2P«T1/2 - 1) (oT1/2Pa>1/2 - 1) P1 .

While we have not been able to determine the spectrum of <z, it seems

a reasonable conjecture that RGf)~~ R^ for any J=£$, P3.

We now consider the factors defined by some representations of
the canonical anticomrnutation relations (CAR's) analogous to the
representations of the CCR's defined by Eqs. (12.5), (12.6). We
follow the notation of [5] . Let K be a real Hilbert space and let

Hjw(jK") be the complex Hilbert space on which the no-particle
representation of the CAR's over K is defined. Let p be a self-

adjoint operator on K satisfying 0<Ip<^l. We consider the repre-
sentation of the CAR's defined by the equations

(12. 21) #=HJWOO® Hj

(12.22) ^P(/)-^JW([l-p]1/2/)®l

(Araki and Wyss [5], Shale and Stinespring [18]). The operator
algebra

(12.23) RA(P) = {•*•(/), ^(/)*: f^K}"

is a factor. If the spectrum of p is discrete and is given by

{An: ^eL}, then RA(P) can be constructed as an ITPFI factor

R(Af«, £„) where Mn is type I2 and SpCS./Af^U,, 1--O- It follows
that if A is an accumulation point for the eigenvalues An, then

^eicoC^Cp)) where ^ = ̂ (l-;)~1. DelFAntonio [7] and Rideau [15]
have shown that any RA(.p) is unitarily equivalent to some
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where pd has a discrete spectrum only. In the construction of [7], pd

satisfies the condition that the operator

is Hilbert-Schmidt. It follows that if p has a continuous spectrum the

factor RA(P) is the factor Roo.

The representation of the CAR's describing a nonrelativistic

infinite free Fermi gas at a finite density and finite temperature is of

the form ^P(/) where the operator p has a continuous spectrum (see

Sec. 12 of [5]). Thus the von Neumann algebra R^(p) in this case

is again the factor R^.

Acknowledgement

Part of this work was carried out during the first named author's

visit to the University of Maryland. The first named author would

like to thank the members of the Department of Physics and

Astronomy for their warm hospitality.

References

[ 1 ] Araki, H., A lattice of von Neumann algebras associated with the quantum
theory of a free Bose field, J. Math. Phys. 4 (1963), 1343-1362.

[ 2 ] Araki, H. and E. J. Woods, Complete Boolean algebras of type I factors, Publ.
RIMS, Kyoto Univ. Ser. A, 2 (1966), 157-242.

[ 3 ] Araki, H., Type of von Neumann algebra associated with free field, Progr.
Theoret. Phys. 32 (1964), 956-965.

[ 4 ] Araki, H. and E. J. Woods, Representations of the canonical commutation
relations describing a nonrelativistic infinite free Bose gas, J. Math. Phys. 4
(1963), 637-662.

[ 5 ] Araki, H. and W. Wyss. Representations of canonical anticommutation relations,
Helv. Phys. Acta, 37 (1964), 136-159.

[ 6 ] Bures, D., Certain factors constructed as infinite tensor products, Comp. Math.
15 (1963), 169-191.

[ 7 ] dell' Antonio, G. F., Structure of the algebras of some free systems, Preprint.
[ 8 ] Dixmier, J., Les algebres d'operateurs dans 1'espace hilbertien, Gauthier-Villars,

Paris, 1957.
[ 9 ] Loeve, M., Probability theory, Van Nostrand, New York, 1957.
[10] Moore, C. C., Invariant measures on product spaces. Proceedings of the Fifth

Berkeley Symposium on Mathematical Statistics and Probability, vol. II, part 2
(447-459), University of California, Berkeley, 1967.



130 Huzihiro Araki and E. J. Woods

[11] Murray, FJ. and J. von Neumann, On rings of operators I, Ann. of Math. 37
(1936), 116-229.

[12] von Neumann, J., On infinite direct products. Comp. Math. 6 (1938), 1-77.
[13] Powers, R. T., Representations of uniformly hyperfinite algebras and their

associated von Neumann rings, Ann. of Math. 86 (1967), 138-171.
[14] Pukanszky, L., Some examples of factors, Publ. Math. Debrecen, 4 (1955-56),

135-156.
[15] Rideau, G., On some representations of the anticommutation relations, Preprint.
[16] Sakai, S., On topological properties of FT*-algebras, Proc. Japan Acad. 33 (1957),

439-444.
[17] Schwartz, J., Two finite, non-hyperfinite, non-isomorphic factors, Comm. Pure

Appl. Math. 16 (1963), 19-26.
[18] Shale, D. and W. F. Stinespring, States of the Clifford algebra, Ann. of Math.

80 (1964), 365-381.
[19] Tomita, M., Quasistandard von Neumann algebras, Preprint.


