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A Classification of Factors

By
Huzihiro Araxi and E. J. Woobps*!

Abstract

A classification of factors is given. For every factor M we define an
algebraic invariant r..(M), called the asymptotic ratio set, which is a subset of
the nonnegative real numbers. For factors which are tensor products of type
I factors, the set ro(M) must be one of the following sets: (i) the empty set.
(ii) {0}. GGii) {1}, (iv) a one-parameter family of sets {0, x"; »=0, =1,---},
0<<x<, (v) all nonnegative reals, (vi) {0,1}. Case (i), (ii), (iii) occurs if and
only if M is finite type I, ., hyperfinite type II:, respectively. Case (iv) con-
tains one and only one isomorphic class for each x, and they are type III.
The examples treated by Powers belong to case (iv). Case (v) contains only
one isomorphic class and it is type III. Thus we have a complete classification
of factors M which are tensor products of type I factors, ro(M)+*= {0,1}. Case
(vi) contains I.Qhyperfinite II; and also nondenumerably many type IIL
isomorphic classes.

Using the factors in the cases (ii), (iii), (iv) we define another algebraic
invariant p(M) which is able to distinguish nondenumerably many classes in
case (vi).

1. Introduction

In the Murray-von Neumann classification of factors (Murray and
von Neumann [11]) both the type II, and type III classes are known
to contain nonisomorphic factors. In this paper we give a further
isomorphic classification of factors on separable Hilbert spaces. This
classification is based on a detailed study of factors constructed as
infinite tensor products of factors of finite type I (hereafter referred
to as ITPFI factors). Examples of ITPFI factors were first given by
von Neumann [12]. Several authors (von Neumann [12], Pukanszky
[14], Bures [6], Araki [1], Moore [10]) have determined the type of
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some of these factors in the Murray-von Neumann classification.
Recently, Powers [13] has shown that these examples contain a one-
parameter family of mutually nonisomorphic type III factors.

Sec. 2 contains some definitions and elementary lemmas concerning
ITPFI factors. In Sec: 3 we define the asymptotic ratio set r.(M)C
[0, oo) for ITPFI factors M=QM, in terms of ratios of eigenvalues
A,; of density matrix states w, on the component factors M,. We
show that r.(M) must be one of the following standard sets

So= {0}

S;= {1}

S.={0,x"; n=0, +1, +£2,---}, 0<<x<1
Su= {0, 1}

S.=10, o).

We give some elementary properties of r..(M), and discuss the one-
parameter family of examples R,, 0<x<(1 given by von Neumann
[12]. Sec. 4 consists of a basic technical lemma. In Sec. 5 we prove
that xer.(QM,) if and only if QM,~R.QRQ(QRM, and thus that
r.(®M,) is an algebraic invariant. Our method of proving that two
factors are nonisomorphic is based entirely on the strong operator
topology, in contrast to that of Powers [13] which uses C*-algebra
techniques. In Sec. 6 we use this result to define r..(M ) for arbitrary
M by x=r.(M) if and only M~MQQR,, 0<x<1 (if xr.(M), x+0
we include x*<r.(M) also). We give some elementary properties
of r.(M), including its relation to the Murray-von Neumann classifica-
tion.

The remainder of the paper is devoted to a study of ITPFI
factors. In Sec. 7 we prove that the class S.. contains one and only
one isomorphic class and it is type III. Sec. 8 contains a number of
technical lemmas which are needed for the classification of ITPFI
factors belonging to the classes S,, 0<x<{1. In Sec. 9 we prove
that r.(M) =S, if and only if M~R,, 0<x<1. The factors R, are
type III if O0<<x<<1l, and they are the factors discussed by Powers
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[13]. Thus, except for the class S,;, we give a complete classifica-
tion of factors which are temsor products of type I factors. We also
give some useful criteria for calculating r.(M) from the eigenvalue
lists {A&;; 7=1,-m, v=1,2,---}. In particular a sufficient condition
that r.(®M,) #S,, is that there exist subsequences v(m), j,(m), j.(m)
such that Am.;,m—4%#0, =1,2 and A,/2#1. In Sec. 10 we study
factors M= M, belonging to the class S,; where M, is type I, for
all . M 1is then either I.QX hyperfinite II; or type III. We con-
struct a nondenumerable family of mutually nonisomorphic factors
belonging to the class Sy;. In Sec. 11 we define another algebraic
invariant p(M) by x€p(M) if and only if MQRR.~R,, 0<x<1l. We
construct factors in the class S,; which give a nondenumerable variety
of p(M). In Sec. 12 we apply our results to determine the isomorphic
class of some factors which have been studied previously in the
literature. In particular we show that certain ITPFI factors which
occur in the quantum theories of infinite free Bose and Fermi systems
at a finite density and finite temperature, belong to the class S...

We shall use the following notation. If H is a Hilbert space,
then B(H) denotes the set of all bounded linear operators on H, and
1 denotes the set of all multiples of the identity operator. All Hilbert
spaces are separable. I. denotes the set of all positive integers
{1, 2, ---}. We shall also use I, to denote a factor of type /., but
this should not lead to any confusion. We assume that the reader is
familiar with the standard notation and terminology for von Neumann
algebras (Dixmier [8]). If the von Neumann algebras 2l and 8 are

algebraically isomorphic (unitarily equivalent) we write A~ (A~B).

2. ITPFI Factors

This section contains some basic definitions and elementary lemmas
concerning ITPFI factors. We discuss the notion of the eigenvalue list
of a vector relative to a type I factor, and some related topics. We
give a sufficient condition on the eigenvalue lists of the reference
vectors for two ITPFI factors to be unitarily equivalent. We state
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some known results concerning the type of ITPFI factors in the
Murray-von Neumann classification.

A family of matrix units on a Hilbert space H is a set of partial
isometries e, ¢, j=1,:--# (n may be infinite) satisfying e}=e;;,
€6, =10;6;,, and il e;=1. Any type I, factor contains and is spanned
by such a famib; of matrix units.

Let H be a Hilbert space, MC $B(H) a type I factor. Then we
can write H=H,QH, and M=%FB(H,)Q1. If 9 is a vector in H then

it defines a normal state on B(H,) by
2.1) 2(4)=(2, AR192).

Hence there exists a nonnegative trace class operator p,€%(H,) such
that Q(A)=Trp,A. Let p,=>4P; be a spectral decomposition of
oo where each P; is one-dimensional, 4,>>0 and > 4=[@[>. If 2 is a

unit vector then p, is a density matrix, that is Tr p,=1.

Definition 2.1. Let 2€H,QRQH,, M=3B(H,)®X1. By the eigen-
value list of 2 relative to a type I factor M we mean the list (A, &)
of eigenvalues of the operator p, in M defined by

2.2) Tr p, A= (2, AR12)

ordered so that 4,>>1,>>--->>0. We denote it by Sp(2/M), or Sp#
if M is understood.

If some 1 has multiplicity m then it occurs s times in Sp(2/M ).
It should be noted that Sp(2/M) and Sp(Q/M’) are identical except
that the zero eigenvalue can have different multiplicity.

Definition 2.2. Given H=H,QH,, M=3B(H,)RX1, 2 H. By a
standard diagonal expansion of 2 relative to M we mean a choice of
complete orthogonal bases ri;:, yr; for H,, H, respectively such that

(2.3) 2="21"r: Qfrs;

where A;,>>2>>-->>0, ¥+’s in one of {yr;;} and {Yr,} are all normalized,
Jr’s in the other are normalized or 0, and 4, =0 if ry; Or Yr,;=0.
It is known that a standard diagonal expansion exists (see, e.g.
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definition 2.1 of [2]). Note that the list of non-zero A; is identical
with the non-zero part of Sp(2/M).

Definition 2.3. Given H=H,QH,, M=$(H,)X1, 2=H. By a
standard set of matrix units for M, M’ relative to £ we mean
operators #;;, v;; defined by

2.4 %71 QYrar = 85dr1, Qe
(2.5) Vi1 Qrar = 8;0dr 14 Qe

where +ry;, Yr; is a choice of orthonormal bases for H,, H, respectively
for a standard diagonal expansion of £ relative to M. If ;=0 for
some 7, we define #;; and u; for such ¢ and any 7 to be 0. If yn,=
0 for some 7, we define v;; and v;, for such 7 and any j to be 0. We
identify Sp(2/M) with the set of A, for which ;%0 and Sp(2/M")
with the set of A; for which ;%0 in (2. 3).

We now give a precise definition of an ITPFI factor. Let

H- ® (H,, 2)

be the incomplete tensor product space (ITPS) of the Hilbert spaces
H, which contains the product vector 2=8,, 2, H,, 0<I1|8,]<co.
In this paper the index set A is always countable. If 2 and A are
understoocd we just write H=QH,. We assume the reader is familiar
with the standard properties of infinite tensor products (von Neumann
i12]). We note that @x, belongs to the same ITPS as &®£, if and
only if ®x, is in the strong equivalence class of &X®,, that is

(2.6) 22— <oo.

vEA
This is equivalent to
2!1_<Xv; Qv>[<°° and ZI]_-——”XVHI<OO
In both cases, 0<<II1|[2,]|<Ceo is assumed.

Definition 2.4. We define a canonical mapping = from $(H,) to
B(H) by z5=(R1,)&XS where S=B(H,) and 1, is the identity
rFV
operator on H,. If ACB(H,) we define = A= {=S: S=}.
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Definition 2.5. Given an ITPS H= QZ/)l (H,, 2,) and von Neumann
algebras A, C B(H,) we define

XUA,= {7A,,; vEA}”.

If the U, are factors, then XA, is a factor. In the following we will
be concerned with factors @M, where M, is type I. We shall denote
these factors by R(H,, M,, 2,; v€A) or R(H,, M,, 2,) or R(M,, 2,).
Unless the contrary is stated explicitly, M, is type Z,,, 2<#n,<lco, and A
is infinite. If JC A we write H(J) :,,@H”’ M) =V@My, 2(]) zg)jg,,.
If 2, and +», are in the same strong equivalence class, then &, is
in Q(H,, 2,) and hence R(H,, M,, 2,)=R(H,, M,,,). We shall

use this repeatedly.

Definition 2.6. Any factor M which is unitarily equivalent to
some R(H,, M,, 2,; v€A) as given above where M, is a type I,,
factor, 2<m,<Too and A is infinite is called an ITPFI factor.

We recall that a von Neumann algebra M is called hyperfinite if
it is generated by an increasing sequence M,C M,C--- of finite type
I factors, i.e.,

M= M, M,, ---}".

An ITPFI factor is clearly a hyperfinite factor. It is known that all
hyperfinite factors of type II, are isomorphic (Dixmier [8], theorem
III. 7.1). Since an ITPFI factor is not finite type I, it must either
be infinite or (isomorphic to) the unique hyperfinite II, factor. We
shall have several occasions to make use of this remark.

Lemma 2.7. Let v H=Q(H,, 2,). Given ¢>0, there exists a
vEA
finite JC A and ;€ H(J) such that

2.7 =@ (B2 || <e.

Proof. Araki and Woods [2], lemma 3. 1.

Lemma 2.8. A countable tensor product of ITPFI factors is an
ITPFI factor.
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Proof. Let M,=R(H.,, M,,, 2..; v€A.), nEA be ITPFI factors.
Let H,=Q® (H,, £.,). Let 0,=X28,,, and

vEA,

H=® (H,,0)
M= @1 M,.
Choose ¢,>0, Sle,<lco. By lemma 2.5 there is a finite J,C A4, and
Y. H(J,) such that
(2 8) ”mu_\l"p‘®< ® guv) ”<5u-

e
vETy

Thus @ [.R( & 2.,)] is in the strong equivalence class of ®0,.

reEAd velpy

It follows from the associative law for tensor products that H is
(unitarily equivalent to) the ITPS

2.9 {®A<H<]/-c): Y)} & {®A @ic(Hw, 2.)} .
Thus M is an ITPFI factor. Q.E.D.

Corollary 2.9. The factor R(H,, M,, 2,) where M, can be type
/. is an ITFFI factor.

Proof. Consider each type I. factor M, as an ITPFI factor and
apply lemma 2. 8. Q.E.D.

Lemma 2.10. Given H=H,QH, M=%(H,)®1. Then M has
both cyclic vectors and separating vectors if and only if dim A,=dim H,.
If dim H;=dim H,<co, let 2 H have the standard diagonal expansion
2=121"Y1;Qr;. Then the following three conditions are equivalent.

(i) £ is cyclic for M

(ii) @ is separating for (M)

(iii) no 4,=0.

Proof. Assume dim H,>dim H,. Since M is spanned by (dim H,)?
linearly independent elements, we have dim M@ <(dim H,)*<<dim H
and £ cannot be cyclic for M. Similarly, dim H,>dim H, implies £
cannot be cyclic for M’ and thus £ is not separating for M. Thus
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the existence of both cyclic vectors and separating vectors for M
implies that dim H;=dim H,.

If dim H,=dim H,, then we may label complete orthonormal bases
{4r;} and {Yn;} of H, and H, respectively by the same index Z, and
Eq. (2.3) with 2,>0, >4, <{oo gives the cyclic and separating
vector.

In the remainder of the proof we assume that dim H;=dim H,<leo.
If some A;=0 then H,Q+r; is orthogonal to M2 and £ is not cyclic
for M, hence (i)—>(iii). Similarly, if some 1;=0 then ;QH, is
orthogonal to M’Q and 2 is not cyclic for M’. It follows that 2 is
not separating for M, and hence (ii)—(iii). If no A;=0, let %;; be a
standard set of matrix units for M relative to the given standard
diagonal expansion of 2. Then #;2=21"r;Qr;. Since the standard
diagonal expansion of £ must contain a complete basis for at least
one of H,, H,, and we have dim H,=dim H,<lco, it follows that Mg
contains a basis for H. Thus (iii)—(i). By a similar argument 2
is cyclic for M’, hence separating for M and (iii)— (ii). Q.E.D.

It should be noted that if dim H,=dim H,=co, then the condition
that 2 is cyclic for M is not equivalent to the condition that 2 is
separating for M. To see this, let =11, ;Qyr; where 2,0 and
Jry; is a complete basis for H,;, but the summation does not run
over a complete basis for H,. Then 2 is separating but not cyclic
for M.

Corollary 2.11. Given H=H,QH,, dim H,=dim H,, M= $B(H,)
1. The set of all cyclic and separating unit vectors for M is dense
in the set of all unit vectors.

N
Proof. Given >0, = H, [y =1. Let =3 2 ;Qyr; be a
i=1
standard diagonal expansion of «» where N=dim H,. Choose #<loo,
N n
n<_N so that > 4<le, and let /=3 2, Rurs;. Then [[r—[|2<e.
i=n+l i=1

Now choose orthonormal bases @,;,i=1,2, --- for H,, k=1,2 such that

N
Ou=ry, t=1,--m. Let ’'=3)10,,Q0,;, then |['—"|[*e. Let
i=1
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N
2= /»63/2@1{@ 0y;
1=1
where
i = (/L' + 5.‘) (1 + 5>—1,

e,>0, Sk, =e. Then [|2]=1 and by the same argument used in the
proof of lemma 2.10 £ is cyclic and separating for M. We have
[@—"|[P=2(p*—2%)?<<2. Thus [[2—]|—=0 as 0. Q.E.D.

Let RcB(H) be a von Neumann algebra. Let P=FEE’ where
E, E’ are projections in R, R’ respectively. Then

(2.10) R,= {PAP; A€R;

is a von Neumann algebra on PH. In particular if R is a factor, Ry
is isomorphic to K. Thus by using projections in this way, one can
either shrink or enlarge R’ without changing the isomorphic class of

R.

Lemma 2.12. Given R(K,, N,, ) there exists R(H,, M,, 2,) ~
R(K,, N,, ¢»,) such that £, is cyclic and separating for M,.

Proof. Write K,=K,,QK,, where N,=3B(K,)RX1. Let n=
dim K,,, J.={v: dim K,,>n,}, and J_= {v: dim K,,<n,}.

If ve], let =24, Qy%; be a standard diagonal expansion
of 4, relative to N,. It follows that there is a projection P,eN.
such that P, =+, and dim P,K,=n}. Define H,=P,K,, M,=(N,),,
and w,=+r,. Since P, .= le'Ij(nP,,) is a projection in R(K,, N,,y; vE],)’
it follows that R(K,,,”N:,, Y3 ve]J,) and R(H,, M,, »,; vE],) are
isomorphic.

If v&J_, imbed K,, as a subspace of an #,-dimensional space H,,.
Define H,=K,.QH,,,M,=B(K,)Q®1, w,=+, (imbedded in H,). Let
P, be the projection onto K,;QK,,. Then P_=Ti(xP,) is a projec-
tion in R(H,, M,, w,; v J_)" and it follows that VICQJ(_H,,, M,, v,; ve]J2)
is isomorphic to R(K,, N,r,; vE J.). For v J, U J_ define H,=K,,
M,=N,, o,=,.

Thus we have R(H,, M,, w,; v€J) isomorphic to R(K,, N,, J;
ve]) where H,=H,QH, M,=B(H.)X1, |ol]=|vl, dimH,=



60 Huzihiro Araki and E. J. Woods

dim H,, for all v J. It follows from corollary 2.11 that we can
choose vectors 2, H, which are cyclic and separating for M, such
that [w,—2,]<<2”. Hence ®2, and ®w, are in the same strong
equivalence class (see Eq. (2.6)) and R(H,, M,, w,)=R(H,, M,, 2,).
Q.E.D.

Given H,=H,QH,,, M,=3B(H,)X1, let 2,,, 2,, be unit vectors
in H,. If there exist unitary operators U,= U, QU,, such that U,2,
is in the strong equivalence class of 2,, then UR(M,, 2,) U=
R(M,, 2,.) where U=QU, (note that QU, is not considered as an
operator on the ITPS ®(H,, £..), but as an operator from @ (H,, 2,;)
to Q(H,, 2,.)). The following lemma states this condition in terms

of the eigenvalue lists.

Lemma 2.13. Given H,=H,QH,, M,=B(H,)®1 and unit
vectors 2,1, 2,.€ H,. Let Sp(2,.,/M,)= {1}, i=1,2. If

@11 S-S0 = 5 DR )<

then R(M,, 2,;) and R(M,, 2,.) are unitarily equivalent.

Proof. Let %! and % be orthogonal vectors corresponding to

Al; in a standard diagonal expansion of 2, i=1,2. It is evidently

possible to choose ’s so that % and «%} are normalized or 0

simultaneously. We also supply, if necessary, additional indices so
that %! are complete. Define unitary operators

UVk 1’3: Z?; k:l’ 2

Uv: Uv1® UVZ-

Then U,9,; is in the strong equivalence class of 2,, if

00>3,|1— (20, U2) | =35, 11— 35,502
Q.E.D.
The following lemma gives some known results which we shall

have occasion to use

Lemma 2.14. Given M=R(M,, 2,) where M, is type I,,
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2<n,<oo, and Sp(R,/M,) = {4,;,1=1,2, ---n,}
1) M is type I if and only if

(2.12) Wil 2| <<eo
2) M is type II, if and only if n,<lco for all v and

(2.13) S ()i ()] <o

3) If 2,,>>6 for some >0 for all v, then M is type III if and
only if

(214 >3 ainf {] (21/2:) — 117, C} =00

for some (and hence all) positive C.

Proof. For the type I conditions, see Araki [1] and Bures [6].
For the type Ii; and III conditions, see Pukanszky [14], Bures [6],
and Moore [10]. Q.E.D.

The type I and II, conditions also follow from our results (see
definition 8.2, lemmas 8.14, 8.15, 8.16 and theorem 9.1).

3. Asymptotic Ratio Set for ITPFI Factors

In this section we define the asymptotic ratio set for ITPFI factors
and give some of its properties.

Consider R(H,, M,, 2,; vA), and a finite subset ICA. Let
Sp(2,/M,))={2;}, then any 2€Sp(Q(I)/M(I)) is of the form
/Izvlgl/l,,,,,(,,) for some function &2(v).

Definition 3.1. Given R(H,, M,, 2,; v€A) and a finite ICA,
for any KCSp(Q(I)/M(I)) we define

CY) A(K) =2hexl

Definition 3.2. The asymptotic ratio set of M=R(M,, 2,),
denoted by r.(M, 2), is the set of all x=[0, o] such that there
exists a sequence of mutually disjoint finite index sets I,CA, nel.,
mutually disjoint subsets K., K2 of Sp(2(l,)/M(l,)) for each =
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such that 1K} implies 1#0, and a bijection ¢, from K, to K:

satisfying

(3.2) SLA(K ) =oceo

and

3.3) lim max |x—¢,4/4] =0.

n>c0  ASK}

Such a sequence ([,, Ki, ¢,) is called an x-sequence (K, and K:
are to be regarded disjoint even if they contain the same eigenvalue
as long as the total number does not exceed .the multiplicity of the
eigenvalue).

As defined here, r.(M, 2) could depend on the tensor product
factorization M=QM, as well as on 2. However, it will be shown
that r.(M, 2) is an algebraic invariant of M (Theorem 5.9) and
therefore depends neither on the vector £ nor on the factorization.
Since we do not need to indicate explicitly the possible dependence on
the factorization in the following, we shall not do so.

It should be noted that in definition 3.2, 2, need not be a unit

vector. Let Sp(2,/M,) = (A1, *** Aum,). Then %szllﬂu![2¢1 in general.
However it follows from 0<<II|[2,]|><<cc that ;V‘L/I,,,.—>1 sufficiently fast
i=1
that
Zu,l_ilwl<m.
i=1

Lemma 3.3. Given ¢,>0 and x<r.(M, ) there exists an x-
sequence (I, Ki, ¢.) satisfying
3.4) [1—2(K3) —2(K3) | <<ew-

Proof. Without loss of generality, we can assume lime,=0. Let
(J., Li, 4,) be an x-sequence. Let

Q.=lle(J)|>

Since

(3.5) 0<IIQ,<<oo
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we have

11—, <<oo
and Eq. (3.2) gives

>1-Q,+a(Ly) | =co.
Thus

(3.6) I [Q,—a(L)]=0
n>N
for arbitrary N. It follows from Egs. (3.5), (3.6) that we can

inductively chocse mutually disjoint finite index sets A,, m&l. such
that

3.7 ]1—"ng,,]<5,,,/2
and
(3.8) AL [Q.—2(LD)] <<ew/2.

Define Im:g],,. For each 1€Sp&(l,,) we have lzlax(n) where

A(n)eSp(J,). Define n(1) as the smallest ne J, such that
A(n)eL,JL: if such n exists, otherwise define #(1) =co. Define

K,={2€Sp2l,): n(d)#oo, 2(n(2)) €EL;, 2(n) #0 for nxn(a)}.

For 2€ K3, define
2(n) if n=n(2), neAi,
1) () =

Yrad (D)) if n=n(2).
Using Eq. (3.3) we have

lim max | x— ¢nd/1]

1
m->oo )\EKm

=lim max max |x—r,A(%)/A(n) | =0

m>c0 nEA, Ma)EL)

thus

(3.9) lim max | x—¢.4/1] =0.

1
m->c0  AEK,

If 2€Sp2(1,) then 1 KLUK?Z only if =0 or 2(n)e& L, JL: for all
neA,. It follows that
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Oéan—l(Ki,)—/l(Ki)

(3.10) — I [Q.— (L) —2(LD)]

<T1[Qu— (L] <en/2
where we used Eq. (3.8). It follows from Egs. (3.10), (3.7) that
Eq. (3.4) is satisfied. It follows from Eq. (3.9) that

lim A(K})/A(K ;) =x.
Since lime,=0, Eq. (3.10) then implies that limA(K;)=1+x)™"
Thus SA(KL) =oc0 and (I, K., ¢.) is an x-sequence. Q.E.D.

Corollary 3.4. If x<r.(M, 2) there exists an x-sequence
(I., K, ¢.) satisfying

(3.11) lirg WKL) =A+x2)™
(3.12) lirg W(KD=x/1+x)

=(A+xD if x70.

Lemma 3.5. Given R(H,, M,, 2,), Sp(2,/M,)={A;}. If there
are subsequences v(m), j;(m), j.,(m) such that A,m. ;,om—4:7#0 and
Ayimy, jamy—> Az then lg/ﬁlerm (M, .Q).

Proof. Let I,,,I {V(m)}, K;,.Z {l,,(m),j,-(m)}, i=1, 2 and Dndyimy, jromy =
Ayemy, nomye  Clearly (I, Ki, ¢..) is a (1/4,)-sequence. Q.E.D.

Lemma 3.6. r.(M, 2)— {0} is a multiplicative subgroup of
(0, o°).

Proof. Let x=r.(M, 2)— {0}. Choose an x-sequence ([,, K:, K2,
é,) as in Corollary 3.4. Then (I,, K2, K., ¢3}) is an x *-sequence.

Let %, yer..(M, 2) — {0}. Choose x and y-sequences ([,, K, ¢i)
and (I3}, K}, ¢7) as in Corollary 3.4. Choose subsequences p,, ¢,, #E
I. such that I; and I3, are mutually disjoint. Define I,=1,, U1,
Ki=(a:h K3, ,EKT}, g—gis. Then

n?

(3.13) lim max|xy—¢,4/1| =0.

n>c0 AEK}



A classification of factors 65

Also
(3.14) LIma(Ky)=0+2)7A+y™
thus SIA(K:)=oo, and (I,, Ki, ¢,) is an xy-sequence. Q.E.D.

Lemma 3.7. r.(M, 2) is closed.

Proof. Let x,er.(M, 2), x=1im x,. Without loss of generality
we can assume x,<<3y for some y<Too and all p. It then follows from
Corollary 3.4 that there exist x,sequences ([, K¥, ¢2) such that

(3.15) A(K£1)>%(1+ $)1=0

for all p, n. For each p&l. choose #, inductively such that 7%, is
disjoint from I, for g<{p, and such that

(3.16) lim maiflxﬁ—ﬁ,,/l//ll =0.

p>co )\EKflﬁ

It follows from Eq. (3.15) that il(Kﬁ,,)ZOO, hence (Z%,, K%, ¢2,;
=1
pel.) is an x-sequence. Q.E.D.

Lemma 3.8. Given R(M,, 2,) where M, is type I,, and
Sp(2,/M,)={4;, 7=1,--n}. If S11—2,]<oo then r.(M, Q)= {0}.
If 33!11—2,.| =cc then le€r.(M, ).

Proof. We have 0<II[l0)<oo and thus > 4,=[@)=1+0,
where >1|0,/<eo. By lemma 3.14 (which depends J;lly on definition
3.2) r.(M) is unaffected by the change 4,;,—,;/||2,]. Since the con-
dition >}|1—4,,|<Too is also unaffected by this change, we can assume
>4;=1 for all y.

If >|1—4,|<<eo then 2,,—1, hence 2,—0 and Ocr.(M, 2) by
Lemma 3. 5. Let [,, Ki,¢, be an zxsequence for (M, 2).
Since 4,;#0 and >){1—2a,]|<co we have II1,>0. Let A(F)zylé’lff,,l,
then II,2%°>0 which implies that >,(1—i™)<co and thus
SA(KL)=occ if and only if A=K}, for infinitely many m. Since
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I1,.29°>0 implies that A{”—1, it follows that x=0, hence r..(M, 2) = {0}.
The second part of the lemma is more difficult, and we consider
separately three different cases for {4,}. Case (i), 4. has an
accumulation point 2,>>0. Let A,4.—4 as k—co. Then 1,4, must
have an accumulation point A,>>2, and A/i,€r.(M, 2) by lemma 3. 5.
It then follows from lemma 3.6 that 1<r..(M, 2).
Case (ii), 4,—0, 2,,—1, >A,=o0. We can remove all v with

2:=0 and then reorder the remaining ones so that we have
3.17) g == lgp > >0

which implies that

(3.18) Do,z =00,

For anye>0 let

(3.19) Ie= {v: Qoyi1,2/20n s >1—c¢}.

It follows from Eq. (3.17), (3.19) and the ratio test that

(3.20) >3 Agy,z<Too,

vEle

Thus we can inductively choose mutually disjont finite sets J,, n€ L.
such that

(3.21) Zj Aoy, 2>1
and
(3 22) I 1 _lzu+1,2/22v,2l <5n

for all v /,, where ¢,—0. In this way we obtain a subsequence »(J)
such that

(3.23) 2 oy, e =00
and
(3.24) lim Zaviiys1,e/ Reviiy,e =1

Let I;={2v(7), 2v(J) +1}, Ki= {lam.2devirsrs}» Ki= {deviiy 1deviysr,2) and
¢; the unique bijection from K; to K2. Since A,—1 it follows that
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SW(K})=co and (I;, K}, ¢;) is a 1-sequence, and 1<r..(M, 2).
Case (iii), 2,,—0 and either > 4,<Coo or 2,; has an accumulation
point A,#1. It follows in either case that

(3.25) b _z:;/zﬁ oo,
Let
i/ Ao e 1 2,170
(3.26) xv,,=( s o
0 i 2y pa—0
(3.27) P,=31(11 x,)
=3 k=3
(3.28) A= 2,= 1P, .
i3

If >4.<Too it follows from Egs. (3.25) and (3.28) that for all N<Teo
we have

(3. 29) S A4,=00,

Py,>N

If 2,, has an accumulation point 2;#1 then there is a subsequence
v(j) such that A, :—4:, and hence A,,—1—2;, and Eq. (3.29) holds.
It follows from

(3.30) ST (l—e)m=et, 0<<e<1
m=0

that

(3.31) ST (I 2 <6

x,,<1-€ k=3

for a fixed v. Hence

(3.32) > (x)>5P,

xngl—ZP;l k=3

which implies that for each v there are disjoint pairs (A, Avs:1) Such
that

(3. 33) Zy,;ﬁ.:l/lylk z 1 - 2P,,—1

and

(3.34) S L P =14,
7 4 4
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Let I,={} and let K., K. contain the first and second members
respectively of these disjoint pairs with ¢,4.=2% 1. It follows from
Egs. (3.29) and (3.34) that we can inductively choose mutually
disjoint finite subsets L, such that

(3.35) VEELA(KD>1

and ”

(3.36) 1=¢.2/i>1—-2/n if 2€K}, veL,

which implies that 1<r.(M, 2). Q.E.D.

Theorem 3.9. Let R(M,, 2,) be an ITPFI factor. Then
r.(M, 2) must be one of the following sets: S,, 0<x<1, S,;, S...

Proof. Thesets S,, 0<x<1, S,;, S. are consistent with lemmas
3.6 and 3.7. By lemma 3.8. r.(M, 2) is nonempty. If r.(M, 2)
is not one of the sets S,, S:, Sy: consider the set of all / such that
der.(M, 2)—{0}. By lemma 3.6 this set must be of the form
{nl, n=0, =1, ---} for some 0<T/<Too, or be dense. In the former
case we have r.(M, 2)=S,, x=¢’. If the latter case holds then
r.(M, 2)=[0,00)=S.. by lemma 3.7. Q.E.D.

We now discuss some standard cases which have received some
attention in the literature (von Neumann [12], Powers [13]). The
following definition introduces our notation for these examples.

Definition 3.10. Let M=R(H,, M,, 2,) be an ITPFI factor
where dim H,=4, M, is type L, and Sp(2,/M,)= (A, ) independent
of v. We denote the factor M by R, where x=2/4;.

Clearly r.(R,)=S,. By lemma 2.14, R, is type I., R, is hyper-
finite II,, and R,, x#0, 1 is type III. Powers [13] has shown that
R, is nonisomorphic for different x. In the following we shall rederive
this result in a more general context.

We now give some elementary properties of tensor products of
ITPFI factors. More detailed results will be given later. Let A,, A
be disjoint index sets and let A=A, UA,. Consider the ITPFI factors
M.,=R(H,,M,, 2,; v€A,),i=1,2. Then M\QM,=R(H,,M,, 2,; v€A).
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Clearly x&r..(M;,, £) implies x=r..(M,QM,, £). Thus we obtain
Lemma 3.11. Given R(M,, 2,), R(N,, ¥r.). Then

r.(MQN, 2Q) Dr. (M, 2) Ut (N, ).
If either r.(M,2) or r.(N, ) is S., then

I (MRN, 2Q) =S...

Definition 3.12. Given 0<!/,, l,<lco. If [,/l, is rational, we
define (/,, l,) =I where [ is the largest number such that both /; and
I, are integer multiples of /.

Lemma 3.13. Given 0<<x,, x,<1, R(M,, 2,), R(N,, J,) and
r.(M, 2)=S.,, 1.(N,4)=S,,. Let x,=e™1, x,=¢"2 If I,/l, isirra-
tional then
(3.37) r.(M@N, 2Qy) =S...

If [,/1, is rational then
r.(MQN, 2Q) DS,

where x=e¢ ¢,

Proof. Follows from lemmas 3.6, 3.7, and 3. 11. Q.E.D.
The following lemma proves that we can always take 2, to be a

unit vector.

Lemma 3.14. Given R(M,, 2,). Let 2:=2,/|2,]|. Then K2~
XL, and r.(M, 2°) =r..(M, 2).

Proof. Since

(3.38) 0<<IT|[@,][<<oo
we have
(3.39) 11—, 2) ] =X11— 2] <<Too

and thus Q®2;~X®4&e,. Let Sp(Q,/M,)={l;}, then Sp(Q:/M,) = {a,;}
where

(3. 40) =i/ | 2%,

Let (I,, K, ¢,) be an x-sequence for R(M,, £,). The one-to-one map
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Ai—>a,; defines a sequence (I, K¢, ¢2). Eq. (3.38) gives
(3.41) lim If2)2=1

m->o00 y>m

and thus I1(K ) =oc implies that

(3.42) SWK ) =oo.
Egs. (3.40), (3.41) imply that
(3.43) Gt/ 1= dutt® 1

where p—u*, ¢.u—¢ip’. Thus (I, K¥, ¢2) is an x-sequence for
R(M,, £5). Since the argument is reversible, r.(M, 2)=r.(M, 2°).
Q.E.D.
Lemma 3.15. Given R(N,, «») there exists R(M,, 2,) ~R(N,,
Jr,) such that £, is cyclic and separating for M, and r.(M, 2)=
r..(N, ).
Proof. Construct M,, v, as in lemma 2.12. Since Sp(w,/M,) =

Sp(y~,/N,) we have r.(M, w)=r1.(N, ). Let Sp(w,/M,) = {2} and
let m, be the number of 2:,=0. If m,=0 let

(3.44) A =1.
If m,#0 let

1—e,)A; if 25,0
(3.45) xi,«:{( 2 1

€V/MV lf Z;;ZO
where
(3. 46) e,,:2“”mkin {2%; 250}

Now choose 2, as in lemma 2. 12 where Sp(@,/M,) = {1%}. Let
(I,, K7, ¢2) be an zx-sequence for R(M,, w,). The one-to-one map
2;—>1}; defines a sequence (I,, K2, ¢)). It follows from Eq. (3.46)
that

(3.47) lim II(1—e,)=1

m->c0 y>m

and thus >} A(K ;) =cc implies that
(3.48) STA(K ) =00,
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Since K implies #°#0 it follows from Egs. (3.44-47) that

(3.49) lim max|¢ru/p* —dut /1’| =0

n>oc0 plcKgl

where u*— 40, ¢ius—¢iyb. It follows that (I,, K'Y, ¢%) is an x-sequence

for R(M,, 2,). Conversely let (I,, KY, ¢}) be an x-sequence for

R(M,, 2,). Let K be theset of all ©*’=K?, n=1,2,--- which contain

2; as a factor where 15,=0. It follows from Egs. (3. 45-46) that
Sip<loo

wbekK

and thus we can remove all @K from K, n€l.. The above
argument can then be reversed and the sequence (I,, K&, ¢:) defined
by 25,—1% is an x-sequence for R(M,, w,). Q.E.D.

4. Basiec Technical Lemma

In this section we prove a basic technical lemma which is con-
cerned with the following situation. Let M be a type I, factor on a
Hilbert space H and let 2 be a vector in H. Let (4,---4,) be a
possible eigenvalue list, that is 2,>1,>--->>1,>>0. Let (u,---u,) be
another possible eigenvalue list. Suppose the list of products {4}
approximates in some suitable way the eigenvalue list Sp(@/M).
Then it should be possible to find a type I, factor M; such that
(M, 2) is in some sense approximated by (M, QM,, 0,K0,) where
Sp(0:/ M) = (A1, 4.

Definition 4.1. Let M be a factor on a Hilbert space H, N a
type I factor, NC M. We say that 0 = H factorizes N in M if
H=HQH,
H,=H,,QH,,
0=0,K0,, 0;= H,
N=N®1
N=8(H)HP1
M=N®M,.
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Lemma 4.2. Given 0<Ze<<C1, a Hilbert space H, a type I factor
McB(H), a unit vector 2€ H, (1,,--4,) satisfying 2,>4>--->1,>0
and >4;=1. Let K,,-- K, be disjoint subsets of Sp(2/M) such that
each K; contains % elements and 1<K, implies 1#0. Let @; be a
bijection from K; to K., j=2,---n. Let L:Sp(Q/M)—LJ"‘Kj. Let
¢’=min(e, 4;/4, for ,#0). If ”

4.1 m:azx 1}12}{}{[ A3/ 22— (g2 /DM <<
and
(4.2) A(L)<e

then the following situation holds. There exist projections P &M,
P'eM’, a type I, factor NC M, and a unit vector 0 =PP’H such
that

(4.3) |(1—PP")2|*<<ne
(4.4) [PP'2—0|<c.e

where ¢, depends only on #, @ factorizes N in M,» and Sp(6¢/N)
= {11,...1”}_

Proof. Let 2= 0!r«Qr. be a standard diagonal expansion of
2 (relative to M). We reindex the w,= UK, as follows. Order the
j=1

elements of K; by wy>w,>>wy, and let o,=¢;0,, j=2,--n.
Let #.s, vas be the standard matrix units for M, M’ associated with

this expansion. Define

n

(4.5) Pzgl é%ﬁ,ii'

If 1,=0 choose p so that A,#0, 1,,,=0, otherwise choose p=un. If
1<i<p then Eq. (4.1) implies that w;;#0 since by assumption
0,;#0. Hence v,;,/7#0 for ¢, ¢’/=1---p. Since {w;} is a subset of
Sp(2/M), w70 for i,i’=1---n. (See definition 2.3.) Define

p Kk
(4. 6) PIZE Evif.ii'

Then #;;.5, 4, ©=1,---m and v;;1y, i, ¢ =1,---p are matrix units for
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M., and M}jp respectively in PP’H. Define matrix units e%, v,
q=1,2 by

=211l p0 €l =231-1Vinir
4.7
6%2211':1 Ui, 15 e??zzil;l Vi i

One can easily verify that these four families of matrix units commute
and that they are irreducible on PP’H. Thus we obtain

4.8) PP'H=)(Ha ® H.)

where e% are matrix units for B(H,,)®1. Thus dim H, =n,
dim Hy,=p, dim H,;=dim H,=%. We have

(4 9) Pf),nQ::i1 éw}?\lﬁ,u@%.u

where r, ;€ H,QH,, g=1,2. Thus
" k
(4.10) 1Q—=PP)HeIP=w(L) +_=ZM1 j};l.wu.
For i>p Eq. (4.1) gives o;;<<(¢")*w;;<e'w,;; since ¢ <e<<1l. Since
p>1 and >lw,; <1 we get
(4.11) TA—=PPH9P<<e+ (n—1)e’ <e.

Now choose orthonormal bases %’ for H,, such that «r,;;=Vi'Q¥. 7
Define

(4.12) 0,= ix}%}‘@ i
k
(4.13) 0= gl(wu/ )PP QY
(4.14) 0,=0;/||0;].
We have

? k
| PP'o—0,R0;)= %3 (i — (Lw1/2)"%)?
Eq. (4.1) gives
(4.15) |0l — Loy /2) | <ol

hence
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(4.16) |PP'2—0,R 0,]*<< p()*<ne

Since ||@:]]*=>4=1, it follows from Egs. (4.13), (4.14) that

(4- 17) ”@1®q)2—@1®m;” = ”@2_0;” = [ 1-— {]é (a)li/ll)} 1/2[ .

Eq. (4.15) gives

”n

k ” k
(4.18) > le,-,-—zlz.-zgwu/h) | <<2ne’ <2me
i=1 j= 1= j=
where we used >lo;<{1, 3lw,;<1 and ¢ <{e<<1l. Since >11,=1 and
[1—> ;] <<e we get
(4.19) [1—>(0y/0) | <<(@n+1)e.
Egs. (4.16), (4.17), (4.19) now give

(4. 20) [PP'2—0,R 0,]<c.e
where
(4.21) C,=n""+2n+1

Q.E.D.

We remark that if the dimensions of M, M’ are consistent with
setting P=P’=1 in lemma 4. 2, then it is possible to choose P=P’'=1

in lemma 4.2. However we shall not make any use of this fact.

5. Algebraic Invariance of r.(M)

In this section we prove that r.(M, 2) given by definition 3.2
for ITPFI factors M=R(M,, 2,) is an algebraic invariant.

We note that given an ITPFI factor R(M,, 2,), by lemma 3. 14
we can assume [2,|=1. Unless stated explicitly to the contrary, we
shall always take [[2,]=1 in this section.

Lemma 5.1. Given M=R(WM,, 2,; v€A), xcr.(M, 2), x<1
and 0<<e<<1l. Then there is a finite subset IC A, projections P, P’ in
M(I), M(I)' respectively, a unit vector 0 =PP’H(I), and a type L
factor NC M(I)p such that
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(5.1 [(PP'—1)e(I)|<e
(5.2) 1PP'(I)—o|<e
(5.3) Sp(@/N)=(2,1-2)

where x=(1—2)/4, and @ factorizes N in M(I)ps'-

Proof. If x=0 choose &' =¢, ¢’=¢%. If x#0 choose ¢ =min(e, x),
e’=x"%/. By Lemma 3.3 there exists ([, K*, K*% ¢) such that

(5.4) Irlze}()flx—¢ﬂ/u!<s"
and
(5.5) [1—2(KY) —2(K* |<<e/cs

where ¢, is given by lemma 4.2. Eq. (5.4) implies that

(5.6) max | £* — (¢ue/p)'"*| <.
KEKL
The result now follows from lemma 4. 2. Q.E.D.

Lemma 5.2. Let M be a factor, P a projection in M. If M is
infinite then M~ M,®I.. If P is infinite then M~ M,.

Proof. Two projections E, FM are equivalent (with respect
to M), E~F, if thereis a partial isometry U €M such that U*U=E,
UU*=F (Murray and von Neumann [11]), which implies that
UM U*=M,. Thus if P is infinite then P~1 and M,~M. If M
is infinite, then for any P&M there exists a family of projections
P.eM, i=I. such that > P,=1, P,P;=0 for all ¢#j, and P,~P
for all 7. Let M,;={P.AP;; AcM}={U;B; B€M,} where U;cM,
Us=U;, U,;U,=6;U,, U,=P,. Then M=QM,; which is unitarily
equivalent to MyQL.. Q.E.D.

Definition 5.3. Given M=R(M,, 2,) where Sp(@,/M,) = {1,}.
We define
f<M: 'Q) = {lﬁ/lw’; lw"_’&o}-

Lemma 5.4. Given M=R(H,, M,, 2,; v€A), N=R(N,, o)
where all N, are type L. If (N, ) Cr.(M, 2) then M~MQN.
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Proof. We shall use lemma 5.1 to construct a projection PeM
such that M, is an ITPFI factor and M,~M,Q (RN )= where (QN)~
means the tensor product of N with itself infinitely many times. Let
Sp(Wra/No) = a, 1—22), Xo=(1—2)/2.<<1. By corollary 3. 4 there
exist x.sequences (a, 7)=(I%, K%, ¢7) for M=@M, such that
A(K)>1/3 for all (a,n). Let I(a, ) be a one-to-one map of the
pairs of positive integers (a, k) onto the positive integers. In the
order of increasing [(«, k) we inductively select a subsequence #(a, &),
a, kel such that 1%, oy N\I%. =¢ for all (&, k) with I(a/, B)<<
I(a, ). Now reorder the sequence k=1,2,---into a double sequence
k=10, 7)), i, jl. where [(i,j) was introduced above. Let M,
=§@1M(1?‘,~), .Qm:;gg(lf}) where I%=I%..:;,.- By construction
Yo Er. (ML), 2(I%); j=1.) for each @ and 7. Now choose e =0,
Slea;<<oo. For each (a,17), it follows from lemma 5.1 that there is
a set I, which is a finite union of the I%, j=I., projections
P.,eM(l,,), P.,eM(,), a unit vector 0, P,P.,H(I,) such that

(5.7) 20— Pas Pt < s
(5.8) 11— (0uss 20) | < e
where

(5.9) 80 =PuP 0/ || PPl Qi

Also there is a type I, factor Ny C (My) pyel;» Such that @,; factorizes
N,; in (Mai>Pa,-h'x.-, and Sp<@ai/Nai>:(Aa; 1-2). Thus (Mu)persi=
M:RQN,, where 0,,=0.,X0%,. Let P=1IP,, P’=11P,,. It follows
from Eq. (5.7) that P, P'#+0. Let K=A—I,. Since 0, is in the

P
strong equivalence class of £,; we have

Mepr=M(K ) Q(QMs:) porti)
G0~ MIEOR@MLBIG(D (N, 01}

By comstruction we have Q@ (N, 0X)~N for each 7 and hence
a=1

Ri(RuelNo) ~(QN)*~R;(RalNy)QN.  Since Mr~M, we have
M.~M.QN. If M is infinite, then by lemma 5.2 M~M,XI. and
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thus M~MQN. If M is hyperfinite II, then M, is also hyperfinite
II,, and M~M, hence M~MEN. Q.E.D.

Corollary 5.5. If x=r.(M, 2) then M~MRR,.

Lemma 5.6. Given 0<<x,, x.<1. Let x,=¢", x,=e¢"2 If
1,/1, is rational then

Rzl ® sz NRJ:
where x=e¢ "' and (I, l,) is given by definition 3.12.

Proof. By lemma 3.13 x<=r.(R,,Q R,,), hence by corollary 5.5
R.QR,,~(R,QR.)RPR,. Since i(R,QR.,)cS,, it follows from
lemma 5.4 that R.~R,Q(R, QR,,). Q.E.D.

The converse result to corollary 5.5 will be proved in lemma 5. 8.
For this purpose we need the following rather lengthy lemma.

Lemma 5.7. Given a finite type I factor M, a unit vector £,

%<zg1, ¢>0, and operators e, EM, f.EM’, len], ||f]<2. Let

s, )=, 1=2), x=24/2, exn=ef, fu=f1%. Suppose that either of
the following conditions hold:

G) =1, e<% and

(5.11) en]?>1—c¢
(5.12) llen|*<<e
(ii) 2#1 and
(5.13) len@(*>2—¢
(5.14) 271 2e;0— 171 f0]2<<e, (47)=(12) or (21)

and ¢ is sufficiently small that

(5.15) (1—0)2>x"2
and

A=21—e—91/8*
(5.16)

— (1—e) /2>%
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where
(5.17) 0= (18%)?(a—e) 121,

Then there exist disjoint subsets K*', K*CSp(2/M) and a bijection
¢ from K* to K* such that

(5.18) max | 22— (¢u/w)*?| << ae'®
nEKL

(5.19) u(KH>b
where @, b are positive constants depending only on A

Proof. Let H=H,X H, where M=PB(H,)®1. Then e¢;=¢;R1,
fu=1Q®f;. Let
‘Q:Z(Jyzgm®-92a

be a standard diagonal expansion of £, and let #.s, v.z be the
associated standard matrix units for M, M’ respectively.

We consider first the case A#1. Since #..Vss are a complete set
of orthogonal projections, Eq. (5.14) gives

(5.20) >3 aavaa (47 e — 27 1) 21
=33 (oe/2)"*(Lias 8:216) — (0a/2)™"* (Los, fii'g%c) |2

Interchanging (B, j) and («,7), taking the complex conjugate, and
using (218, 8;:210)*= (Q1a, &;;2:8) We get

(5- 21) ZI (Pa/&)lm(gm: éii!?w) - (06/@') 1”(,{323’ f;i92a> !2<€-

Egs. (5.20), (5.21) and the triangle inequality |[[x]+ [ y[>[x+ »|
give

(5.22) {2 (a/2) "+ (08/2) ™ |*] (R10,8:1218) — (os, F1:2ea) |} << 26
and thus

5.23)  S0oa/2) | (e, 6s0i) — (@, fis0u) [P <de.

Eq. (5.21) can be rewritten as

2 {(oa/ 201" — (08/2:) "%} (L1, ::218)

5. 24 )
( ) + (PB/&’) 1/2{@21“’ é:‘J“QlB) - (‘QZB; ,fiigza)} lz<€-
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Eqgs. 5. (5.23), (5.24) and the triangle inequality give
(5.25) >3 {(0a/2:) " — Coa/ AV} | (15 €:048) |7 << Oe.
Define

(5.26)  L={(a B): |1— (outi/0ake)"*| <<8, po#0, pa#0}.
Eq. (5.25) now gives

(5. 27) P PBI (.Qm, é21218) ]2<95/11/62-
(a,B)&EL

Since >ps| (L10s :12:0) |*=[[€:12][°, Egs. (5.27), (5.16) give
(5.28) ( %}Egﬂl (Qias €:12:8) |*> 4.

Let
L'={8: (a, B) €L for some a}.

For =L’ we define

(5.29) a(B)={a: (a, p) EL}.
Let
(5.30) L= {BEL,:EZ“(B! (Lia, €1818) |P2>>4/2}.

Using Egs. (5.28), (5.30) and >lps=1 we get
(5. 31) > > PBI (-Qlou é21-9113> [2>1/2A'

BeL!! a=a(B)

From [[é,[<2, 2| (Qiq, :12:8) |*=1/¢2:2:5*<<4 and Eq. (5.31) we

obtain

(5. 32) ZPBZi 2 ZaﬂB] (ﬂm, é21-QlB) ’2>A .
BeL!! 4 BeL!! 8

Let

(5.33) K,={gel”: 1-8)"<p*<(1—8"}, nEl..
Define N by

(5.34) A—)" <2< (1—d)N

Let

(5.35) K.={aSa(®): pK,}.
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It follows from Egs. (5.26), (5.29) that a=«(B) implies
lod” — 270G | <<x'0's.
Since 0<<0<<1 we have (1+6)<<(1—4)™" and thus
(1—0) xM20><< o< (1+8) 220> << (1 — &) ' x* %05,

It now follows from Egs. (5.33), (5.34) that

(5. 36) K C U Kn+N+m

m=—9

Consider an arbitrary X L”. Let K= {aca(p): peK}. Let N(K),
N (I? ) be the number of elements in K, K respectively. Using Eq.
(5.30) and |[é,[|<2 we get

(5.37) AN(K>£B§{ “E%J‘ | (Rua, €212:0) |*
<> Zﬁ] (L1ay 212:8) |
BEK aEK

< 36521l <4N(K).

ocEK
N
We now construct subsets KicK,, K:CK, and a bijection ¢,
from K. to K2 such that ¢,p=a(p). If K, is nonempty, we order
N
the elements in K,, K, respectively by

(5.38) 08,1 == 0B,y == *** == 0By, yixw
and
(5 39) Pa..1>0<x,‘z >p“rx N(&n)

Since a..=K, we have a,; «x(8,,) for some B,=K,. Since Eq. (5.24)
implies that «(B,;) is nonempty, there exists some a,;Ea(B,;). Thus

(5 40) p(xnl/ank_>— Pa,,l/an1_>_pocnj/an1

and it follows from Eq. (5.26) that @, Sa(B,.). We include B,=K
and define ¢,B,,=a,. Let m be the smallest integer such that
m>8/4. Let p, be the largest integer such that p,m<<N(K,). If
$.<0 we are done. If p,>0 we proceed as follows. Assume that
a,;6Ea(Bymn) for any j>1. Since a(B,.;1) IS nonempty by Eq.
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(5.30), we must have @(By m1) = {@.n}. It follows from Eq.;(5.37)
applied to K= {B,1, Bz, *** Bu.ms1y that )¢ must contain at least two ele-
ments. Thus there exists some a,;Ea(B.,) for some j>1 and & <m.
We have

(5 41) panl/loﬁn.nﬁ-lZpa,,j/pﬂ"‘m+l2pdnl/pﬂnk

and it follows from Eq. (5.26) that a,;Sa(B, .+1) Which is a contradic-
tion. Thus «(B, ».1,) must contain some a,; 7 >1. Let j(x, 1) be the
smallest 7 >1 such that a,;€a(B. ..:). By a repetition of this argu-
ment we obtain a sequence

(5.42) 1<<j(n, D<j(m,2)<<--<j(n, p.)
such that
(5' 43) wn,j(n,k)Ew<Bn'km+1), k:]_, "'pﬂ.

We include B, mi1, Buomis, = Busmin €K and define
(5 44) ¢nﬁn,km+1:wn,i(n,k),k:1; h pn-
It follows from Egq. (5.26) that

(5.45) max | "% — (0,/ps,5) | <<0x".

Bkl
By construction K, contains at least N(K,)/m elements and

(5. 46) M pﬂ_>_m_1€; 05

Bk 8

We now proceed to define the desired sets K', K Since the K,
defined by Eq. (5.33) are mutually disjoint, it follows that the K, are
mutually disjoint. We note that Eq. (5.15) implies that N>>3 where
N is defined by Eq. (5.34). It then follows from Eq. (5.36) that K,
and K, are disjoint if p<#. By induction on #, we define K* to con-
tain all p, BE K}, nel. such that for any f'€K}, p<<n and g K"
the conditions

(5.47) BF @8
(5. 48) GaBF s

are satisfied. We define ¢p,=p,,;» Eq. (5.47) eliminates at most one
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B for each B’ taken into K*' and thus at most half of the g which would
be otherwise available. It follows from Eq. (5.36) that Eq. (5.48)
eliminates at most 4 of the available p, for each p, taken into K* and
hence at most 4/5 of the p, which would be otherwise available. The
net effect of these two conditions is to reduce the total number of
available p, by a factor of at most 10. Since the eliminated p, are
never larger than the py taken into K%, it follows from Eq. (5. 32) that

>} 05> (4/8)m™/10.
PgEKL
Since 4>1/4 by Eq. (5.16) we have m <32 and thus
(5. 49) >3 0,>1/10240.
PEK1

Thus Egs. (5.18), (5.19) are satisfied by Egs. (5.45), (5.49) and the
proof is complete for the case A1%1.
We now consider the case 1=1. Let

(5- 50) L= {(a, ﬁ) : PagZEPﬁ: Pﬂio; ~Q1a:"lzo}-
Using Eq. (5.12) we have

e> ”3129”2: Zpal (meézlsQlB) f 2
and thus

e > pal (gm, ézvng) |2>25 2 PBI ('-Qiocy é21~918) iz-
(a,B) el (x,B)eL
Using Eq. (5.11) we have
1 “€<”921QH2:209! (Lia, €21248) |*
and it follows that
(5' 51) (% Lpﬁ!(gm; é21916>]2>7:1/2—€>1/4.

Let
L'={B: (a, ) L for some a}

5. 52
( ) L" = {Bel’: EZQS) | (L1a, €:1218) 1*>7/2}.

Using Egs. (5.51), (5.52) and >lp,=1 we get
>) PBI (me énglﬂ) |2>T/2

BEL!! asax(B)

and thus
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(5.53) oo, 0s=T/8

since ||éx)|<<2. Given any KCL”, let K= {a€a(p): K} and let
N(K) be the number of elements in K. By the same argument used
to derive Eq. (5.37) it follows that K contains at least +N(K)/8
elements. Let m be the smallest integer such that m>8;". We or-
der the elements in L” by p;,>>p;u>>-. We define K° to contain
0815 Opmess Oammsrs ***+» BY the same argument which follows Eq. (5.39) we
can obtain elements «,<a(B,,,,) such that a,#«; for any j<<n. We
define ¢ps.,=0a.- By induction on #, we define K* to contain all g,,,.,
such that p,,...#¢0s,,., in Sp (2/K) for any j<<sn. This condition
eliminates at most one p, for each p, taken into K*, and thus at most
half of the p, which would be otherwise available. Since the eliminated
p, are never larger than the py taken into K*, it follows from Eq.
(5.53) that

(5.54) >N o=>m /16 >>1/2048

pEK1
(where we used Eq. (5.51) to obtain m<(32). Thus Eq. (5.19) is
satisfied. We define K*= {gp:p=K"'}. It follows from Eq. (5.50)
that

(5.55) max ¢p/0 < 2
pEK1
and thus Eq. (5.18) is satisfied. Q.E.D.

Lemma 5.8. Given M=R(M,, £2,). Then M~MKR, 0<x<1
implies that x<r..(M, 2).

Proof. By lemma 3.15 we can assume that M has a cyclic and
separating vector. Since K, has a cyclic and separating vector, we can
assume that M@K, has a cyclic and separating vector. Then M~
M@ R, implies that ML M R, and we have

(5.56) H=Hy,Q Hy
(5.57) Hy= é@l (H.Q H,, 0,)

(5. 58) R=(UR.)"

n=1
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(5' 59) Rm:lM®[(1@1m)®(°@<}[m)®1)], Z:]-,Z

where dim H,,=dim H,,=2, Sp(0,/F(H,)X1)=(4,1—2) and x=

(A—2/2 Let

(5. 60) 0,=2"01Q 0h+ (1 -0, 03

be a standard diagonal expansion of @,, and let u};, v}; be the associated

standard matrix units for R,;, R,, respectively. Choose some unit vec-

tor 0y Hy and let 0=0,,Q(X0,). It follows from lemma 2.7 that
n=1

for any @.€ {R.., R..}", ||Q.|| <N for some fixed N< oo, that

5. 61) lim Q.2 — [Q.0]}} =.
Case (i), x#0,1. Define
(5.62) Q=2"ul,— 7%, (47) =(12) or (21)

where (1, ) =(,1—21). Then

(5. 63) Qf,QJ:O.
Also
(5. 64) [| uz0]= 2.

Let ¢,>0,e,—0. It follows from Egs. (5.61-64) that we can choose
a subsequence n(m), me<1.., such that

(5. 65) 1Qrm2l[<en

(5. 66) [2—|lus™ 2|*] <ew.

We have M=QM,, M’'=QM,. We will prove that there exist mu-
ved vEA

tually disjoint finite subsets J,CA, and eicM(/[,), freM’ (J.),
llerll, 1 fnll<2 satisfying

(5.67) I Ceri—ui™) 2| <<ew
(5. 68) [ (fr—vim™)el<<ew

where (7j)=(12), (21) and (el)*=¢e}:, (fiD*=f. For m=1, this
follows from Kaplansky’s density theorem® applied to the hermitean

m

and antihermitean parts of u;{™, v;{”. Assume that [, e, f; exist for

1) Dixmier [8], Sec. 1.3.
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m=1,---k—1. Let J*=U%:1J,.. Then we have M=M(A—JQM(J*")
where M(J*) is a finite type I factor. If M is infinite then M~M
(A—J* by lemma 5.2. If M is finite then both M and M(A—J*)
must be hyperfinite I, and again we have M~M(A—J*). By assump-
tion M and M(A—J*) have a cyclic and separating vector, hence
MEM(A—]J¥). Thus we can repeat the above argument with M
replaced by M(A—J*) to obtain J,,e};, fi;. It follows from Egs.
(5.65-68) that

(5.69) N e — 27 2l <<ew [1+ 1712+ (1 —2)717
(5.70) [2—llesell*] <2e,.

Since e,—0, it follows from lemma 5.7 that for m >N there exist
K, K,cSp(@(J,)/M(J,)) and a bijection ¢, from K, to K} such
that (1., Ki, ¢., m>N) is an x-sequence.

Case (ii), x=0. Retain Eq. (5.64) and replace Eq. (5.63) by

(.71 u,0=0.
Then choose a subsequence n(m) such that Eq. (5.66) holds and
(5.72) im0 <<en.

The remainder of the argument is a straightforward repetition of the
above argument, and we omit the details.
Case (iii), x=1. Since R, is type II,, M~MQR, implies that
M is not type I. Lemmas 2.14 and 3.8 then imply that 1<r.(M).
Q.E.D.

Theorem 5.9. The asymptotic ratio set r.(M) given by defini-
tion 3.2 for ITPFI factors M, is an algebraic invariant of M.

Proof. By corollary 5.5 and lemma 5.8, x€r..(M), 0<<x <1 if
and only if M~MQR, By lemma 3.6, x<r.(M), x>1 if and only
if x'er.(M). Q.E.D.

We recall that M=R(M,, 2,) where M, is type I,,,2<m,<oo is
an ITPFI factor (corollary 2.9). We now show that all non-zero x&
r.(M) can be calculated directly from definition 3.2 even if some of
the #», are infinite. It should be noted that a direct application of de-
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finition 3.2 may fail to give a O-sequence, even though Oer.(M).
Consider M=1.XR,, then 0=r..(M) but the only x-sequences allowed
are x=1. However this is not a problem since if some #,=oo, then

we necessarily have 0&r.(M) since M is infinite.

Lemma 5.10. Given M=R(M,, 2,) where M, is type I,,,2<m,
oo and #,=co for some y. Then r.(M) contains 0 and all x< (0, o)
for which there exists an x-sequence satisfying the conditions of defini-
tion 3. 2.

Proof. By assumption #n,=occ for some v and M is infinite. By
lemma 5.2 M~MQ@R, and 0=r.(M). It remains to show that
xer.. (M), x#0 if and only if there exists an x-sequence for M.

Let Sp(2,/M,)={4,;}. By lemma 2.14, M is type I.. if and only
if S (1—4.)<<co. By lemma 3.8, r.(lM)=.S, if and only if M is type
I. if M is an ITPFI factor. Thus >)(1—2,)=co if and only if
ler.(M). Since the proof of lemma 3.8 remains valid even if #,=oco
is allowed, >1(1—21,;) =co if and only if there is a 1-sequence for M.
Thus it remains only to consider x+0, 1.

We construct a projection P€M such that M,=R(M,, £,) has x-
sequences if and only if R(M,, 2,) has x-sequences, x#0, 1. For each
y choose m,< oo, m,<mn, such that
(5.73) > a,<2efo.

Let
I-Qv = 2 A ;1;,/7'2'11"111] ® "J"ﬂi
be a standard diagonal expansion of 2,. Define P,Q1=M, by

'l!f‘vl} if jgmu

Pv vj:{ .
=g if j>m,

and let P=Q,(P,Q1)=M. We have

J=my+

|PelP=T[la]*~3 al=>0

where we used Eq. (5.73). We have M.=R(M,, 2,) where Sp(®2,/M,) =
(Qo1s =+ dom,). Let (I,Ki, ¢, be an x-sequence for R(M,, 2,). Clearly
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(I,,K}, ¢,) is also an x-sequence for R(M,, 2,). Conversely let
(I,,Ki ¢, be an x-sequence for R(M,, 2,), x+#0. It follows from
definition 3.2 and Eq. (5.73) that we can omit all x€K;,i=1,2,
nel,, which contain some A,;,j>m, as a factor. The argument is
then reversible, and there exists an x-sequence for R(M,, 2,). By
lemma 5.2, M~M,.,QR,. Hence r.(M,)Cr.(M) and x&r.(M) im-
plies that R(M,, 2,) does not have an x-sequence. Conversely, if
xer.(M), x#0,1, then M cannot be R,Q@R, Hence M, cannot be
a finite factor and by lemma 5.2 M~M,QR,~M,, which implies
that M,=R(M,, 2,) has an x-sequence.

6. Asymptotic Ratio Set for Arbitrary Factors

In the preceding section we proved that for ITPFI factors M,
xer.(M), 0<x<1 if and only if M~MQR,. In this section we
use this result to extend the definition of r.(M) to arbitrary M. We
give some properties of r.(M) for the general case.

Definition 6.1. Let M be any factor. We define r.(M) by
x€r.(M), 0<x<1 if and only if M~MQR, If x&r. (M), x+0
we include x'er..(M).

We shall need the following result which is due to Sakai [16].

Lemma 6.2. Let M, N be factors. If M is type III then MQQN
is a type III factor.

Lemma 6.3. M is finite if and only if r.(M)=¢ or S;.. M is
type III if x&r..(M) for some 0<<x<<1.

Proof. If r.(M)=¢ or S, then O&r.(M) and M is finite by
lemma 5. 2. Since R, is infinite if x#1, M finite implies that M~ MQR,
if x#1 and hence r.(M)=¢ or S;.. If x=r.(M) for some 0<<x<<1
then we have M~ MQR, where R, is type III. It follows from lemma
6.2 that M is type IIL Q.E.D.

Schwartz [17] has given a type II, factor M such that M is non-
isomorphic to MQR,. Thus there exists a type II; factor M with
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r.(M) =¢.
Lemma 6.4. r.(MQN)Dr.(M)Ur.(N)
Proof. M~MXR, implies MRN~MKQQNRR,. Q.E.D.

Lemma 6.5. If r.(M)— {0} is nonempty, then it is a multipli-

cative subgroup of (0, oo).

Proof. By definition x'er.(M) — {0} if and only if xer.(M)
—{0}. For x=(0, o) define

X 0<<x<1

x =
(%) {x‘1 1<<x<Too.

Let x,yer.(M)—{0}. Then we have M~MQR,.,, M~MLR,,.,
which implies that M~ M& (Ry»&QR.,y). Since %, ¥ Erw (R Q@ Ruiy)
it follows from lemma 3.6 that 2y €r.(RyyQRy). Thus M~MK
Ry and xyEr. (M) — {0}. Q.E.D.

Lemma 6.6. Given x,, x.€r.(M), 0<<x,, x,<<1. Let x,=e™,i
=1,2. If [,/l, is irrational then r.(M)=S.. If l,/l, is rational then
er2er (M) (see definition 3.12).

Proof. If x,x.r.(M) then M~MQQR, ~MRQR,QR,,. By
lemmas 3.13 and 5.6 we have r.(R,QR,) =S, where x=c0 if /I,
is irrational and x=e¢ “*'? otherwise. We have R, QR,,~R, XK, KR,
for any y&S,. It follows that M~MQR, QR QR,~MKR, and
hence yer.(M). Q.E.D.

Definition 6.7. Given 0<<x<C1l. Let K denote some sequence
{k,; v€I.} where k, is either a positive integer or oo. Let p,<<p,<<--
be the set of all prime numbers. We define S(x, K) as the subset of
[0, o) containing 0 and %" for all integers # and all integers m=
11, where 0<n,<k,.

Corollary 6.8. For any factor M, r.(M) is one of the following
sets: the empty set ¢, S, So, Si, S. or S(x, K) for some 0<<x<<1
and some K.

Proof. Follows immediately from lemmas 6.5 and 6.6. Q. E.D.
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We note that if K={k,} where k,=1 for all vy, then S(x, K)
=S,. If it can be proved that r.(M) is closed, then r..(M) must be
one of the sets ¢, S, (0<<x<1),S..,S,. The following lemma was
obtained as a result of our effort, as yet unsuccessful, to prove that
r.(M) is closed.?

Lemma 6.9. Let M be a factor and x,€1r..(M), n=1,2, -+« , 0<<
x,<<1, lim x,=x. Then there exist subfactors M, of M and N, of
M’ and a vector x such that

@ M, ~R.,~M,.

Gi) M,=(U.M,)"” and N,=(U,N,)” are factors isomorphic to (X”)R,,,.
(i) H=Mx=Nx.

(iv) z is separating for M and M.

(v) Restricted to H,, {H,,%, M,, N,,n=1,2, ---} are unitarily equiva-
lent to {(RH,), (@x.), R,,, R, ,n=1,2,---} where R. is the
commutant of R,, in H, and x, is a cyclic and separating vector
of R,, in H,.

(vi) Let M,=M.NM, N.a=N.N\M'. M=M,JM,)” and N, =
(N,UN,)” have the property that M=M,PM, and M’'=
N,®N, where M, and N, brings M,Nxx to its orthogonal com-
plement.

(vii) Restricted to M,Ny, M,=R,QR,, Ny=R,RXR;, M.=R.®1, M,
=1QR,, N,=R.Q®1, N,=1XR,.

(viii) xEr.(M).

Proof. We first construct M, and N,, n=1, 2--- which satisfy (i),
(iii), and (v). Let ¢;>0, S;<<oo, R,,=R(HSYP, R}, 09), Sp(0?/RY)
={1;,1—2}, = +x;)* and 09 be cyclic (and separating) for RY.

Since R,,is type Ill, M~MQR,, implies M X MQR,,. Thus we

can write

H=H,QH,

2) The authors are indebted to Dr. D. J. C. Bures for pointing out a loophole in an
earlier version. For the rest of the paper, the reader can skip this lemma.
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M=M, QMg
M'=M,QM g,
where M,, 2 M, H=QH, M,=R,,. Choose a unit vector «r, in H,,
and let
01 =y, X%y, X1, =R 0.
We set M,=1QM,, N\=1QM,.
Since M,,~* ML MQR.,, we have M, <M, QR,, and we can write
H.,=KQQH?Y)
M, ,=R®QR,
where R®LM,,~ M.

By lemma 2.5, there exists a finite subset J; of indices v and a unit
vector yr, of H,=K,Q(Q H®)

vely
e @ 2 — 4[| <l
L= 0P .
veJ, v
Let
@2='llf’2®7(2®x1
H~ @ HY, Mo= ® R, My=RYQ(Q RY).
vell vall velL
Then

H=H,QH ®H,
M=M,QMx»RMu,
M ,~LR®2M, 0, is a product vector and
[0, — 0, ]| <e,.
We set
M,=1Q M1
N,=1QM »,R1.

By repetition of this argument we obtain a sequence of Hilbert
spaces H;, H,;, factors M, M,;, and vectors x;< H;, 0; H, such that

H=H,Q(Q H,)

)
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M= Mr,i ® (n§M(u))
0, =4, ® (@)

0, — 0, <<ess
where
H= & (HY,09)
v Junt
M.,=R(H?P, R, 09; v& ] ) ~R,,
= _(Eji) la'ﬂ:).
We then set

Mn = lrj ®M(n)® (®11)

ji<n

Nn: lri ®M(,”) ® (%11)

which satisfies (i) by construction.

Since
jt+k-1 .
[0 —0]<< ; g—>0 (j—oo)
{0;} is a Cauchy sequence. Let

x=Ilim @j.

By construction [[x||=]/®,;]|=1 and
Q.=WM,UN,)"”

is a type I factor. Let the minimal projection of @, defined by 2, be
E,. Then E,0,=0; for j>>n and hence E,x=x. Namely, 2=%,, ®(®z;)

j=n

and @, is irreducible on
@35 = xrﬂ ®Hn ® (@xl)
=Mx=N,x.

From this, it follows <,,1;INM")X and (,ENN')X span the same space H®
E)t,”@(%)f[,,) and hence (iii) follows. Furthermore, % considered as a
state on M,, N,,n=1,2, --- is the same as the product state of ; and
hence M,, N, and x restricted to H, is unitarily equivalent to R(H,,
M., %), R(H,, M{,,,%,) and Xx, on QH,. This proves (v).
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Now we proceed to the other conditions. Let E be the projection
on M’x. By (iii), M,M’x=M’'x and hence E commutes with both M,
and N,. Since M is a factor of type IIl and E€M, M~M; and we
consider M; on EH instead of M on H. Then (M,)r, (N,)r and Ex
=% replace the rble of M,, N, and x. Obviously (i), (iii) and (v)
are satisfied. In addition, % is now cyclic for M’ and hence separating
for M. Henceforth, we drop ( )z. A similar procedure using Mx
makes x cyclic for M without losing its cyclicity for M’.

If x is separating for M, then M,| H,~ M, and hence M,,NQ?R,,,,.

Similarly N,~QR,,. Thus (iv) and (ii) are proved. (viii) is then

immediate.
We consider R in M.,=QR? and denote the corresponding type

I, factor in M, by M,,. Similarly we write N, for R$”. We now
proceed to (vi) and (vii). Let #% and v be standard matrix units of
M,, and N,, relative to 0%’. Let /(n,v) be a one-to-one map of (#,y)
to the natural numbers and let

A= Zku’é'{A%?Z

twA =T A+ (1 —2)A

A= II =,)A

NI, =L
We now verify the following properties for A€ M.
(@) wAeMNM,,
® leAl<]Al
@) (G, (rwA)Ci) = (Cx, ACx) for any C,€(M,,UN.,.)’
@ If AesM,, then r,A=A.
The property (a) is easily checked by calculating [u}%, i Al. (B)
follows from
I>30k: Auipl|* = >3 [kt A,
<> duspw’
<Al liefipll*= L AL ell™

() follows from X ufix=avix, [C;, ui] = [C;, vii] = [4, vi] =0, Sk
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=1 and > 2,=1. (9) follows from >upuly=1.

Let tvA be any operator in D (LL>JGT§A)W, where w denotes the weak
closure. Since w4 is bounded by (B), this set is non-empty by the
weak compactness. By (a), (B), () and (), we have

&) wAeMNM,, for all I(n, v)>L

&) | AILZ|A]l
&) (Cx,(z A)Cix) = (Cax, ACyx)
for any C,eQ“= N (M,,UN,.)’
I(ny)>L
) If AeM,, A=A.

For each sequence I= {i,,, .}, {(n,v)<L, let
() A= ([( 11;1}';”" ) (v A4).

Then
rA=>C I u?,; )e.(I)A

inviny

I I(m)<L

because > uli7i, A= >’ Auj;=A. Furthermore r.(I) A€M, by («/) and
(@). Hence n, A€M,

Let P be the projection on the subspace spanned by LQQ("’X. Then
(/) implies that M,=PMP on PH. Exactly the same argument can
be done for N. Since PH obviously contains M,Nyx, (vi) follows.

Since % is separating for M and N, we have only to prove (vii)
on restrictions of the relevant algebra to the state given by 2. Since
x gives a product state for (M,UN,)"”, (M,,\UN.,.)"”, n, =1,2, ---, we
have

M,=R,®R,, N,=R.QS,,
M,=R.Q1, M,=1XR,
N.=R.®1, N,=1RS;.
We now prcvs that My=N, on M,Ny, which proves S,=R;.

Let F be any projection in the commutant of M, on M,N,x. Let
F, be the projection on MFH. Since
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MFH=M,FH+ M. FH=FH+ M.FH

where M,FH| M,Ny. Furthermore, F;&M’. Hence, by (vi), we
have FeN,. Q.E.D.

The following lemma will be used in lemma 6.11 where it is
needed only for the case that all 2, are type I factors. For the case
where all 2, except one are type I factors, it has been proved by Araki
([3], lemma 5). We give here a stronger lemma, based on the result
of Tomita [19] that (ARB)'=WXRB'. If either A or B is a finite
type I factor then one can easily prove that (URB)' =W XRB. The
following proof then provides an alternate proof of lemma 5 of [3]
(without recourse to Tomita’s general result), because a type /.. factor
is an ITPFI factor.

Lemma 6.10. Given the ITPS H=(§)(H,,,32,,) and von Neumann
v=1
algebras A, C B(H,). Then (RU,) =RA,.

Proof. Let A=QRA,. Clearly AWDRA,. For any T€W and
any finite index set J define T, B(H(J)) by

(W, Tird) = (i@2(J 9, Tyi®2(J)).

Then

IT,<IT]
and

T, g@%)'=§}%.
Now let

N={S: (@}, (S—T)o)|<e,j=1,-n}

be a weak neighbourhood of T€%’. We construct SEN, SR, as
follows. We can assume [[0i|<1,j=1,-n,i=1,2. By lemma 2.7
there exists a finite set J and vectors i€ H(J), [[v]|<1 such that

v @e(J) —oill<@/Del T
Then for any S we have

| (03, (S—T)0) — (Wi®e(JD), (S—THvi®e(J))]
<Q@/2USI+ITIDITI



A classification of factors 95

It follows that S= 7,1 gives the desired S. Thus we have A' CRA,.
Q.E.D.

Lemma 6.11. If M has a cyclic and separating vector, then
r.(M)=r.(M").

Proof. Since M, R, have cyclic and separating vectors so does
MQR,, thus M~MQR, if and only if MXMQR,, and similarly for
M’. Using lemma 6.10 and R.~R, it follows that M~ MR, if and
only if M'* M QR,. Q. E. D.

7. Classification of ITPFI Factors—The Class S..

In this section we prove that all ITPFI factors in the class S.. are
isomorphic. This result is obtained by generalizing lemma 5.4 to ar-
bitrary N,. For this purpose we introduce the notion of an (&., ---x,)-
sequence.

Definition 7.1. ([,, K., K%, ---K2; ¢2--¢%), n=1,2, --- is called an
(%, ---%,) sequence for R(M,, 2,) if K., ---K? are mutually disjoint
subsets of Sp(e(l,)/M(I,)) and (I, K., Ki, ¢i), j=2,---p is an x;-
sequence for R(M,, 2,).

Lemma 7.2. Given R(M,, 2,) and %,, ---x,=r..(M, 2). Then there
exists an (%., ---x,)-sequence for R(M,, 2,).

Proof. Let (I, K, ¢;), k=I. be x;sequences, j—=2, ---p. By
corollary 3.4 we can assume that A(K%)>1/2(1+x,)™" for all 7, &.
We can inductively choose subsequences £(j,#),n=1,2, - such that

I, ...y are mutually disjoint. Define I;,=1I; ..., and let

(7.1) IL,=UIL,.

‘T

2

1l

7

For all 2&Sp(2(Z,)/M(1,)) we have

(7.2) A=£122(]'), 2(7)eSp(e(L,)/M(1;.)).
Define
(7.3) Ki={eSpe(l) :2(j) K]}, for all j=2,---p}
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205" it j'#j
¢ind(J) if j'=7
(7.5) Ki=¢.K.

(7. 4) COYEORS

for j=2,---,p. By construction, (Z,, K., Ki, ¢i) satisfies Eq. (3.3)
for each =2, :--p. We have

(7.6) 2K = TL(K 3)=2 1L (1+2,) 7 >0

which implies >1(K}) =co. Q.E.D.
The following three lemmas are straightforward generalizations of

lemmas 3.3, 5.1, and 5.4 respectively.

Lemma 7.3. Given R(M,, 2,), %,---x,r.(M, 2), and ¢,>0. Then
there exists an (x,, ---x,)-sequence (I,, K., K}, ¢i; j=2, ---p) satisfying

7.7 ]1—éz(K;)l<e,,.

Proof. The preoof is essentially identical to that for lemma 3.3
with L), K.,;,i=1, 2 replaced by L., K., i=1, ---p and <, ¢, replaced
by Wi, ¢4, j=2, - Q.E.D.

Lemma 7.4. Given M=R(H,, M,, 2,; vEA), y=>2>+>2,>>0,
SU=1, and 1>¢>0. Let x,=4/k, j=2 b T 5Er.(M,9) for
:11 7, then there is a finite subset /CA, projections P, P’ in M(I),
M(I)’ respectively, a unit vector 0= PP’H(I), and a type I, factor
NC M(I), such that || (1—PP)Q(D)|[<e, ||0— PP’2(I)|<<e, Sp(@#/N)
= (A, -*4,), and @ factorizes N in M(I) .

Proof. Define

(7.8) ¢=min{e/(c,+ p), x;%0}
2% if x;#0

7.9 V=

(7.9) : {5'2 if x,=0.

By lemma 7.3 there exists a finite [CA, disjoint sets K@, -
K*cSp((I)/M(I)) and bijections ¢’ from K®*to K’, j=2, ---p satis-
fying
(7.10) max| 5, — ¢/l <, =2, -1

e
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and

(7.11) 1= 2K | <e/ (Gt )

where ¢, is given by lemma 4.2. Eq. (7.10) implies that
max | £ — (¢'p/ 1) *| <¢'.

wEK

The result now follows from lemma 4. 2. Q. E.D.

Lemma 7.5. Given M=R(M,, 2,), N=R(N,,¥.). If t(N,«)C
r.(M, 2) then M~MEN.

Proof. The proof is essentially identical to that of lemma 5.4
(with lemma 5.1 replaced by lemma 7.4). Q.E.D.

Theorem 7.6. Given ITPFI factors M=R(M,, 2,), N=R(N., ¥r.).
If r(M)=r.(N)=S.., then M~N.

Proof. For any ITPFI factor M=R(M,, 2,) we have £(M, 2) CS...
Thus it follows from lemma 7.5 that r.(N)=S. implies N~NXM.
Conversely r..(M)=S.. implies M~MQN, and thus M~N. Q.E.D.

Definition 7.7. We shall denote the ITPFI factor M with r.(M)
=S.. by R..

8. Some Technical Lemmas

This section contains a number of technical lemmas which are
devoted to proving the result that for ITPFI factors M, r.(M) =S, if
and only if M~R, (theorem 9.1). The basic idea is to exploit the
condition for unitary equivalence given by lemma 2.13. The main
results of this section are given in lemmas 8.3, 8.11, 8.14, 8.16.

Definition 8.1. Given a type I, factor M, a unit vector £,
Sp(@/M)= {4, --2,}. We define

(M, 2) = (AP —1)*+ 31 1,
1=2

(M, 2 => (P —n1%)?
j=1
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and

8.1) 8.(M,2)= min ﬁ[xl;?—(xmf/g'lxmf)“ﬂz 0<x<1

(my,eeemy,) j=1

where the minimum is taken over all #z-tuples of integers (s, ---m,).

Note that the expression on the right-hand side of Eq. (8.1) does
not change when m;—m;+m. Thus the n-tuple of integers (m,, ---m,)
which gives the minimum in Eq. (8.1) is determined only up to an
additive integer. This ambiguity could be removed by requiring that

m,=0, but this is unnecessary for our purposes.

Definition 8.2. Given 0<<x<1, M=R(M,, 2,). We define
(8.2) d.(M, 2) =>36.(M,, 2,)
where 0,(M,, 2,) is given by definition 8.1.

Lemma 8.3. Given 0<x<1, M=R(M,, 2,), xer.(M), d.(M, 2)
<Coo, Then M~R,.

Proof. Let M,=R(M,, 2,) where Sp(@,/M,)={a;; j=1, --n}
and «,; are defined as follows. If x=0 let a,=1, a,;=0, j=2, --*n,.
If x=1 let ay=m%,j=1,-m,. If 0<<x<<1 let

where (#,,, ++*Mm,,,) gives the minimum for 9.(M,, 2,) in Eq. (8.1).

By construction #(M,, 2,) CS, and thus R,~R,®@M, by lemma 7.5.

By lemma 2.13, d,(M, 2)<<co implies that ML M,. Thus x&r..(M;)
and M;~M,QR, by corollary 5.5. Thus M~M,~M,QR.~R..
Q.E.D.

The following lemmas are devoted to proving the converse result,

namely that d,(M, 2)=co implies that r.(M)+#S,. The basic idea

is to use the central limit theorem to obtain the existence of some

yer.(M), y&S, (except for x=0 where we use lemma 3.8).

Lemma 8.4. Given X,= {41, A}, 4:>>0 and éxwzl. Let u,
be the probability measure on X, defined by »({i}) =1, i€ X,. Let
K}, K2 be disjoint subsets of X, and let ¢, be a bijection from K, to
K2. Assume 0 Kj. Let
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(8.3) 7(D) =log(¢,2/2), 2€K;.
Let s, be the random variable defined by
() if 2€K;
(8.4) ;D)= —y(¢~i1) if 1€K}
0 if aEK,UK].
Let
N
(8 5) YN: 1S
v=1
and
(8.6) d,=max|y(1)|.
AEK)
If
8.7 lim §,=0
and
(8.8) > 2 m(A)P=oo
v AeK}

then for any fixed 0<<a<CTeoo we have
N
(8.9) lim (11 1,) (Xn(a))=0

N
where Xy(a) is the subset of IT X, defined by | Yy|<<a.

v=1

Proof. The mean of s, is

(8.10) (=2 () A—¢d) =27, (D) (1 —e™)
== (D [1+0@3)].

Since > 1<1 and |5, (1) ]< 6, we have
AEK}
{s,>=0(82).
Thus {s,) is bounded. The variance of s, is

o= 21 [ (D*+ (80 (D] —<5.0°

AEK}

=2 dp(D)*[1+e"] —<s)?

AEK}

99
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=232, (D [1+000.)] — ()%
AEK}

Using {s,»=0(82) for one factor of <s,)* and Eq. (8.10) for another,
we get

(8.11) 0,=2 23] 2, (2)*[1+0(3)].

AEK}

It follows that ¢,—0 and >,6,=cc. It now follows from the central

limit theorem for bounded variances (Loéve [9]) that
N N
E(sv_<SV>)/{Zzlo‘v}l/2
approaches a normal distribution as N—>co. Since >)s,=oco, the finite

interval [—a, @] gives a vanishing contribution as N—co. Q.E.D.

Lemma 8.5. Given R(M,, 2,; v€A). Let X,=Sp(2,/M,). Let
K, K2, ¢,, (1), 0, be as in lemma 8.4, except K2 may contain O's.
If

(8.12) lim 8,=0

and

(8.13) > 2 m(a)i=oo
AEK)

then r.(M)=S... Here the terms with (1) = —oo are excluded from
the sum in (8.13).

Proof. We will use lemma 8.4 to prove that ¢’&r.(M) for
arbitrary 0<C/<Coo, which implies that r.(M)=S.. By (8.12), we
can restrict v such that 0 K2.

Let 0<<l<Coo be given. Let u, be the probability measure and let
s, be the random variable defined in lemma 8.4. Let I be any finite
subset of A, and define

(8.14) YD) =le,.
Let X(I,a) be the subset of HISp(Qy/MV) =Sp((I)/M(I)) defined

by | Y({I)|<a. It follows from lemma 8.4 that there exist mutually
disjoint subsets I,C A4, n< 1. such that
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(8.15) (I1 ) (X (L, 1/2D))<<1/2.

We now construct an e’-sequence ([,, L;, ) as follows.
For p&X™®=Sp(Q(l,)/M(I,)) the equation

(8.16) p=y131"2v(p), 4 (o) €Sp(2./ M,)

defines the function 1,(p),v=1l,. Let

(8.17) y(L,, m,p) = p3) 5. (2 (0))

and define o

e e
Let

(8.19) Li={p: a(l,, p)<<oo, y(1,,a(l,, 0), 0)=>1/21, 2,(p) %0}
(8.20) Li={o: a(l,, p)<<oo, y(I,, a(1,, p), p)<—1/21, 2,(p)=0}.

We define a bijection «, from L) to L? as follows. If v<<a(l,,p),vE],
define

¢4 () if 2,(p) €K,
(8.21) o) = ¢;74(0) if 2,(p) EK;

() if () EKIUK?

where ¢, is the inverse of the bijection ¢,. If v>a([,,p), vEI, define

(8.22) A (ru0) =2, (p).

Let
o(l,) =sup o,.
vel,

By construction we have
(8.23) eI p/p >, pE L.
Since 6(Z,)—0 we have

(8.24) lim max|e™' —r.p/0| =0.

n->oc0 peLl

Also by construction we have
(8.25) 1—a(L) —a(LD<( T ) (X1, 1/2D))<1/2.
It follows from Egs. (8.24), (8.25) that
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SA(LY) =oo.
Thus (I,, L], r,) is an e ’-sequence. Q.E.D.

Lemma 8.6. Given 0<<a<Coo, M=R(M,, 2,; v A), disjoint sub-
sets K;, K2CSp(2,/M,), and a bijection ¢, from K! to K2. If

(8.26) 23 = ()] P=00

Y \ek}

then there exists some x<r.(M), x+1. If we also have

(8.27) [log(¢.2/D) | <a
for all 2€K; and all y, then there exists some x=r.(M), e*<x<1.

Proof. First we throw out from K. and K? all 2 and ¢,4 for
which 1=¢,A=0. Since Egs. (8.26), (8.27) are unaffected by the in-
terchange of 1 and ¢,4, we can assume ¢4< 4 and thus ¢,4/1 ¢[0, 1]
for all A€ K, and all v». We define a subset S of [0, 1] as follows.
Let ¢,>0, e,—0, mel,.,. Given a«a<p, let

(8.28) S(a, B => (22— (g,2) 2] 2,
g;f/(;e(a,ﬂ)

Define

(8.29) S={x: 3(x—en X+e,) =c0 for all m}.

We now use the fact that [0,1] is compact to prove that S is non-
empty. If x€ S then there is some fiinite integer m(x) such that

(8. 30) 2(x"—€m(z), x+€m(z))<oo-

If S is empty then we have a covering of [0,1] by the open sets I(x,
m(x)), x €[0,1]. It follows that there is a finite collection I(x,, m(xy)),
---I(x,, m(x,)) which covers [0,1]. Using Egs. (8.30), (8.28) we get
b
(8. 31) 2 E [11/2_‘ <¢VZ) 1/2] zﬁz Z(xi_sm(xi); xi+5m(z]-)) <o°
vV \eK} 7=1
which contradicts Eq. (8.26). Thus S is nonempty.
Let x=S. It follows from Eq. (8.29) that we can inductively
choose subsets L1(x) C K. such that
(8.32) lim max |x—¢,4/4] =0

V> \eLl(x)
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and

(8.33) >3 ()PP =oo.
Yo xeLi®

Let

L}(x) = {ga: 2€L}(x)}.
If x+#1 it follows from Egs. (8.32), (8.33) that
(8.34) SU(LA(x)) =oco.

It follows from Egs. (8.32), (8.34) that (v, Li(x), ¢,) is an x-sequence.
If x=1, then R(M,, 2,), L.(x), L:(x) and ¢, satisfy the conditions of
lemma 8.5 and we have r.(M)=S.. If Eq. (8.27) is satisfied then
Sc e 1] and thus xEr.(M) for some e < x< 1. Q.E.D.

Lemma 8.7. Given 0<<a<<oo, a,;>0, —a<yp;<a,j=1, -n,,
yvel.. Then the following statements hold.
(i) The conditions

(8 35) Zaw(eﬂujﬂ,_l)z_—_oo
(8.36) St (e —1)1=o0

are equivalent.

(ii) 'The conditions

(8.37) X2, (e —e™ ) = oo
v i<y

(8. 38) Zzwﬁwvj(em,.rz__eﬂuj.'Z)z: 0o
vy

(8 39) ZZ_“V{“W‘ (77Vi _771/.7')2: oo

are equivalent.
Proof. Let f(3)=e¢"—1. For any y=[—a, a] we have
0<f'(—a)n|<le"—1]<f'"(a)|n]| <o

It follows that for »,E[—a, a], there exist positive constants C,, C.
such that

Cile—1]>]e" 1] =Cy] e —1]

from which (i) follows. Statement (ii) follows from a similar argument.
Q.E.D.
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Lemma 8.8. Given ay, »a,>0, Sla;=1, and —oo<< X;<Too,j=
1, ---n such that

(8. 40) Zaijj = 0

Then

(8. 41) S} man (X, — X)'= e, X,
i .

Proof. The left hand side of Eq. (8.41) is
(1/2) X0y (X — X)* = (e X D) (X)) — (S X%
By the assumption, this is the same as the right hand side of (8.41).

Lemma 8.9. Given 0<<x<C1, 4, ---1,>0, é ;=1. Then there
i=1

exists an #n-tuple of integers (m,, ---m,) such that

(8.42) |y —mi] <<|log x|,4,7=1, --'m
where »; is defined by

(8.43) K= (x5 ), =1, .
Also

(8.44) max | ;| <<|log x].

Proof. For any —oo<aw<lco we define integers m;(a),j=1, --*n
by

(8.45) P A B SPLIV OO}
Define 7;(a) by
(8 46> /%j = e‘": (a)eax'".,(a) )

It follows from Egs. (8.45), (8.46) that

(8.47) 0<7;(e)<<|log x|.

Define 7;(a) by Eq. (8.43) with m;=m;(a). Then we have
(8.48) 7;(@) =7;(a) —7(a)

where

7(a) = —1log (Z;474®) —a.
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Eq. (8.42) now follows from Egs. (8.47), (8.48). Using Eq. (8.45)
and >4;,=1 we get
(8.49) x<e "<,

Eq. (8.44) now follows from Egs. (8.47), (8.48), (8.49). Thus m;
=m;(a) for any a satisfies the lemma. Q.E.D.

Lemma 8.10. Given 0<<x <1, 4, --*2,=>0, 234;=1 and a4, *--a, >0.
Then there exists an #n-tuple of integers (m,, --- m,) satisfying the
conditions of lemma 8.9 and a subset I of {1, ---n} such that

(8.50) sup l7: —2;1 < (4/5) | log x|

and

(8.51) > ey (0 —0)*> /D e (r: =)
i i

where »; is defined by Eq. (8.43).

Proof. Consider the m;(a), 5;(«) given in the proof of lemma 8. 9.
We will show that one can choose « and I so that Egs. (8.50), (8.51)
are satisfied.

It follows from Eq. (8. 48) that it is sufficient to prove Egs. (8. 50),

(8.51) with 9;(e) replaced by 7%;(a). It follows from Egs. (8.45),
(8.46) that

(8.52) 7;(a+B) =7;(a) —B(modulo |log x| ).

Thus we can consider the 7;(a) as defined on a circle of circumference
|log x]. Choose the interval 4(y.) = [7a,7.+ (1/5)|log x|) on this
circle such that > a; is a minimum. We choose a=zx,. Then

’
n;E4(ng)

2e=n—a is 0 and this interval is [0, (1/5)]log x|). Let

(8.53) 4={7j:7;(a) € [(k—1)|log x| /5, k|log x| /5)}, k=1, ---5
and define
(8.54) Su= <2 ;o — 7).

icd,

ied;

By construction we have
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(8.55) S a<l> w, k=2,3,4,5.

ien =)
Now i,€4,, 5, E 4,, 15 45 implies that
(8.56) i, — s | <21 i, — i |-
It follows from Egs. (8.55), (8.56) that
(8.57) 315 <A Z55.

By similar arguments we have

(8.58) 51493
(8.59) 315933
(8.60) 215

(8.61) 311 < Zs.

5

Let /=U4,. It follows from Eq. (8.53) that Eq. (8.50) is satisfied.
k=2

We have

n 5
(8.62) z ae; (n; —ﬂi)zzkg_lzu
iz -
and
5
(8.63) Zeza'uj (n: —v;)2=k%22u-

i
It follows from Egs. (8.57-63) that Eq. (8.51) is satisfied. Q. E.D.

Lemma 8.11. Given 0<<x<<1, M=R(M,, 2,),r..(M)=S,. Then
d. (M, 2)<<eo.

Proof. We will use lemmas 8.7, 8.8 and 8.10 to translate the
condition d,(M, 2) =co into the conditions of lemma 8.6 with |log(¢,4
/D) | <a<<|log x|. It will then follow that there exists some y<r..(M),
x<<y<<1 which contradicts r..(M)=S,.

Let Sp(2,/M,) = {41, **An,}. By lemma 3.15 we can assume 4,; >0
for all v and j. Use lemma 8.10 to choose integers (m,,, --+m,,,) and
subsets I,C {1, ---»,} such that |y,|<<|log x|,

(8.64) sup. [0 — .41 <<(4/5) | log x|

and
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8:65) 2 e Cn ) > (/D2 @t G —7)*
5 hir
where 7,; is defined by
(8. 66) Zvj:eﬂ”afyj
and
(8. 67) aw.:x’"ui/ %xmv;-
1=1

Let M,=R(M,, 2,) where Sp(2,/M,)= {a, ~**as,,}. By Eq. (8.67)
t(M,, 2,)CS.=r.(M) and thus M~MQM, by lemma 7.5. We have
MM, =R(M,QM,, 2,82,) where Sp(2,Q2,/M,QM,) = {Aa;: i, ]
=1, ---n,}. We define disjoint subsets K}, K:CSp(2,QR2,/M,QM,)
and a bijection ¢, from K; to K2 by

(8. 68) K= Qya,;: i, 71, and 1<<j}
(8. 69) K= {da;: i, jEI, and 1>}
(8.70) Gohvict; = dojat;  (T<J).

For i=2,a,; €K} let

(8.71) 7(2) =10g ($,2/2) =105 —7:.
It follows from Egs. (8.64), (8.71) that
(8.72) [log (¢.2/2) | < (4/5) | log x|

for all 2K and all ». Using Egs. (8.66), (8.67) and definitions 8.1,
8.2 the condition d.(M, 2) =co implies that

(8.73) Evzja,,,-(e””flz——l)zz co,

By lemma 8.7 this is equivalent to

(8.74) Sl (€™ —1) = oo,

Since >;4;=>ya;=1, it follows from Eq. (8.66) that
(8.75) S (e —1)=0.

Using Egs. (8.74), (8.75) and lemma 8.8 we get
(8.76) 3 33 avnan (e —e™)* = oo,

1<j
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By lemma 8.7 this is equivalent to
>ty (v —901) = 0.
Eq. (8.65) now gives
(8.77) >0 >0 avia; (g —ps) =00,

vijel,
i<j

By lemma 8.7 this is equivalent to

(8.78) =231 > ayay; (€™ —e™?)*
5
:Z Z [21/2_ (¢M)1/2] 2
vV \eK}
It follows from Egs. (8.72), (8.78) and lemma 8.6 that there exists
some é'r.(M), 0<<|l]<<(4/5)]|log x]. Q.E.D.

The result that r.(M)=S, implies that d.(M, £)<<eo for x=0,1
can be obtained directly from the known conditions for M to be type
I,II, respectively which have been stated in lemma 2.14. However it
seems worthwhile to use our techniques to give an independent deriva-
tion of these results.

In the proof of lemma 8.11 we made frequent use of the fact that
the 7,; were bounded, a condition that does not hold when x=1. In-
stead of modifying the proof of lemma 8.11, it seems simpler to use
the following two lemmas.

Lemma 8.12. Let x;, j€K be a finite set of real numbers such
that

(8' 79) Z xj:O.

jEK
Then there exist disjoint subsets K*, K*C K and a bijection ¢ from K*
to K* such that
(8.80) .Z,i.; (xj—qu(i))z_ZzK] x5
je JE

Proof. Order the index set K by x,>>x,>>--_>%xy and choose m
so that either N=2m or N=2m—+1. Let a=%,,.. Let K'={1,---m},
K*={N—m+1,---N}, and define ¢(j)=N—m—+j, j€K'. Let

(8.81) yi=%—a,j=1,--N.
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By construction, if j&K*' then y; and Y4 have the opposite sign.
Thus we have

(8.82) g{l (%= X5cp) = 'EZKI (Y5 —Yon)®.
N
2;}{1(3’3"'3’1(1')) = Z“]’.y?

where we used the fact that y;=0 if jEE K*JUK?. Since >x;=0 we
have

=

N
(8.83) 1y?=2 23+ No? > >x3.
j=1

J

Q.E.D.

Lemma 8.13. Given Ay, --*2,>>0, >4, =1. Then there exist dis-
joint subsets K, K>C {1, ---4,} and a bijection ¢ from K* to K? such
that

(8.84) 3 L= () > 1/ 23 (-,
Proof. Let

(8. 85) 0= P,

Then

=0+ n"+2n%;
and using >4;=1 we get
(8.86) d=m">10,=—1/2n7*>5%.
We also get

o=kt m =220 P

and thus

(8.87) Si<2.
Since

(8.88) >(8;—8)=0
we have

S0t =3(8;— )+ ndv.
Using Egs. (8.86), (8.87) we get
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(8.89) 21(0;—0)*=2>165—1/4(326%)°>1/23063.
Since 1'*—A1?=0,—0d;, the lemma now follows from Egs. (8. 88), (8.89)
and lemma 8.12. Q.E.D.

Lemma 8.14. Given M=R(M,, 2,), r.(M)=S,. Then d,(M, 2)
< oo,

Proof. Assume d,(M, 2)=co. Then we have

7y
Sy =

v j=

where Sp(2,/M,) = {A1, ***Am,}. It follows from lemma 8.13 that there
exist disjoint subsets K, K2CSp(2,/M,) and a bijection ¢, from K,
to K2 such that

(8.90) 230 [ (ga)1F) =0,

Y AeK}

It now follows from lemma 8.6 that there exists some x=r..(M), x#1
which is a contradiction. Q. E.D.
Finally, we consider the case x=0. We first prove

Lemma 8.15. Given M=R(M,, 2,), Sp(2,/M,) = {4, -*4,,}. The

conditions

(8.91) S1—ha| =00
(8.92) do(M, 2) =0
are equivalent, where [[2,]=1.

Proof. We have
(8.93) do(M, ©) =S [(1— A"+ 30]
=31+ 2 =220+ (1— 4]
=23 [1-24].
Using (1—4"*)*—>0 we obtain the inequality
(8.94) [1—22]<|1—2]<2]1—27], 0<a<1.

It follows that
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Q.E.D.

Lemma 8.16. Given M=R(M,, 2,),r.(M)=S,. Then d,(M, 2)
< oo,

Proof. By lemma 3.8 r.(M)=S, if and only if >}|1— .| <Too.
By lemma 8.15 3|1 —4,|<Ceo if and omly if d,(M, 2)<<eo. Q.E.D.

All the discussions in this section are valid even if we allow [ 2,]/
=1+0,#1. This is due to the following situation. Let (1+4,)=
O, i =0"ks 2,=2,/12,. Then Sp(2,/M,)= {4} if Sp(Q,/M.,) = {4;}.
By Lemma 3.14, r.(M, 2))=r..(M, £). On the other hand, 0<<II1 |2,
<Coo implies >|68,|<Too. If Zja,,,:l, then

S| —af]* = [ —adiT|
gzu'm L AR A+ 2a0
<{1+6"+2}-|11-6"].

Thus if we adopt the Definition 8.1 and 8.2 for [|2,] #1, then d,(M, 2)
=oo and d,(M, £)=occ are equivalent.

9. Classification of ITPFI Factors— The Classes S,

In this section we apply the results of the preceding section. We
prove that r.(M)=S, if and only if M~R, 0<x<1. We obtain
some useful criteria for calculating r..(M).

Theorem 9.1. Given M=R(M,, 2,),r.(M)=S,, 0<x<1. Then
M~R,.

Proof. By lemmas 8.11, 8.14, 8.16 r.(M)=S, implies that
d,(M, 2)<<eo. By lemma 8.3, r.(M)=S, and d.,(M, 2)< oo implies
that M~R,. Q.E.D.

We remark that we can prove Theorem 9.1 for x=1 without mak-
ing any use of the condition d,(M, 2)<<eo. Namely, by lemma 5.2
M is infinite if and omly if Oer.(M). Thus r.(M)=S, implies that
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M is finite. Since 1€r..(M) implies that M cannot be type I, M must
be type II,. Since all hyperfinite type II, factors are isomorphic
(Dixmier [8], Theorem III.7.1) we have M~R,.

If M is an ITPFI factor, r.(M)+#S,,, then by Theorems 7.6 and
9.1 M must be isomorphic to one of the factors R,, 0<x<1 or R...
However, the calculation of r.(M) by a direct application of definition
3.2 may be a nontrivial problem. The following two lemmas give some
useful criteria for calculating r.(M). The first lemma is a straight-

forward variation of lemma 3.5.

Lemma 9.2. Given M=R(M,, 2,),M, type I, for all », and
Sp(2,/M,)= {2y, ---2,} independent of v. Let §(/11, -+« 1,) be the intersec-
tion of all sets S such that

(i) S is one of the sets S,, 0<<x<1, S,; and S.
(ii) 4+#0 implies that 2/4€E€S, i,7=1, --n.

Then ro(M) =S, --4.).

Proof. Since :9\(/21, ---1,) is nonempty, it must be one of the sets
S., Sui, Se.. Thus S (24, -+*4,) is the smallest asymptotic ratio set con-
taining all 4,/2;, 4;#0. It now follows from lemma 3.5 that §(/11, 2 )
Cr.(M). It follows from definition 3.2 that r.(M) C§(/Il, <A
Q.E.D.

Lemma 9.3. Given M=R(M,, 2.), M, type 1, for all v, Sp(2,/M,)
= {lvly ‘"xvn} and

(9. 1) limlv,-=lj,j=1, .

If

(9.2) =TI 1) < oo
v j=1

then rm(M)zé\(xl, --+1,) (see lemma 9.2 for the definition of :S'\(/Il,
). If S(a, -+2,) =S, in addition then M~R,QR,. If Ad=oco and
4;#0 for all j=1, ---»n then r.(M)=3S...

Proof. By Eq. (9.1) and [£,]—1, we have >4,=1. By lemma
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3.14 we can assume ilxyjzl (note that this does not affect whether
or not 4 is finite). iet M,=R(M,, 2,) where Sp(2,/M,)= {21, -4}

Case (i), 4<<oo. By lemma 2.13 M~M,. By lemma 9.2, r..(M,)
=§(/11, -2, If 3‘\(/11, -+ 2,) =Sy then 1 (M,) € S,; and by lemma 7.5 we
have R,QR,~R,QR,QM, since r.(R,QR,)=5,. Since 0,1<r..(M,)
we have Mi~M,QR,, M,~M,QR,. Thus M,~M,QR,QR,~R,QR,.

Case (ii), d=oo. Consider MQQM,=R(M,QM,, £,K2,)). By
lemma 3.5 t(M,, 2)) Cr.(M) and thus M~MQM, by lemma 7.5.
We have Sp(2,&Q2,/M,RQM,) = {A,:;:1,7=1,--n}. Define

(9.3) K= {2idy: 1<<j}
9.4) K= {Ai;: 1>7}
and a bijection ¢, from K, to K2 by
(9.5) Sidi =Aidi, 1 <J.
Define 7,; by
9.6) Ai=e"il;.
It follows from Eq. (9.1) that
©.D }EB 7,;=0,7=1, -+
We have
oo=A=Zv]§/l,-(e*’"f’2—1)z.
By lemma 8.7 this is equivalent to
9.8) Zv ; 2i(e™ —1)*=oo,
Since >1;4,;=>;4;=1 we have
(9.9) > (e™ —1)=0.
It follows from Egs. (9.8), (9.9) and lemma 8.8 that
ngjzixj(e”"‘—e""")zzoo.
Using lemma 8.7 again this is equivalent to

>3 2 225 Cpyi — 1) 2 = o0,

v i<J
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Since 4;#0 for all j, it follows from Eq. (9.1) that this is equivalent
to

(9.10) Zv ; ik i —5) = o0,
For i=1.;,€K} let

(9.11) 7(2) =log(,2/2) =ny;—7:-
It follows from Egs. (9.7), (9.10), (9.11) that the conditions of lem-
ma 8.5 are satisfied and we have r.(MQQM,)=S... Q.E.D.

The statement that 4<Teo, :S'\(/ll, ---2,) =Sy implies M~ R,QR; is
nontrivial since the class S,; contains more than one isomorphic class
(see Sec. 10). If 1;=0 for some j then we can have 4=oo but r..(M)
#*S.. (see lemma 9.4).

If M is an ITPFI factor, r..(M) +S,:, then by theorems 3.9, 7.6
and 9.1 M must be isomorphic to one of the factors K,, 0<x< 1 or
R... The factors K, can be obtained as tensor products of type I,
factors (see definition 3.10). If M=R(M,, 2,), Sp(2,/M,)=,,1—2,)
and A,—1, then 0€r.(M) by lemma 3.5 and thus M« R,. However we

have

Lemma 9.4. Let M be an ITPFI factor, r.(M)+#S:, S;;. Then
M can be obtained as M=R(M,, 2,) where M, is type L, Sp(®,/M,)
=(,1—2,) and 1,—1.

Proof. By theorems 3.9, 7.6 and 9.1 M must be one of the fac-
tors R,, 0<x<C1 or R.. R, asgiven in definition 3.10 is already in
the desired form. By lemma 3.13 and theorem 7.6 R.QR,~R. if
x,¥#0,1 and log x/log ¥y is irrational. Thus it remains only to prove
the lemma for K,, 0<<x<<1.

Given 0<<x<C1, choose integers N; for each j<I. such that
N;x**>1. For each v, satisfying

n—1 n
(9.12) 23N, <v<2>N;
iz i=1
let
9.13) P { (A+x)  if v is odd
' L@+ if y is even.
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Consider M=R(M,, 2,) where Sp(2,/M,)=(4,,1—2,). Then (M, 2)
cS, and R.~MER, by lemma 5.4. We construct an x-sequence
for R(M,,2,) as follows. Let I,={2m—1,2m}, mel., Ki={(1—
Aom1)2om} ) K= {dem-1(1—2en)} and let ¢, be the unique bijection from
K, to K,.. Then

(9.14) bud/2=2%

for A€ K, and all m. If 2K, where v=2m satisfies Eq. (9.12) then
we have

(9.15) A=A+ 2T A+x) T>x /4.
It follows from Egs. (9.12), (9.13), (9.15) that
(9.16) SA(KD) =3 Nx¥ [4d=oo.

m j

It follows from Egs. (9.14), (9.16) that (/,, K., ¢.) is an x-sequence.
Thus xer. (M) and M~MKR,~R,. Q. E.D.

In Sec. 10 we consider ITPFI factors M=R(M,, 2,) where M, isS
type I, and r.(M)=S,,. Lemma 10.1 is the analog of lemma 9. 4 for
these factors. However it is not known whether or not all ITPFI fac-
tors in the Sy; class can be obtained as tensor products of type L fac-
tors.

10. The Class S,

In this section we give some elementary properties of tensor pro-
ducts M= @M, of type I, factors M, where r.(M)=S,;,. We prove
(lemma 10.1) that M is either hyperfinite II;,®1.., or is type III with
2,—1 where Sp(2,/M,) = (),,1—2,). We give some conditions that such
factors are nonisomorphic. Theorem 10.10 gives explicitly a nondenu-
merable family of mutually nonisomorphic type III factors with r..(M)
=So.

Lemma 10.1. Given M=R(M,, 2,), M, type I,,Sp(@,/M,) = (4,1
—2,), r.(M)=S,,. Then either M~R,QR, or M~R(M,, 2,), Sp(£2,
/M)=(,1—2,) and A4,—1. In the latter case M is type IIL
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Proof. By lemma 3.5, r..(M)=S,; implies that the only allowed
accumulation points of 2, are 1/2 and 1. If 1 is the only accumulation
point the first part of the lemma is trivially satisfied. If 1/2 is the
only accumulation point, then by lemma 9.3 r.(M) is either S, or S..
which is a contradiction. If 1/2 and 1 are accumulation points then we
can write M=M,QM, where M,, M, are tensor products of type I,
factors such that 2,—1, 1/2 respectively. By lemma 9.3, r.(M,) is
either S; or S.., hence we must have r..(M;) =S, and M,;~R,; by theo-
rem 9.1. r.(M,) must be either S, or Sy;. If r.(M,)=S, then M,
~R, by theorem 9.1 and M~R,QR,. If r.(M,) =S, then M,~
MyQR,, hence M~M,.

If M~R(M,, 2,), Sp(2,/M,)=(2,,1—1,), where 1,—1 then lemma
3.8 implies that >1(1—2,) =oo. It then follows from lemma 2. 14 that
M is type IIIL Q.E.D.

Definition 10.2. Given 0</,<<[,<<--+, [;—>0co and positive integers
Nl,Nz, Tt Let

(10. 1) Z,,: (1+e~”)—1, N1+"'+Nj_1<V£N1+"'+M.
We denote the factor M=R(M,, 2,) where Sp(2,/M,)=(@,,1—4,) by
MIl, Ny; b, Np; <] or M[I;, N;].

Lemma 10.3. Given M=M/[/;, N;]. Then r.(M) =S, if and only
if >INe™i <Coo,

Proof. We have M=R(M,, 2,) where Sp(@,/M,)=(,,1—2).
By lemma 3.8 r.(M) =S, if and only if 33(1—1,)<co. Since

(10.2) 1-4=>0+ée")™ N+ + Ny <<vNy+ -+ N
we have
(10.3) SN 'i>3,(1—2,)>1/23N;e™".
Q.E.D.

Lemma 10.4. Given M=M][/;, N;] where [;.,>(N;+1)I. If
S'N,e'i=o0 then r..(M)=S,,.

Proof. Consider any finite set I containing only »>N,+---+ N;.
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Then the interval between different points log x, x=Sp(2(1)/M(I))
is at least l;,;. Since lim [;=co it follows that r.(M)cS,;. Since
S, is excluded by lemma 10.3 we have r.(M)=S,,. Q.E.D.

It seems likely that lemma 10.4 should still hold if the condition
l;.:>>(N;+1)l; is replaced by

(10. 4) lim L,N"2/1;,,=0.

We remark that one can obtain sequences (/;, N,) satisfying the con-
ditions of lemma 10.4 by choosing N; larger than e’s and choosing /;,4
larger than [;(N;+1) for each j.

Lemma 10.5. Given />0, M=M{[n,l, N;] where the #»; are inte-
gers. Then MQR,~R, where x=¢"".

Proof. Clearly #(M) S, and the result follows from lemma 5. 4.
Q.E.D.

Lemma 10.6. Given 0<<[,/'<lco, M=R(M,, 2,) =M [n,l, N;] where
the #; are integers. Let x=¢”, x,=¢™'"%, kel.. If d,(M)=occ (see
definition 8.2) then MQR, +R,. . If this holds for all k1., then
M@R, ~R... Otherwise let K be the minimum % such that d, (M)
oo, then MKR, ~R.,.

Proof. Since x:Er.(M@R,) it follows that r.(MX®R,) is ei-
ther S.. or S., for some 2=1.. By lemma 8.11 r.(MQR,)=S,, im-
plies that d,,(MQR.,) =d,,(M)<eo. First two conclusions then fol-
lows. Conversely, if d,,(M)<<co then MR, QR, ~R., by lemma 8.3.
Hence r.(M) Cr.(R,,)=S,,. Since S,,CS., implies £<#, r.(MQR,,)
=S,, for the minimum % with finite d,,(M) and hence MQR, ~R,,.

Corollary 10.7. Given 0<<l, I'<oo, M,=Mnl, N;i, M,=
M#nl’, N7 where the #;, %, are integers. If d,(M,)=o0, x=¢"' then
M~ M,.

Proof. We have r.(M,QR,)=S,. By lemma 10.6, d,(M,)=co
implies that r.(M,QR,) #S.. Q.E.D.

We remark that given M,, M, as in corollary 10.7 where [#/,
we can obtain r..(M,) =r.(M,) =S, and also d,(M,)=oco by taking N;
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sufficiently large for each j.

Lemma 10.8. Given M,=M|[/;, N;], M,=M]{l;, N;] where > N;e™’,
=oo, If l}—1;—k as j—>oo then é¢*cr.(MiQM,).

Proof. We have M,=R(M,,6 2,), i=1,2. Let M,=M,QM,,
gy:.Qh,@.sz. Then M1®M2:R(My, |Qy>. Let

(10.5) =1+’ N (A+e)™
(10.6) =1+ T A+ )T =e"in,

where N,+-++ N, <<v<N,+-N;. Then p.,p.ESp(2,/M,). Let
Iv: {V}a K:f: {ﬂvi}, 1:1; 2 and Doty = My We have

(10.7) SIACK) = S = (1/4) SN, = oo

It follows from Eq. (10.6) that

lim ! ek - /uﬂ/:uul ] = 0'
]

Thus (Z,, Ki, ¢,) is an e*-sequence for M, R M,. Q.E.D.

Corollary 10.9. Given 0<</<Too, M,=MI{n;l, N;], M,=M [njl, N}
where #;, n; are integers and r.(M,) =r.(M;)=S,. If

(10. 8) N > (Nj+1) (m;+1)
(10.9) n;+1>(N;+1)n;
then M, M,.

Proof. Let M;=M[(n;+1)I, N]]. By lemma 10.8, ¢'cr.(M, R
M;). We can write M; @ M;=M [nl, Ny; (ni+1)I, Ni; n,l, Ny; ---]. It
follows from Egs. (10.8), (10.9) and lemma 10.4 that r..(M, R M,)
=S,:. Q.E. D.

Theorem 10.10. There exist nondenumerably many mutually non-
isomorphic factors M with r..(M)=S,,.

Proof. Let M,=M[l;+%N,],0<k<1 where [;,,>2(N;,+1)({;
+1) and > N,e'i=oo (this last condition can be achieved by choosing
N, sufficiently large for each j). By lemma 10. 4, r.(M,) =r..(M,QM,)
=S,;. By lemma 10.8, e¢**er.(M,QM,). Thus k+k%" implies that
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M~ M,. Q.E.D.

11. Another Algebraic Invariant for ITPFI Factors

In this section we define a second algebraic invariant p(M) for
ITPFI factors M, and use it to analyze further the S, class.

Definition 11.1. Let M be an ITPFI factor. We define the
algebraic invariant o(M) as the set of all x=[0,1] such that
R.~R.Q M.

Given M=R(H,, M,, 2,) we note that d,(M, 2) as given in
definition 8.2 does depend on the vector 2=2,. However if
Yv=Qy =R (H,, 2,) then d,(M, 2)=co if and only if d,(M, ) =oco.
Thus by a slight abuse of notation we can write d,(M)=co if
d.(M, ) =oo for any (and thus all) =Ry =QR(H,, 2,).

Lemma 11.2. Given M=R(M,, 2,). Then

o(M)={x<[0, 1]: d.(M)<Too}.

Proof. Assume d,(M)<<eo. Since d,(R,)<<oo it follows that
d.(M@R,)<eo. Since x<=r.(MXR,) we have R,~R,Q M by lemma
8.3. Conversely, by lemmas 8.11, 8.14, 8.16 R,~R,®X M implies
that d.(MQR,)<eo and thus d,(M)<oo. Q.E.D.

Lemma 11.3. Given 0<<x<<1, M=R(M,, 2,), x<p(M). Then
xireo(M), nel..

Proof. By definitions 8.1 and 8.2, d,..(M, 2)<d,(M, 2). The
result now follows from lemma 11. 2. Q.E.D.

Lemma 11.4. Given ITPFI factors M, N. Then
p(MQQN)=p(M)MNo(N).

Proof. We have d, (M@ N)<co if and only if d,(M)<eo and
d.(N)<Ceo. The result now follows from lemma 11.2. Q.E.D.

Lemma 11.5. o(Ry) =10, 1)
o(R,)=(0, 1]
0<R0®R1) = (0, 1)
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o(R)={x'"; ncl.} 0<x<1
o(R.)=¢.

Proof. We have x<p(R,) if and only if R.~R,QR, which is
the case if and only if ye7.(R,)=S,. This argument gives p(R,),
0<y<1. o(RXR,) now follows from lemma 11.4. Since R,QR.~
R.~+R, for any x=[0,1] we have o(R..)=¢. Q.E.D.

Lemma 11.6. Let M be an ITPFI factor. Then 0=o(M) if and
only if M~R,, and 1€p(M) if and only if M~R,.

Proof. By lemma 11.5, 0<p(R,). Conversely, if 0=p(M) then
Ry~RQM and it follows that M must be type I since R, is type L..
Since the definition of an ITPFI factor excludes finite type I, we have
M~R,.

By lemma 11.5, 1€p(R,). Conversely. if 1p(M) then R,~R,
QM and it follows that M must be finite since R, is type II,. Since
M cannot be finite type I, and all hyperfinite II; factors are isomorphic,
we have M~R,. Q.E.D.

In the remainder of this section we consider tensor products
M=Q M, of type I, factors M,.

Lemma 11.7. Given 0<</, k<<oco, M=R(M,, 2,)=M|[n;l, N;]
where the »; are integers (see definition 10.2). For each j choose

an integer p; so that |§;| is a minimum where

(11. 1) Bj:pjk“njl.
Let y=e™ Then d,(M)<co if and only if
(11.2) SINe 15t < oo,

i=1

Proof. For each j, choose m; so that (0, m;) gives the minimum
-1 j
for 8,(M,, £2,) in Eq. (8.1) where > N,<<y<>\N,. Let
1 1

(11. 3) 5,’-=m,~k—n,~l.

Since 1<<(1+e"*)/(1+e"i*P*)<¢* and a similar inequality holds for
—Fk, |5 is bounded by k2 Hence we have

ALO  8(M,, 8)=[(L+em) e (L4t )™
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+ [(1_|_enj1)—1/2__ (1+enj1+8§)—1/2]2
=e"'(1—e%™)*(1+0[e’])

where the second term is (1-+e"*) '(1+e"'e®) e (& —1)2[(1+
e"'e®) 2+ (1+¢"")V*] 72 and yields the main contribution. Thus

(11' 5) dJ<Mv7 '-Qv) = Zay (Mv, .Qv) = ZN,-E_”JI(]_ ——es;)z [1 —+ O(e—”ﬂ)] .

Since n;—>cc (see definition 10.2) it follows that d,(M)=oc if and
only if

(11.6) SN (1—e %) =oco,

Since |0;| <k it follows from the same argument used to prove lemma
8.7 that Eq. (11.6) is equivalent to

11.7) SIN,e ()2 = oo

Since n;—oo, it follows from definition 8.1 and Egs. (11.1), (11.3),
(11.4) that there is some finite J and some fixed e=>0 such that for
all j >, if either 0;<<e or 8;<e then m,;=p; and §,=0;. Since we
also have |d;}, [b‘;lé%k, it follows that there exist positive con-

stants C,, C, such that
(11.8) Cilo; 1 =105 =Gl o], 7=>T.

It follows from Eq. (11.8) that Ea. (11.7) is equivalent to Eg.
(11. 2). Q.E.D.

Lemma 11.8. Given [, &k, - k,=(0, o) such that %,/ is irra-
tional, 7=1,---s#. Then there exists an ITPFI factor /M such that
e'eo(M), jEl., and ereEp(M), i=1,---n.

Proof. Consider M=R(M,, 2,)=M[(71)I, N;] where we choose
N; as follows. Define

(11.9) e =min|mk,— (G|, i=1,---n

where the minimum is taken over integers m,. Since k%;/Iis irrational
we have e; >0 and it follows that we can choose N; sufficiently large
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for each j such that
(11.10) >IN0} =00, i=1,-n.

It follows from lemma 11.7 that e*e&p(M), i=1,---n. By construc-

tion we have

i-1
(11.11) 81 (M,2,)=0 if »>>IN,
i=1

and thus
dz"” (M, ,Q) = 265"' (Mu’ QV)<OO

for all jel.. It follows from lemma 11.2 that e¢/p(M), jE<l..
Q.E.D.

Corollary 11.9. The ITPFI factors constructed in lemma 11.8
belong to the class Si;.

Proof. The algebraic invariant p(M) is not one of the sets
given in lemma 11.5. Q.E.D.

We note that since the ¢; defined by Eq. (11.9) are bounded, it
follows from Eq. (11.10) that

(11.12) SINe 0D =00,

If the condition given in lemma 10.4 were satisfied we would have
N;<<j, which contradicts Eq. (11.12). Furthermore, since Eq. (11.10)
is the only condition the N; must satisfy, they can be made arbitrarily
large. Thus Eq. (10.4) is not a necessary condition that r.(M)=
Sor.

We now use lemma 11.7 and some results from number theory
concerning the approximation of irrationals by rationals to construct
more examples of ITPFI factors M in the class S,;. Given 0<Ck,
[/<Coo and an integer #. Choose an integer m such that 6= |mk—nl| is
a minimum. We have

s=nk|(l/k)—(m/n)|.

We recall that a real number & is said to be approximable by
rationals to order p if there exists a positive constant ¢ depending
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only on & such that the inequality
(11.13) le—m/n|<<c/n

has infinitely many rational solutions #/z with #>0. It is known
that all irrational numbers are approximable to order 2, and that irra-
tional number & whose continued fraction has bounded partial quotients
cannot be approximated to any order higher than 2. The set of all
irrationals with bounded partial quotients has measure zero, but it has
the cardinal number of the continuum. It is an easy matter to con-

struct irrational numbers which can be approximated to any degree
p=2.

Lemma 11.10. Let &' be a positive irrational number which is
approximable by rationals to order p=2+¢, ¢>0. Given 0<</<Teo
there exists an ITPFI factor M such that e, e¥<=p(M) and
e p(M) where 67 is any irrational with bounded partial quotients.

Proof. There is a positive constant ¢ and an infinite sequence
of integers m;, n;>>0, j<I. such that

(11.14) [ —m;/n;| <c/nh.

Since #;,>>0 we can order the #; so that they are increasing. Con-
sider M=M/In,l, N;] where the N; will be chosen later. By construc-
tion d,-. (M)<Ceo and thus e*€p(M). By lemma 11.7 e¥<p(M)
if and only if >IN, ":'6’< oo where

(14.15) 0;<<ngl(c/n)) =c&ln;'~=.
Thus we have e ¥ <p(M) if
(11_ 16) Ejvje—-njln}-2—26<oo.

Now let 6 be any positive irrational number with bounded partial
quotients. Then there exists a positive constant y such that

1
(11.17) min |67 —m)/n;| > /07

7

where the minimum is taken over all integers m;. By lemma 11.7
e&p(M) if and only if >IN, "i'8;()*=oc where
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(11.18) 8,(0)=100n5"" 3.

Thus e ¥&Eo(M) if

(11.19) SINe"i'n;* ¢ =oo,
Choose N; so that

(11.20) 257> N,e"i'n;?-e >4

then Eq. (11.19) is satisfied. Since the #; are strictly increasing we
have #;,2>j. Thus

Nerilpy?-te<<2j71¢
and Eq. (11.16) is satisfied. Q.E.D.

It is not clear whether or not the algebraic invariant p(M) will
prove to be a useful tool for the program of classifying all ITPFI
factors. Thus it is not known whether or not o(M,) =p(M,)
implies M,~M,, or even whether o(M)=p(R,) implies M~R,,
0<<x<<1 (Gf x=0, 1 see lemma 11.6). Furthermore it is not clear
whether or not all sets p(M) allowed by lemma 11.3 actually occur
for some M, although lemmas 11.8 and 11.10 suggest that lemma
11. 3 may be the only simple general property of o(M).

For further classification of an ITPFI M, we may use r.(MQN ),
where N runs over all ITPFI. Again we do not know whether
r (M\QN) =1.(M;QN) implies M,=M,.

12. Some Applications

In this section we determine the isomorphic class of some factors
which have been studied previously in the literature [1], [3], [4],
[5], [7], [15], [18]. In particular we show that certain factors
occurring in the quantum theories of infinite free Bose and Fermi
systems at a finite temperature are isomorphic to the factor K...

We consider first some factors associated with the Fock
representation of the canonical commutation relations (CCR’s). Let K
be a real Hilbert space and let H:(K) be the complex Hilbert space
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on which the Fock representation Ux(f), Ve(g), f, g=K of the
CCR’s over K is defined. Let K,, K, be subspaces (closed linear
subsets) of K. The von Neumann algebra

12.1) R(K,K,/K)= {UF(f)v Ve(g); fEK,, gEK,}"

was introduced by Araki [1]. In the following we assume the reader
is familiar with the results and notation of [1]. Given K,, K, we
define

K,=K.NK;
KsszﬂKf
KGZKIDKZ

K=K KN K5
Ky=K:NK:;NK;.

The commutant of R(K,, K,/K) is R(K;, Ki/K) and its center
is R(K,, K;/K). Furthermore it is unitarily equivalent to the tensor
product of a maximal abelian algebra R(K,, K;/K,DK;), a type I
factor R(K;, K:/K;), and a factor R(K;, K;/K,). Therefore we are
interested in the factor R(KX;, K,/K) when any two of K,, K,, K3,
K3 have zero intersection. In this case there exists a unique closed
linear operator ¢ from a dense set in K, into Ki which is defined by
the requirement that the graph of ¢ is K, in K=K,PK:. It follows
from Theorem 2’ of [1] that R(K,, K,/K) is then determined up to
unitary equivalence by the spectral measure and multiplicity function
of the nonnegative selfadjoint operator &«=¢*¢ on K,. If the operator
a has only a discrete spectrum, then R(K,, K,/K) can easily be con-
structed as an ITPFI factor. It is known that R(K;, K,/K) is type
I if and only if « is a trace class operator, and that otherwise it is
type III [3]. If the spectrum of « is continuous then R(K,, K./K)
can be considered as the analog of an ITPFI factor for the continuous
teasor product introduced in [2]. In the following we show how the
factor R(K,, K,/K) can be obtained as the factor generated by a
certain reducible representation of the CCR’s.
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Let W be a real Hilbert space and let K=W&W. The Fock
representation of the CCR’s over K is given by the equations

(12.2) He(K) =H:(W)RQH:(W)
(12.3) Ue(f:Df2) =Ur(f) QUs( f2)
(a2.4) Ve(g:D g2) = Ve (g) QVr(gn).

Let p be a (possibly unbounded) selfadjoint non-negative operator on
W. Then the equations

(12.5) U (f) =Ue([1+] " )QUr(0"f)
(12.6) V() =Ve([140]"°f )QVe(—0""g)

define a reducible representation of the CCR’s over the domain D of

the operator p'?> on W. The operator algebra

(12.7) R()={U.(/), Vo(8): f, g €D}”

is a factor (see Sec. 4 of [4]). If we define subspaces of K by
(12.8) K.={fQo"*A+o)7f: fEW}

(12.9) K= {f@—o""(L+0)f: fEW}

then

(12.10) R(p)=R(K,, K,/K).

It follows from a straightforward calculation that the operator ¢ from
K, to Ki discussed above is given by

(12.11) o(fDo"*(A+p)*f ) =20f D—20"* A+ )
where f is in the domain of p, and that
(12.12) a=¢*¢=4p(1+p).

It now follows from the above discussion that any factor R(K,, K,/K)
can be obtained as R(p) for some p.

If the spectrum of p is discrete and is given by {4,; #€I.} then
R(p) can be constructed as an ITPFI factor R(M,, 2,) where M, is
type I. and Sp(Q.,/M)={xi(1—=x,)7': k=0,1,2,---} where x,=
L, (1+2,)7 (this follows either from Eq. (10.52) of [1] or Eq. (A17)
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of [4]). It follows from lemma 5.10 and definition 3.2 that if 1 is
an accumulation point for the eigenvalues 4, then x<r.(R(p)) where
x=2(1+2)"". Dell’Antonio [7] has shown that any R(p) is unitarily
equivalent to some R(p,) where p, has a discrete spectrum only. In
the construction of [7], p; satisfies the condition that the operator

0 *(1+p) 2 —pi* (1 +p,) M2

is Hilbert-Schmidt. It follows that any point 2 in the continuous
spectrum of o will be an accumulation point for the eigenvalues of
p.. Thus p having a continuous spectrum is a sufficient condition that
R(o) ~R...

The representation of the CCR’s describing a nonrelativistic
infinite free Bose gas at a finite density and finite temperature with
no macroscopic occupation of the ground state is of the form U,(f),
V.(g) where the operator p¢ has a continuous spectrum (see Egs.
(4.10-13), (5.2) of [4]). Thus the von Neumann algebra
{U,(f), Vo.(2)}” in this case is the factor R...

Let U(f), V(g) be the representation of the CCR’s describing a
relativistic free Bose field where f, g are suitable functions defined on
R:. Let 4 be any open region in R°:. In the local observables

approach to quantum field theory one is interested in the von Neumann
algebras

(12.13) R ={U(Sf), V(g): support fC4}”.

We now construct R(4) as R(K,, K,/K) where K is the real Hilbert
space L*(K*). We define an unbounded nonnegative selfadjoint operator
o on K by

(12.14) (of ) (k) = (B+m?)"f(E)  (m>>0)

where f(k) is the Fourier transform of f(x). The operators U(f),
V(g) are defined on the Fock space Hyx(K) by

(12.15) U(f)=Us(o"*f), fED
(12.16) V(g)=Ve(o™?g)

where D is the domain of »'%. Given 4CR® we define
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(12.17) K,={feK: support fC4}
(12.18) K, ={o"*f: feK,\D}
(12.19) K,={o™?*f: fEeK,}.

Then R(4)=R(K,, K,/K). The operator ¢ for this case is
6= (0 ?Pu'?*—1) P,

where P is the orthogonal projection on X,, and P, is the orthogonal
projection on K;. Thus R(4) is determined by the spectral properties
of the operator

(12.20) a=¢*¢=P,(0"*Po*—1) (0 *Po'*—1) P;.

While we have not been able to determine the spectrum of «, it seems
a reasonable conjecture that R(4) ~R.. for any 4+¢, R°

We now consider the factors defined by some representations of
the canonical anticommutation relations (CAR’s) analogous to the
representations of the CCR’s defined by Egs. (12.5), (12.6). We
follow the notation of [5]. Let K be a real Hilbert space and let
H,w(K) be the complex Hilbert space on which the no-particle
representation of the CAR’s over K is defined. Let p be a self-
adjoint operator on K satisfying 0<p<1. We consider the repre-
sentation of the CAR’s defined by the equations

(12.21) H=H;w(K)QH;w(K)

(12.22) Yo( f ) ="rsw([1—p] mf) X1+ ﬁJw®“Jwa<Pll2f)*

(Araki and Wyss [5], Shale and Stinespring [18]). The operator
algebra

(12.23) Ra(0) =0 ( ), w()*: fEKY

is a factor. If the spectrum of p is discrete and is given by
{4.: n<l.}, then R.(p) can be constructed as an ITPFI factor
R(M,, 2,) where M, is type I, and Sp(2,/M,)=(,, 1—21,). It follows
that if 2 is an accumulation point for the eigenvalues 1,, then
xEr.(Ra(p)) where x=1(1—2)"%. Dell’Antonio [7] and Rideau [15]
have shown that any R.(p) is unitarily equivalent to some R,(p,)
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where p, has a discrete spectrum only. In the construction of [7], o,
satisfies the condition that the operator

0P —p) P —p* (L —p,) ™"

is Hilbert-Schmidt. It follows that if p has a continuous spectrum the
factor R4(p) is the factor R...

The representation of the CAR’s describing a nonrelativistic
infinite free Fermi gas at a finite density and finite temperature is of
the form +,( f) where the operator o has a continuous spectrum (see
Sec. 12 of [5]). Thus the von Neumann algebra R.(p) in this case
is again the factor R..
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