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On Some Generalized Compactness
Properties*

By

John GREEVERf

1. Introduction

Since Dieudonne [3] first defined paracompactness in 1944, various
authors have introduced, studied and related to one another a number

of properties similar in description to paracompactness. Examples are
metacompactness [1], hypocompactness [9], countable paracompactness
[4] and countable metacompactness [6]. The purpose of this paper is
to present some examples which clarify the extent to which Hausdorff
spaces with various combinations of these properties can exist. Since
terminology varies considerably in the literature, some preliminary de-
finitions are advisable. Terms not defined herein may be found in [5].

Definition 1. Suppose C is an open cover of a space X. Then

C is

( i ) point-finite {point-countable) if and only if each element of
X belongs to only finitely (countably) many elements of C.

(ii ) locally-finite (locally-countable} if and only if each element of
X belongs to some open set which intersects only finitely (countably)

many elements of C.

(iii) star-finite {star-countable} if and only if each element of C

intersects only finitely (countably) many elements of C.
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Definition 2. A topological space X is

( i ) (countably) metacompact (CMC or MC) if and only if each

(countable) open cover of X has a point-finite, open refinement.

(ii) (countdbly} paracompact (CPC or PC) if and only if each

(countable) open cover of X has a locally-finite, open refinement.

(iii) (countdbly} hypocompact (CHC or HC) if and only if each

(countable) open cover of X has a star-finite, open refinement.

(iv) (countably) compact (CC or C) if and only if each (count-

able) open cover of X has a finite, open refinement.

(v) Lindelof (L) if and only if each open cover of X has a

countable, open refinement.

For convenience in presenting diagrams, the abbreviations shown

in boldface type will be used occasionally in lieu of the terms them-

selves. The hypoLindelof (HL) property is defined below in Section 3.

The implications shown in Diagram 1 are either obvious or follow from

Merita's theorem [16, Th. 6] that every paracompact Hausdorff space

is countably hypocompact.

(Hausdorff Spaces)

L < C > CC
I I I

HL < HC CHC
1 ^ \

PC CPC
\ \

MC >CMC

Diagram 1

2. Lindelof Spaces

In Lindelof spaces, there is an obvious equivalence between each

countable compactness property and the corresponding compactness

property. Thus, Diagram 1 reduces to the following:

(Lindelof, Hausdorff Spaces)

C <-> CC -> HC <-> CHC <-> PC ^> CPC -> MC o CMC
Diagram 2
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The following examples show that there are no additional implications

between these properties in Lindelof, Hausdorff spaces.

Example A. A Lindelof, Hausdorff space which is not countably

metacompact.

Construction. Let X be the set of real numbers, let A be the

set of rationals, let B=X—A, let Q be the Euclidean topology for X

and let ET= (U-A\ U^G, A'c:A}. The fact that (X, 5) is a Lindelof,

Hausdorff space makes it easy to see that (X, 3") is also.

Let C be the countable, open cover {(X— A) U {a} : a^A] and

suppose there exists a point-finite, open refinement 3H of C. If x^B,

then x belongs to only finitely many elements of Si and so there exists

£*>0 such that {y: \x—y\<ef, y^B} c:R whenever x^R^Sl. By the

Baire Category Theorem, there exist e>0 and an open interval Q in

(-X", (?) such that D= {x: e,>e, x^BTiQ} is dense in Q. Without loss

of generality, one may assume Q is of length less than e. Then each

element of SI which intersects D must contain Br}Q- For each ae

Ar\Q, let Ra be such that x&Ra^&; let £={Ra\ a^Ar\Q}. Then

Q is an infinite subcollection of 31. Also, if a^A^Q, then Ra inter-

sects D and so Ra contains J5HQ- Therefore each point of J3RQ be-

longs to all elements of S and thus £, and hence 5i, is not point-

finite. This is a contradiction and so (X, 3") is not countably meta-

compact.

Example B. A Lindelof, Hausdorff space which is metacompact

but not countably paracompact.

Construction. Let X be the set of real numbers, let A= {1/n:

n = l, 2, •••}, let e be the Euclidean topology for X and let 3*= {U-B:

Be:A}. As in Example A, note that (X, 3") is Lindelof and Hausdorff

since (X, <?) has these properties. For each Fe£T, let F* be an open

set in 8 such that V= V* — B for some Be:A.

Let C be the countable open cover {(X—A)[^ {a} : a^A}, and let

31 be any open refinement of C. If O^FeST, then infinitely many

elements of A belong to F* and so F intersects infinitely many ele-
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ments of SI. Thus Si is not locally-finite and so (X, £T) is not count-

ably paracompact.

Now let <U be any open cover of (X, £T). Then <3J= {U*: f/EE^U}

is an open cover of (X, (?) and hence, since (X, <S) is Lindelof and

metacompact, there exist a countable, open (in <?) refinement 5^ of

^(7 and a point-finite, open (in <?) refinement J5R2 of CV. Let 5ii =

{£-4: tfe&J and 3U={£-4: J?^5i2}. For each positive integer

n, let G« be an element of 3" which is contained in some element of

°U and is such that l/neG.cfr: l/(« + l)<*<l/(H-J)}. If £ =

{G,: « = 1, 2, —}, then 3&\JS and 3^1J5 are countable and point-

finite, respectively, open refinements of V and so (Jf, £T) is both

Lindelof and metacompact.

By a theorem of Morita [16, Th. 10], every regular Lindelof space

is hypocompact. Thus no regular space exists with the properties of

Example A or Example B. On the other hand, by a theorem of

Dieudonne [3], every paracompact Hausdorff space is normal. Thus

only normal spaces exist with the properties listed in Example C or

Remark D.

Example C. A Lindelof, Hausdorff space which is hypocompact

but not countably compact.

Construction. Any separable metric space which is not compact

has the required properties. A nonmetrizable example is furnished by

the set of real numbers with the lower-limit topology.

Remark D. There exist compact, and hence Lindelof, Hausdorff

spaces.

3. HypoLindelof Spaces

The property of hypo Lindelofness is introduced now because of its

usefulness in Theorem 1.

Definition 3. A space X is hypoLindelof if and only if each

open cover of X has a star-countable, open refinement.
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Theorem 1. Let X be a hypoLindelof space. Then

( i ) X is metacompact if and only if X is countably metacompact.

(ii) X is paracompact if and only if X is countably paracompact.

(iii) X is hypocompact if and only if X is countably hypocompact.

(iv) X is compact if and only if X is countably compact.

Proof. Let C be an open cover of X. Since X is hypoLindelof,

there exists a star-countable, open refinement SI of C. Let {5£a: a^A]

be the collection of components of SI and, for each a^A, let Xai=

LJ-S^x. Suppose $^A. Then it follows by a simple modification in the

proof of a theorem of Lefschetz [13, p. 15] that 31& is countable.

Also, it is easily seen that {Xa: a^A} is a pairwise-disjoint collection

of open and closed sets whose union is X. Thus St$^}{X—X^ is a

countable open cover of X.

According as X is countably metacompact, countably paracompact,

or countably hypocompact, let Sl'& be an open refinement of SlQ\J {X

— XB} which is point-finite, locally-finite, or star-finite, respectively.

Let JR0 consist of those elements of Sl'& which do not intersect X—X&

Then St'& is a collection of open sets which is point-finite, locally-

finite, or star-finite, respectively. Since \J3lp = X& and since {Xa:

a^.A} is a pairwise-dis joint open cover of X, then U{5C': a^A} is an

open refinement of C which is point-finite, locally-finite, or star-finite,

respectively, according as X is countably metacompact, countably para-

compact, or countably hypocompact. Finally, if X is countably com-

pact, then the above proof shows that X is metacompact. A theorem

of Arens and Dugundji [1] states that every countably compact, meta-

compact Trspace is compact. Iseki [11, p. 41], without use of his

assumption of the TVaxiom, has shown that every point-finite, open

cover of a space 5 has a subcover *U which contains no subcover of S

different from CU. When S is countably compact, it is easily seen that

V must be finite and so the Arens-Dugundji Theorem does not require

the Trhypothesis. Thus X is compact, if X is countably compact.

By virtue of Theorem 1, Diagram 1 reduces to Diagram 3 for

hypoLindelof Hausdorff spaces which are not Lindelof spaces. Examples
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E, F and G show that no additional implications exist.

(HypoLindelof, NonLindelof, Hausdorff Spaces)

HC <-» CHC «> PC «> CPC -> MC 4» CMC

Diagram 3

Example E. A hypocompact, and hence hypoLindelof, Hausdorff

space which is not Lindelof.

Construction. The set of real numbers with the discrete topology

has the requisite properties.

Definition 4. A disjoint union of two spaces (Xl9 Si) and (Xz,

£T2) is a space (YiU F2, 2") where (Ft, ^UJ and (F2, ^2) are homeo-

morphic to (^, £TO and (X2, £T2) respectively, S={U1\JU2: Ke^,

t/ie^} and ̂ ^^ = (5.

It is easily seen that a disjoint union of spaces X and F has one

of the 10 compactness (and Lindelof ness) properties under discussion

if and only if each of X and F has that property.

Example F. A metacompact, hypoLindelof Hausdorff space which

is not countably paracompact and not Lindelof.

Construction A disjoint union of the spaces of Examples B and

E has the requisite properties.

Example G. A hypoLindelof, Hausdorff space which is not count-

ably metacompact and not Lindelof.

Construction, A disjoint union of the spaces of Examples A and

E has the requisite properties.

By Dieudonne's theorem cited above, every space with the proper-

ties of Example E must be normal. However, CMHPHOB [17, p. 256]

has shown that every regular hypoLindelof space must be hypocompact

and so no regular space exists with the properties of Example F or

Example G.

4. NonhypoLindelof Spaces

By the Arens-Dugundji Theorem, a nonhypoLindelof, metacompact,
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Hausdorff space must fail to be countably compact. Thus Diagram 1

reduces to the following diagrams:

(NonhypoLindelof, Metacompact, Hausdorff Spaces)

PC — CHC -> CPC

Diagram 4

(NonhypoLindelof, Nonmetacompact, Hausdorff Spaces)

CC -> CHC -> CPC -> CMC

Diagram 5

Iseki [10] has shown that countably paracompact, normal Hausdorff

spaces must be countably hypocompact, but the author knows of no

solution to the following problem:

Problem 1. Does there exist a countably paracompact Hausdorff

space which is not countably hypocompact ? If so, can such a space

be metacompact ?

Except for the examples needed to answer affirmatively the above

questions, the following examples show that no additional implications

exist between the properties of Diagram 4 or Diagram 5. Note that

a space with the properties of Example H must be normal by Dieu-

donne's theorem (see Section 1).

Example H (Morita). A nonhypoLindelof, paracompact, Hausdorff

space.

Construction. Let I={x: 0<#<;i} and let X consist of the

union of uncountably many distinct copies of /, with the point 0 on

each copy identified. Define a metric p for X by p(x, jO = \x — y\, if

x and y belong to the same copy of /, and p(#, y)=x+y, otherwise.

Then the metric space (X, p) is paracompact by a theorem of Stone

[18]. Also, (JST, p) is easily seen to be a regular, connected, non-

Lindelof space and thus, by a corollary of Morita [16, p. 66], is not

hypocompact. The theorem of CMHPHOB quoted in Section 3 shows that

X is not hypoLindelof.

Example Ii (Bing and Michael). A nonhypoLindelof, metacompact,
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nonparacompact, countably hypocompact, normal Hausdorff space.

Constructioiio Let P be the set of real numbers, let Q be the

set of all subsets of P and, for each p^P, let fp be the function from

Q into {0, 1} such that //?) = ! if and only if p^q. Let F*={fp:

and let F be the set of functions from Q into {0, 1} such that

=0 except for finitely many q^Q. Let G = F*UF and let £F be

that topology for G which has as a base the collection consisting of

(i) {/} whenever /GEF-F* and (ii) {/: /eG, f(q) =/,(?)} whenever

^?eP and r is a finite subset of Q. Michael [15, Example 2], through

modification of an example of Bing [2], has shown that the space

(G, £T) is a metacompact, nonparacompact, normal Hausdorff space.

Dowker [4] and Katetov [12], independently, have shown that count-

able metacompactness and countable paracompactness are equivalent in

normal spaces. Thus (G, 3") is countably paracompact and hence, by

the theorem of Iseki [10] cited above, (G, 2") is countably hypocom-

pact. That (G, 2") is not hypoLindelof follows from Theorem 1.

Example Ji (Heath). A nonhypoLindelof, metacompact, non-

countably-paracompact, regular Hausdorff space.

Construction. Let X consist of all points in the xy-plane such

that jC>0 and let £T be that topology for X which has as a base the

collection consisting of (i) {(#, jy)} whenever y>0 and (ii) the set

Nf= {(#, .y): 0<#—p=y<e} U {(#, y)m. Q<p—x=y<Le} whenever p

is real and e>>0. Heath [8, p. 765] has observed that this space is a

metacompact, regular Hausdorff space. Suppose L= {(#, 0) : x is real}

and Q={(x, 0): x is rational}. Category arguments similar to those

on p. 69 of [5] show that {Npi p^Q}\J{X—Q} is a countable open

cover of X with no locally-finite, open refinement and {N}: p^L}\J

{X—L} is an open cover of X with no star-countable, open refinement.

Thus (X, £T) is neither couniably paracompact nor hypoLindelof.

By the theorem of Dowker and Katetov quoted in the discussion

of Example Il9 no normal space can exist with the properties stated

for Example Jt. A nonregular space is described in Example J2.
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Example J2. A nonhypoLindelof, metacompact, non-countably-
paracompact, Hausdorff space.

Construction. A disjoint union of the spaces of Examples B and

H has the desired properties.

Example Ko- A nonhypoLindelof, nonmetacompact, countably

compact, normal Hausdorff space.

Construction- The set of ordinals less than the first uncountable

ordinal with the order topology has the requisite properties. All

properties stated are well-known except perhaps for the first one

which follows from Theorem 1.

Example L0. A nonhypoLindelof, nonmetacompact, countably

hypocompact, non-count ably-compact, normal Hausdorff space.

Construction. A disjoint union of the spaces of Examples E and

K0 will suffice.

Example Mo. A nonhypoLindelof, nonrnetacompact, countably

metacompact, non-countably-paracompact, regular Hausdorff space.

Construction. A disjoint union of the spaces of Examples Jx and

K0 suffices.

Examples No, NI, N2. A nonhypoLindelof, non-countably-meta-

compact Hausdorff space.

Construction. For Examples N0, N± and N2 take a disjoint union

of the spaces of Examples A and K0, A and Jt or A and H, respec-

tively.

No space with the properties stated for Example M0 can be normal

by the theorem of Dowker and Katetov cited above. The spaces of

Examples N0, Nj and N2 are not regular and in this connection there

are outstanding unsolved problems.

Problem 2 (Dowker-Katetov). Is every normal Hausdorff space

countably paracompact ? [4, p. 221], [12, p. 90].

Problem 3 (Hayashi). Is every regular Hausdorff space countably
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metacompact ? [6, p. 164].

Note that, by the Dowker-Katetov theorem, an affirmative answer

to Problem 3 would automatically provide an affirmative answer to

Problem 2. Since posing problem 3, Hayashi [7] has shown that one

obtains a negative answer if one assumes the generalized hypothesis

of the continuum.

Younglove [19] attributes to Dowker the conjecture that every

countably paracompact Hausdorff space is normal and cites [4] as his

authority. This author can find no evidence that Dowker made such

a conjecture in [4]. At any rate, let Q be the first uncountable ordi-

nal and let X be the set of ordinals <J2 with the order topology.

Mack and Johnson [14, p. 240] have shown that the subspace {(#, y) :

%<Ly, %<£} of XxX is a countably compact, completely regular

Hausdorff space which is not normal.

In imitation of Definition 3, one can also define the paraLindelof

and metaLindelof properties. Some readers will undoubtedly wish to

know which of the nonhypoLindelof spaces in Examples H through N2

have these properties. We thus state without proof that Examples

H, J2 and N2 are paraLindelof, Examples It, Jj and N! are metaLindelof

but not paraLindelof and Examples K0, L0, M0 and N0 are not meta-

Lindelof.
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