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On the Convergence
of Ritz-Galerkin's Method

By
Tetsuhiko MIYOSHI

§1. Introduction

The present paper is concerned with Ritz-Galerkin's method to
solve approximately the boundary value problem:

(1.1) a - + b - - c u = f i n D
dx\dx)dy\dy J

where D is a bounded domain in the (#, jO -plane, P is the boundary
of D, and <z(>0), &(:>0), c(>0), / are smooth functions defined on

D. In Ritz-Galerkin's method, first we choose a system of linearly in-

dependent functions {^J such that they satisfy the given homogene-
ous boundary condition and they are dense in a function space con-
taining the exact solution of the above boundary value problem, and
next we seek the m-th approximation um in the form

(1.2) um k=i

calculating the coefficients {ak} by solving a system of equations

(1. 3) XA + & = 0 (5 = 1, 2, • • - , m),k=i
where

(1.4)
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The system of equation (1. 3) is called the determining equation

of Ritz-Galer kin's method.

Ritz-Galerkin's method was studied by many people, sometimes by

the use of classical techniques as in [1] , [2] , and sometimes by the

use of functional analysis as in [3] , [4] . However Ritz-Galerkin's

method does not seem to be frequently practised on a modern high-

speed digital computer. The main reason for this seems to be in

the difficulty in finding a system of functions {<pk} having the desired

property. In [1], Kantorovich presents a method to construct such a

system of functions and proves the uniform convergence of the ap-

proximate solution obtained from this system of functions. However

it is done only for the domain strongly restricted. In [2], Harrik

proves the uniform convergence of the approximate solution obtained

by Ritz-Galerkin's method for the domain with smooth boundary, but

he does not present any method to construct a system of functions

{<pk} adapt for such domain.

In the present paper, the author will present a method to find a

system of functions {q>k} adapt for some kind of domains, say, J?-type

domain, and further he will prove the uniform convergence of the

approximate solution obtained by Ritz-Galerkin's method for the domain

with great generality. Numerical examples are to appear in the sub-

sequent paper. The author acknowledges the encouragement and the

suggestions of Professor M. Urabe rendered during the preparation of

the present paper.

§2. A Method to Find a System of Functions

Necessary for Ritz-Galerkin's Method

To begin with, we seek function a(x,y) which satisfies the given

homogeneous boundary condition together with some additional condi-

tions. Let D be a given bounded domain in the (#, y) -plane. The

conditions which we request for function co(x, jy), are then as follows:

( I ) <»(#, jy) =0 on boundary T of Z), and <»(#, 3>)>0 in the interior

of D.

(II) co(x, jO is continuous and has bounded first derivatives in D.
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In addition, the first derivatives are continuous in D and have bounded

piecewise continuous derivatives in any closed subregion of D.

(Ill) There are five positive constants d, ^, ^2, Ci, C2 such that

(2.1) [$

(2.2) o>(

in D for p(*, jy)=dist((#,jO, ^)><5- Here 9?ya) denotes Q2(o/dXiSxj where

#! = # and xz=y.

If we can find a function «(#, jy) satisfying the above conditions,

then using such & (#,30, we consider the system of functions

(2. 3) {*(*, jO**r> (*, 5-0, 1, 2, -0,

which, as will be shown later, is indeed one of the desired system of

functions {<pk} . Hence the problem to find a system of functions neces-

sary for Ritz-Galer kin's method reduces to find a function o>(#, jy)

satisfying the above conditions.

Now, we shall show the method to construct a function co(x, j)

satisfying the above conditions for some kind of domains.

1°. The domain with algebraic boundary curves.

Let

(2.4) riA(*,jO=0
1=1

be the equation of the boundary curve, where A (x, jO are polynomials

of x and y such that A-fojO^O for (x,y)^D. Then the desired

co(x, y*) can be given by

(2.5) «(^^) = nA-(^^).
1=1

A circle, ellipse, polygon and the domain composed of these are the

examples.

2°. R-type domain. By .ff-type domain, is meant the domain com-

posed of a finite number of rectangles whose sides are all parallel to

either of the coordinate axes. For the ^?-type domain, neither the

convexity nor the simple connectedness is assumed.
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Before considering the general J?-type domain, let us consider the

simple case where the domain D is a Z,-type domain, that is, the domain

composed of three adjacent rectangles connected as in Fig. 1. For

such L-type domain, let us construct a function co(x, y) such that

(a) <o(x,y) satisfies the conditions (I), (II), (III);

(b) fl?,(*,jO=0 on BGL, CHO, DIMQT and arcHM, *>,(*, .y)=0

on PQR, OMN, FGHIJ and on arc HM.

Function <»(x,y) satisfying the above conditions can be easily

found as illustrated below with two examples in the case where the

rectangles composing the domain are all unit squares.
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Fig. 1

Example 1.
'4(jy—j;2) jn D1

4(*-*2) in D2

in D3

in D4

in D5

in D6

in D7
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Example 2.

/ ^
-I)2] in GHOL

in BDIG

-I)2] in OMQP

in IJRQ

in D3

16(x2 — %)(yz—30 in D4

in D5

**+y—i
^ /

in D7

Note that in Example 1, function o)(#, j>) is continuously differenti-

able in D, while in Example 2, it is continuously differentiable in D.

Now we shall consider the general R-type domain. Let us note

that in Example 1, function a)(x, y) is constructed by linking the func-

tions of the following five types:

(1) ^y-f) in D1;

(2) 16(*2+*)(J>2-30 in D3,

(3) IGC*2-*)^2-^) in D4,
(4) 1 in D7,

(5) 4[-/^T^2"-(^+/)] in D6.

In Example 2, function co(x, y~) is similarly constructed by linking the

functions of the following six types:

(1) 4(^-/) in BDIG,

(2) 16(*2+*) (y-jO in D3,

(3) 16(^-^)(y->) in D4)

(4) 1 in D7)

(5) -16(*2+/)(*2+/-- U in D6)
\ ^ /

(6) 16(4-/-/)(4^2-l)2+4(j;-3;2)[l-(4^-l)2] in GHOL.
\ " /
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Then we see without difficulty that the desired function a)(x, y~)

can be constructed for the general R-type domain by linking the func-

tions derived from those of the above types by simple transformations,

that is, expansion, contraction, rotation and translation. Moreover such

construction of function <o(x, jy) can be done on a computer without

much difficulty.

The second derivatives of function a)(x, jO constructed in the above

way are not continuous in D, but, if necessary, we can construct with-

out much difficulty the function CD(X, y) having continuous second de-

rivatives by the similar method.

§3e Notations and Function Spaces

In the present section, the notations which will be used frequently

in the later secitons will be explained and the function spaces which

will be necessary for subsequent discussions will be introduced.

1°. 9iU(i = l, 2) means du/dx, and 9*jU(i,j = l, 2) means d2u/dXi9Xj,

where x± = x and xz=y. Sometimes notations 9xu and 9yu will be also

used for 9u/9x and 9u/9y respectively.

2°. By a polynomial of degree m, we mean the polynomial of

the form

(3.1) S akt,3ty
*,s=0

and such a polynomial will be denoted by the notation pm (x, y).

3°. TftOO denotes a Chebyshev polynomial of degree k, that is,

(3. 2) Tk(x) = cos & (cos"1*)-

In what follows, we suppose D is a bounded domain in the (#, y)-

plane and all functions are real-valued.

4°. By C*(Z)), we denote the space consisting of functions which

are defined on D, vanish on the boundary of D and have continuous

&-th derivatives in D.
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o •
5°. By C*(D), we denote the subspace of C*(D) consisting of all

functions with supports in D.

6°. By Wl(P)9 we denote the completion of C~(D) under the

norm |[. ||i,L2(D) defined by

(3. 3) WiVa» = |M|!'o»+ IIMII'CD>+ IMJ'cio.

Lastly we consider a square S whose sides are #=±1, ! jv l<l

and |#|^1, y=±l.

7°. By Z,r(S), we denote the space consisting of functions such

that they are measurable with respect to the Lebesgue-Stieltjes measure

generated by the function <p(x,y) = cos"1* cos"1.? and moreover their

Lebesgue-Stieltjes integral

(3.4)

is finite. In the space L|(S), the norm will be introduced by

(3. 5) ||«||r= («, u)^

which is clearly equal to

(3. 6) \\\ ^"^f'ff 9LJJs yl— x 1/1— y

Evidently the space L|(5) is a Hilbert space if the inner product is

introduced by

§4B Theoretical Background of Ritz-Galerkin's Method

It is known that the boundary value problem (1. 1) has a unique

solution ^(^,^)eC2(JD)n WKJD") satisfying the equality

O

for any ^(^,^) in TTJC^) if the boundary of D satisfies a certain con-

dition, say, Poincare condition (see [7]). In what follows, the above
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condition on D will be called condition 04).

Now, consider the functional

(4. 2) /(«)

defined for u^Wl(D), and let ft(#, jO be an arbitrary function belong-
o

ing to Wl(U). Then, by (4.1), for y = u-u, we have

(4.3) /(ft) -7(S)

The above inequality shows that the solution of the boundary
o

value problem (1. 1) minimizes the functional I(u) in the space W\(D)
provided the boundary of the domain D satisfies condition (A).

Now let {(pk(x, jO) (k = l, 2, • • • , m) be a system of linearly indepen-
G O

dent functions belonging to C1 (D) (~] Wl(D) and put

(4.4) um(x,y)

Then from (4.2), by (1.4), we see that

(4.5) /(«.(*,JO)= "

Since

(4. 6) S ̂ *--flA= ̂  J(fl(-^)2 + *(-^)2+ ̂ ~k*^>

M
the quadratic form S aktSakas is positive definite. Then /(&») as a

second degree polynomial of {ak} (k = l,2, ••-, m) assumes a minimum
value when and only when

(4.7) |XA+& = 0 (5 = 1,2, -, w).

This equality coincides with determining equation (1.3) of Ritz-
Galerkin's method. This means that /(&„) assumes a minimum value
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when um is the m-ih approximation obtained by Ritz-Galerkin's method.

Now the quadratic form S a& A#s is positive definite, therefore clearly
M=i

This implies the determining equation has always a

unique solution, in other words, in Ritz-Galerkin's method, the m-th

approximation um(x, y) can be always determined uniquely for every

m.

Let Sm be a linear manifold generated by a system of functions

<Pk(x,y} (£ = !> 2, • • • , *w) and tim be an arbitrary function belonging to

Sm. Let u(x,y) be the exact solution of our boundary value problem

and «„(#, .y) be the m-th approximation obtained by Ritz-Galerkin's

method. Then, for $m = um — u and •qm = um — u, by (4.3), we have

However, as readily seen,

can be regarded as a norm of v^WTK-D)- Then inequality (4.8)

means that

(4.10) \\um-u\\j<\\um-u\\j.

Since um is an arbitrary function belonging to S«, the above inequality

implies that um is the best approximation in Sm in the norm Irl! / -

It is expected that the approximate solution um(x, y) converges

uniformly to the exact solution u(x,y} if the difference \\um — u\\f tends

to zero as m->°o. The subsequent sections are concerned with this

convergence problem and our discussions are based on the following

theorem which follows immediately from Lemma 1 in p. 338 of [1],

Theorem 4.1. Let T be the boundary of the domain D and
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, jO be a function belonging to 0(1)) satisfying the following con-

ditions :

(ii)

for any point p lying in D, where lp is a suitable line segment of
fixed length LQ centered at point p, and K0 is a constant independent
of the point p. Then for (#, jy) e D, we have

(4. 11)

if 2L0^e/Ko and dK0>s, and

(4.12)

otherwise. Here J is the diameter of the domain D and

A _ 1 , K ^_ 2 . 1

§5. Some Properties of Double Chebyshev Series

In the present section, we shall derive some properties of double
Chebyshev series which will be used later for proving the uniform
convergence of the approximate solution obtained by Ritz-Galerkin's
method.

For simplicity, let us suppose that the closure of domain D lies
in the interior of the square 5 whose sides are x=±l, \y\<Ll and
I#I<I1, y±l- Then clearly dist(F, 95)>0, where F is the boundary
of D and dS is the boundary of S.

Let u, v be arbitrary functions belonging to Lj-GS). Then by the
inner product

f*7rf*7r ^. ^, ~

(5. 1) (u, v) = \ \ u (cos 0, cos 0) v (cos 6, cos 0) dodo,
Jo Jo
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the space H^ {M(COS#, cos#) ; ^eJLr(S)} can be regarded as a Hilbert

space consisting of functions defined on 0<I0, 6<^n. In such a Hilbert
space H, the system of functions

(5. 2) -coskdcossd (k, s = 0, 1, 2--)
( TT )

is clearly a complete orthonormal system, where

/ 1 for k = s = 0

(5.3) £*..= i/2~ for fe = 0,
\ 2 for

Let

(5. 4)

be the Fourier series of ^(cos#, cos^) ^H, then clearly the Fourier
coefficient AktS are given by

p PTTPTT ^, ^.

(5.5) AktS = -^~-\ \ U(cos6,cos6)cosk6coss6ddd6
n Jo Jo

and we have Parseval's equality of the following form

(5. 6) {"{ V(cos0,

By (3.2) and (3.6), Fourier series (5.4) and Parseval's equality (5.6)

can be written respectively as follows:

(5. 7) «(*, JO - 1] ̂ .,4,.. T,(^) Ts(y)
A,s = 0

(5.8) |!M|!l = 7T2f]Aj.
fe,5 = 0

Hereafter the series in the right-hand side of (5. 7) will be called the
(double) Chebyshev series and its coefficient AkjS will be called the

Chebyshev coefficient of function u(x,y). Equality (5.8) valid for
Chebyshev series (5. 7) will be hereafter called Parseval's equality for

Chebyshev series.

Now, we shall derive properties of double Chebyshev series neces-
sary for later discussions following the method used by Urabe [5] for
simple Chebyshev series.
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Theorem 5.1. Suppose that u(x, jy) is continuous and has piece-

wise continuous first derivatives in S. Let

(5. 9) «(*, JO- S ek.,Akt,Tk(x)T.(y\
k,s = 0

(5. 10) M,U, jO~il «...4J..7;GO T.(j')

be the Chebyshev series of w(#, j>) and z^(#, .y) respectively, then it

holds that

(5. 11) At.. = -

(5.12) ^ =

where
I T/2" for * = 0

(5.13) ^= V

{ 1 otherwise.

Similar relations hold also for Chebyshev coefl&cients of uy and u.

Proof. Equation (5. 11) can be easily proved by substituting the

formula (5.5) for -4I_i f» and A'k+iiS. Equality (5.12) readily follows

from (5. 11) by Parseval's equality. Q. E. D.

Now, for function u(x, jy) eL|(5), we consider an operator Pm,n
such that

(5. 14) /VX*, y) = ̂ ibek,sAk,sTkW Ts(y)
/ fe=0s=0

where Ak§, are the Chebyshev coefficients of u(x,y}. In what follows,

sometimes we shall denote Pm,nu by um,H9 um>M by um and Pm,m by Pm.

In connection with operator Pm, we then have the following theorem.

Theorem 5.2. For function u(x,y) satisfying the conditions of

Theorem 5. 1, it holds that

(5. 15) |I (/- P^\\r<(m+l7 til (/-

where / is an identical operator.
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Proof. By tte definition of Pm, we have:

(5 ^Q^\ sj Pm)uf^ S &k sAk s'j
koy s>m + l

Then by Parseval's equality we have:

(5.17) -:

Now let .Ajfcj and Ak[
f
s be respectively the Chebyshev coefficients of

w*(^>JV) and #,(#, jO- Then using formula (5.11), we have:

— 2-
TJ;

Applying Parseval's equality to (I—Pm^uy{x, y') and

Pm-i)us(x,y\ we thus have:

(5. 18)

from which (5. 15) readily follows. This completes the proof. Q.E.D.

Theorem 5.3. Suppose that u ( j x , y ) is continuous and has piece-

wise continuous first derivatives in 5. Then it holds that

(5.19)
8

Proof. By the assumption, the Chebyshev series of u(x, y) con-

verges to u(x,y~) itself in S (For example, see Hobson [8]). Hence

we have

(5.20) u-um = (I-P,}u= S ettSAk,sT,{x~)
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Now, let the Chebyshev series of d(u — um}/Qx be

(5. 21) m k , s k , s ,
OX k,s = Q

Suppose m is even and positive. Then by (5. 12) we have:

for k,s<im,

(5. 22)

4.t+—] = A'm+1,s

(* = l,3,-,w

for k^>m + l or

Hence from (5. 21) we have :

Then by Parseval's equality, we have

(5.23) 4-j[ r(M-MJ|[|

V
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In a similar way, it is seen that equality (5. 23) is valid also

when m is odd. Then by Parseval's equality, for any positive integer

m, we have

(5.24) | [ ( « - W J | [

from which the first inequality of (5. 19) readily follows. The second
inequality of (5. 19) can be derived from the first one by interchang-
ing the variable x with y. Q. E. D.

Theorem 5.4. Suppose that u(x, jy) is continuously differentiate
and has piecewise continuous second derivatives in S. Then there is
a polynomial pm(x, jO of degree m such that

(5.25) !^U^)-AX
X

where Cm is a number dependent on m such that

(5.26) C. = 0(l/w) as m->oo.

Proof. By Theorem 5. 2, we have

(5.27)

In addition, by Theorem 5. 3 and Theorem 5. 2, we have:

( • d ,

m + 2

(5. 28)
-(u-um^\\T

^ iVL \ £i \ \\ f f ~D \ If 2, -^^,iU-n,-2j^!|r-

Hence by the addition of (5. 27) and (5. 28) we have
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which shows that the theorem is valid for pm(x,y) = um(x, y). This

completes the proof. Q. E. D.

§6. Approximation of a Function Vanishing on the Boundary

Let R2 be R2= {(#, jO : — oo<#, y<<°°} and consider a function

K(x, y) such that

f Cexp[-l/(l-*2-/)] if *'+/<!,
(6.1) K(x,y) = {

\ 0 if

where C is a constant such that

In terms of K^Xyy'), let us define function K&(x9 y) for arbitrary posi-

tive number 3 in a following way:

(6.2) K£x,y-)

For any u(x, y)<^L2(R2), put

(6.3) ««Uy)
o

then it is readily seen that us(x, jy) eC°°(j??2) and the support of

lies in the ^-neighborhood of the support of u(x,y).

Now, for the given domain P, let us assume the condition

(i) D lies in the interior of the square 5 specified in §5,

(ii) \\ p-*(
JJD-DS

for any positive number K<! as 5->0, where

and p(j\:, 3^)=dist((^, jy), 9Z)). As easily verified, the equality in (ii)

holds when the boundary of D consists of a finite number of twice

continuously differentiate arcs.

Let us note that the equality in (ii) implies

(6. 4)
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where mes(Z) — Z)5) is the measure of the set D — D5. In fact, let

(#, 3>) be an arbitrary point belonging to D — D8, then

therefore

Then by (ii), we have

dxdy<[[ p~K(x,
-DS JJD-DS

from which we readily get (6.4).
Now, for the domain D satisfying condition (5), let us prove the

following theorem.

Theorem 6.1. Suppose that, for the function w(#, y} eC2(Z)),
there is a positive constant p0 such that inequality p(x, y)=dist((x, y\

dZ?)<p0 implies
"^ / i

\a) 1 u\x, y) I f^Cip*1^, 3^) l^i^""^
\ ^

for some positive constants Cj and KI, and the inequality
implies

(b) S!dX*,j012<Qr«' C/r2<i)1=1
on Dp and

(c) \\ ^\^u(Xyy)\2dxdy<C3p-^ (/r3<2)
JjDpi.j

for some positive contants C2, C3, ^2 and /r3.

Then there is a polynomial pm(x, y) of degree w such that

(6. 5) \\u(x, y} -«

for some positive constants a. and C4, where &(x,y) is a function

satisfying the conditions stated in §2.

Proof. Let d be an arbitrary number such that 0<5<5<p0, and

consider the function us(x,y) such that
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(6.6)

Put

(6.7) us(x,y) = \K8(x-t, y-s)ud(t, s)dtds,

_

then u8(x, ^)eC°°(J?2) and supp($5)CA>. For function ^5(#, 3>), we

shall prove that there are three positive constants Cl9 C2, tc4 indepen-

dent of d such that

(6.8)x ' \ i ^o >• ^ • .. j^t _„ s * • ^ O\

(I, J =1, ZJ.

First, let us consider the quantity

(6. 9) ]|«(*, ̂ )-«»(

For the first quantity in the right-hand side, by (b), we have:

(6.10) ||«(*,.y)

dxdy

= const. Xd2~Kz.

On the other hand, for the second quantity in the right-hand side of

(6.9), by (a), we have:

(6.H) ll«(^y)

< const. X<51+2/fi.

Thus for the quantity of (6.9), we have

(6. 12) \\u(x,y)
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Next, let us consider the quantity

(6. 13) ||9X*, 30 -Ma(*, jOIII'cio

= \\dxu(x, jO -dA(x, jOlli2o>3,)+ \\dxu(x, y) -dxu8(x, 30Hi2a?-D3S>

For the first quantity in the right-hand side, by (c), we have:

(6. 14) ||9X*, 30 -8A(

= \\ \\\ Kt(t,s
JJ^SsLJ Jt2 + S2<52

s dxdy

~?

d dxdy

dd i dxdy< const. x<T4d i dxdy<

X

(ul(x-6t,y-0s)

} -]
ixdy \dd

<;const. x U \ \ 2 i\\ O&O^jO

+ ul,(x, y^dxdyl dtds\dd

< const. x<52~*3.

To estimate the second quantity in the right-hand side of (6.13),
let us consider
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dxu8(x, 3;) = \ \ d,K&(x — t, y-s*)u5(t, s^dtds.
JJo-o2

+ (J ,_S)2<52

Since

(6.15) dxK^x-t,y-s^=8^K

we then have

(6.16) iMsfojO <const.xr3x u&(t,s)dtds.

Then by (a), for (#, y) ^D — As, we have

(6. 17) 1 9,08 (#, j;) 1 < const, x r3 x C

< const,
and hence

(6. 18) H8,««(JC, jy)ili2cz>-z>3S)< const, x #**-» x mes(Z)- As)

<const. X ̂ i-1.
Since (b) implies

by (ii), we have

(6. 19) llaX*, ^)Ili2c^D3a)<const X 5^.

Then, since

by (6.18) and (6.19), we have

(6. 20) H9X*, 30 -Ms(*, J)|il2(z3_zp35)<const. X ^

for some *rg>0. From (6.14) and (6.20), it then follows that

(6. 21) ||8X*, JO -9&(x, ^)l!i^)<const. X ^

for some KS>0. The analogous estimate can be obtained similarly for

\\Q,u(x, y) -dyu5(x, yWtfw.

Then combining these estimates with (6. 12), we have the first ine-

quality of (6.8). The second inequality of (6.8) can be proved easi-
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ly from the equations:

(6. 22) 8?y06(*, 30 =Pi,K£x-t,y-s)ui(t, s}dtds 0',; = !, 2).

Now we shall prove the existence of a polynomial pm(x,

satisfying (6. 5).

Consider the function vs(x, jy) defined by

in D

in R2~D.
(6.23) v*(x,y)=\[ "My)'^*'

Since the support of u5(x, jy) lies in Z)5, the support of vs(x, y) lies

also in Z)5. Moreover by the condition (II) for (o(x, jy), VS(A:, y) is

continuously differentiable in S. Hence, by Theorem 5. 4, there is a

polynomial pm(x,y) of degree m such that

(6.24)
i.j

Let us estimate the quantity llo^sllr. Since supp(^5) dDsdD and D

lies in the interior of 5, we have

(6.25) '**» - -

dxdy
. X \ \ (8?< const

However by (6.23), on D8, we have:

(6. 26) 9^6= [^j^s-^fi-gj^-^cg^

Let us suppose 0<C5^5^1 where 5 is a number stated in condition

(III) for co(x, jy). Then, by the assumptions on fl>(#, jy), we have

/•g 27) cwv.^, ^̂ ,̂ 1111111 Liiiincw(^:, jy), C2

max [max 1^-60(^,3;) I, CJ
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on D5. On the other hand, by (6.7) and the second of (6.8), we

have

(6.28)

on Z)s. Hence we see that

(6. 29) 8j,-t;« - 0(r3A

Then from (6.25), we have

(6. so) [[a^sllKcons
for sufficiently small £, because

for ^

~ for ^2.

Now put 8=m-ai, then from (6.24) and (6.30) follows

(6.32) lb5U^)-^

<const. x m^^
In order that

m
6A2«i(w^i+ m2^1)^"1^ const, x m"a2

for a positive number <#2<1> it is sufficient that

(6. 33)

Thus we see that if m is sufficiently large, then for a positive number

oL± satisfying the above inequality, we have

(6.34) II*«(*,JO-A.G

for some positive constant C4, where vm(x, y^) = v^x, y) for 8=m~0ii.

On the other hand, from the first of (6.8), we have

for sufficiently large m, where #„(#, jy) = u§(x,y} for d=m~ai and a3 =

/c4a'i>-0. Put ^ = min(o:2, <#3)>0, then inequalities (6.34) and (6.35)
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imply:

(6. 36) \\u(x,y)-ttm(

(6.37) Ib.C*, jO-A-U
for sufficiently large m.

Now, since «>(#, 3>) and 8fX*».)0 (i = l, 2) are all bounded in D,

for sufficiently large M, from (6.37) we have:

\\um(x, 30 -<»(*, y)P*(x, jOlli'w
<; const, x \\vm(x, .y) -pm(x, jOi!i2a»

<; const. xm~a,
and

l|8,«.(*, JO -8, IX*, ̂ )A,(^ 3^)] ili^)

= lift [«(^ y)v«(^, ̂ )] -»i IX*, ^)^«(

<const, x \\vm(x, y) -pa(x, y)\\l2w

+ const, x \\dgvm(x, y) -dipm{xy y} \\l*w>

^const. xm"a 0" = 1, 2).

Hence we have

(6. 38) !|««U 3^) ~o)U,

for some positive constant C5 provided m is sufficiently large. From

(6. 36) and (6. 38), follows inequality (6. 5). This completes the proof.

Q. E. D.

§7. The Uniform Convergence of Approximate Solutions

A bounded domain D with boundary F is said to satisfy condition

(C) if for every point p^D there is a closed line segment lp centered

at p and of a fixed length satisfying the following conditions:

(a) lp intersects T in one point at most;

(b) for some 00, IpW^lPr\Ds^^ whenever 0<5<^0;

(c) if ip(^^lPr\(D-D*)^<l> for 0<<5<S0, then lp(g) and lp(g) are

both single line segments and
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for some positive constant KQ.

If domain D satisfies condition (C), then we can easily see that for

any positive number K<\ there is a positive constant MK dependent

only on K such that

(7.1)

where p(#, y} =dist((^, 3;), F).

In fact, when //>(£o)=0, the assertion is evident. When /X^o)^, let s

be the distance between a point q on /X^o) and the end point of //,(£e)

lying ouside A>0- Then by (c), s<^KQp(s), where p(s) = dist(#, r).

Thus it follows that

J^C50) 1 — K

where L0 is the length of lp. This proves our assertion.

Theorem 7.1. Let D be a domain satisfying the conditions

CB) and (C), and o)(#, jy) be a function with properties stated in §2.

Let u{x, ;y) be the solution of the boundary value problem (1. 1) satis-

fying the conditions in Theorem 6. 1, then the approximate solution

^>«(#>30 of the form

(7.2) u.(x,y)=a(
k,s = Q

obtained by Ritz-Galerkin's method converges to solution u(jx, y) uni-

formly in D as M-»oo, and it holds that

(7. 3) max] ̂ (#,30— u(x,y) \ =0(i/m~alogm) (m->oo)
D

for some positive number a.

Remark. Inequalities (a) and (b) in Theorem 6. 1 are valid for

solution u(x,y) if domain D satisfies Poincare condition (see [6], [7]).

However even if D satisfies Poincare condition, it is not known whether

or not inequality (c) in Theorem 6.1 is valid for solution u(x,y).

Hence in Theorem 7. 1 all these inequalities are assumed to be valid

for solution u(x,y).
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To prove Theorem 7. 1, we shall use the theorem of Markov (see

[9]) which reads as follows.

If a polynomial p(x) of degree m satisfies the inequality

(7.4) \PW\<M

on the segment of length h, then p'(x) satisfies

(7.5) i^ooi^-^w*

on the same segment.

Proof of Theorem 7.1. In Theorem 6. 1, put

then by (6. 5) we have

(7. 7)
oy /

for some <x>Q. On the other hand, if we put

(7. 8) ym (x, y) = u (^, y) - um (x, y) ,

then by (4. 10) we have

Now put

2, max Z?, max

5=min[min «, min
D D

then it is evident that

and



174 Tetsuhiko Miyoshi

Hence from (7.7) and (7.9), we have

(7. 10) Kvm)<L const, x m~a (m->oo)

for some <aC>0.

In order to apply Theorem 4.1 to our function ym(x,y'), let us

check condition (ii) in the same theorem. Put

(7.11) M0
D D

and let p be an arbitrary point in D and lp be the closed line segment

corresponding to p in the way stated in the beginning of §7. For our

solution u(x, jy), by (b) in Theorem 6.1, we have

du
dx \ dy\

therefore by (7. 1) we have

(7.12)

for some constant K independent of lp.

To estimate dum/ds, let us suppose that m is so large that

Put
5=m"3,

then by (2. 2) we have

(7.13) co (*,;y);> const. X<5A2 on

and hence

(7.14) |?.(^,.y)|^const XdT**-max\um(x,y)\ on
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Let us denote the quantity in the right-hand side of the above in-

equality by Rm. For lp(d~), by (b) of condition (C), it is clear that

length [lP(8-)]>8Q-8^d0/2.

Now suppose /Xd)^F0. Then by (c) of condition (C), any point (jc, JO

on /j(fl) can be expressed as follows:

(7.15) *=*0+/is, y=y*+i*s (i
where (/i,/2) are direction cosines of lp and (#0,30 is a point on /*(#).

B 7.15 we then haveBy (7.15), we then have

(7. 16)

However, by the theorem of Markov, from (7.14) follows

d -r- /-(7.17)
ds"m^ '•

tmm on lp(o),

where Ci = 16/30.

By the theorem of Markov, from (7.17) it follows successively that

on

Then from (7.16), we see that

[ 2m -i
l + S-^-CCi^/

Hence for some positive constant Ci, we have

(7.18) l^U^KC^ on /,(«).

Taking into account (7. 14), we thus see that

(7.19) |?_(*,>OI^Or*'-max|«.l(*,jOI on
ZJ

for some positive constant Cg.
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From (7.19), by the theorem of Markov, we then have

d -r: /> „ f - max! um(x,
D

= C4'm
3A*+2 • max | um (#, y) \ on lp r\D

ds

for some positive constant C[. Since um(x, jO =co(x, y)~pm{x, y), and

a>(#,.)0> di<*>(x>y) (i = l, 2) are all bounded in D, taking into account
(7. 19), we thus see that

d(7. 20)

for some positive constant C'5. Now by (7.11),

max um(x,y)\<.M<>+Ma,
D

therefore from (7.12) and (7.20), we have

(7-21) [J3r.

on

ds J \ ds I J

Inequalities (7.10) and (7.21) imply by Theorem 4.1 that

(7.22) Ai
m

for sufficiently large m, where A, B, G, H are suitable positive con-

stants. Now we shall show that (7.22) implies the boundedness of

Mm for m^m0 provided mQ is sufficiently large. Suppose Mm is not

bounded for m^m%. Then there is a sequence {m{} such that mQ<^

mi<^m2<i >o° and Mm-*oo as i—>°Q.

For brevity, let us drop suffix i of m{. Then in (7.22), we may

suppose that M->OO and Mm-»oo. Then from (7.22) we have

Mm <^A [m~alog H(M0+ M"OT)2m6A2+4(l + d) ma] 1/2+jB(m~a)1/2,

where 6 is a positive constant. Then we have

- + -

, j« , o
WM^, OTaM^, J
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However, the right-hand side of the above inequality evidently

tends to zero as m->oo and MOT->oo. This is the contradiction. Thus

we see that Mm is bounded for m^>w0 , or in other words, there is

a positive constant M independent of m such that

Mm<M for
Then (7.22) implies

which completes the proof. Q. E. D.
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