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On the Convergence
of Ritz-Galerkin’s Method

By
Tetsuhiko MryosHI

§1. Introduction

The present paper is concerned with Ritz-Galerkin’s method to

solve approximately the boundary value problem:

o ( ou\, 8 (,0u .
(1.1 6—x<aa~>+ﬁ<b—®—>—cu~f in D
u’r:O

where D is a bounded domain in the (%, y)-plane, I' is the boundary
of D, and a(>0), 8(=0), ¢(>0), f are smooth functions defined on
D. In Ritz-Galerkin’s method, first we choose a system of linearly in-
dependent functions {¢,} such that they satisfy the given homogene-
ous boundary condition and they are dense in a function space con-
taining the exact solution of the above boundary value problem, and
next we seek the m-th approximation #, in the form

(1. 2) Uy = kzﬂ“k‘pk
calculating the coefficients {a,} by solving a system of equations
(1. 3) Zak,,dk—}“ﬁs:() (Szl, 2, Tty Wl),
k=1
where

_ (T 00 8¢, , , 00, o, ]
(1 4) ak,s ws,k SSDLa ax ax ~i—b ay ay + C¢k(ps dxdy

a=\{ frodray (ks=1,2, 0 m).
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The system of equation (1.3) is called the determining equation
of Ritz-Galerkin’s method.

Ritz-Galerkin’s method was studied by many people, sometimes by
the use of classical techniques as in [1], [2], and sometimes by the
use of functional analysis as in [3], [4]. However Ritz-Galerkin’s
method does not seem to be frequently practised on a modern high-
speed digital computer. The main reason for this seems to be in
the difficulty in finding a system of functions {¢,} having the desired
property. In [1], Kantorovich presents a method to construct such a
system of functions and proves the uniform convergence of the ap-
proximate solution obtained from this system of functions. However
it is done only for the domain strongly restricted. In [2], Harrik
proves the uniform convergence of the approximate solution obtained
by Ritz-Galerkin’s method for the domain with smooth boundary, but
he does not present any method to construct a system of functions
{¢.} adapt for such domain.

In the present paper, the author will present a method to find a
system of functions {¢,} adapt for some kind of domains, say, R-type
domain, and further he will prove the uniform convergence of the
approximate solution obtained by Ritz-Galerkin’s method for the domain
with great generality. Numerical examples are to appear in the sub-
sequent paper. The author acknowledges the encouragement and the
suggestions of Professor M. Urabe rendered during the preparation of
the present paper.

§2. A Method to Find a System of Functions {¢:}
Necessary for Ritz-Galerkin’s Method

To begin with, we seek function o(x,y) which satisfies the given
homogeneous boundary condition together with some additional condi-
tions. Let D be a given bounded domain in the (x,y)-plane. The
conditions which we request for function w(x, y), are then as follows:

(1) o(x,y)=0 on boundary I" of D, and w(x, y)>>0 in the interior
of D.
(II) w(x,y) is continuous and has bounded first derivatives in D.
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In addition, the first derivatives are continuous in D and have bounded
piecewise continuous derivatives in any closed subregion of D.

(III) There are five positive constants 8, 4;, 4, C:, C, such that
2.1 16%0(x, ) | <Cip(x, D™ (5,j=1,2)
2.2) 0(x, ) =>Cp(x, y)

in D for o(x, ) =dist((x, ¥), )>>6. Here &%,w denotes 8*w/dx,0x; where
x1=x and X,=}.

If we can find a function w(x,y) satisfying the above conditions,
then using such w(x,y), we consider the system of functions

(2.3) {w(x, ) x*yy (B s=0,1,2, ),

which, as will be shown later, is indeed one of the desired system of
functions {¢,;. Hence the problem to find a system of functions neces-
sary for Ritz-Galerkin’s method reduces to find a function w(x,y)
satisfying the above conditions.

Now, we shall show the method to construct a function w(x, y)
satisfying the above conditions for some kind of domains.

1°.  The domain with algebraic boundary curves.

Let
2. 4) 11 ,(x,9) =0

be the equation of the boundary curve, where p;(x, ¥) are polynomials

of x and y such that p,(x,y)=0 for (x,y)<=D. Then the desired
o(x,y) can be given by

(2.5) o(x,y) =i1:11 P ACDR

A circle, ellipse, polygon and the domain composed of these are the
examples.

2°. R-type domain. By R-type domain, is meant the domain com-
posed of a finite number of rectangles whose sides are all parallel to
either of the coordinate axes. For the R-type domain, neither the

convexity nor the simple connectedness is assumed.
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Before considering the general R-type domain, let us consider the
simple case where the domain D is a L-type domain, that is, the domain
composed of three adjacent rectangles connected as in Fig. 1. For
such L-type domain, let us construct a function o(x,y) such that

(a) w(x,y) satisfies the conditions (I), (II), (III);
(b) w.(x,y)=0 on BGL, CHO, DIMQT and arc HM, o,(x, y)=0
on PQR, OMN, FGHIJ and on arc HM.

Function w(x,y) satisfying the above conditions can be easily
found as illustrated below with two examples in the case where the

rectangles composing the domain are all unit squares.

————J o«

A B D E
D, D,
o I T INY e B
D3 Dg
K L o0 M N
1 D2
|
P g R
0.
|
S T §)
Fig. 1
Example 1.
4(y—y% in D,
4(x—x%) in D,
16(x*+x)(¥*—y) in D
o(x, )= 16(x*—x) (»*—y) in D,
16(x*—x) (¥*+3) in Dj
4[vV2+y —(x*+y)] in Dy

1 in Dy
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Example 2.
16(%)}2—3}4)(4x2—1)2+4(y—y2) [1—(4x*—1)?] in GHOL
4(y—5" in BDIG
16<%x2—x4>(4y2—1)2+4(x—x2) [1—(4y*—1)?] in OMQP

(29 4(x—x%) in IJRQ
x,y) =
oL 16(x*+x)(y*—y) in D
16(x*—x) (¥*—2) in D,
16(x*—x) (y*+v) in D;
—16(x*+ %) <x2+ Y — %—) in D
1 in Dy

Note that in Example 1, function w(x, y) is continuously differenti-
able in D, while in Example 2, it is continuously differentiable in D.

Now we shall consider the general R-type domain. Let us note
that in Example 1, function w(x, y) is constructed by linking the func-
tions of the following five types:

€] 4(y—y» in D,
2 16(x*+ %) (y*—y) in D,
3 16(x*—x)(»*—y) in Dy,
) 1 in D,
(5) AV 2+y —(2+5)] in D.

In Example 2, function (%, y) is similarly constructed by linking the

functions of the following six types:

@O 40—y in BDIG,
@) 16(x*+x)(¥'—y) in D;,
3 16(x*—x)(¥*—y) in Dy,
@ 1 in Dy,
® 6@+ (#ry— 1) D,

) 16(—%—3}2— y4> (422 —1)*+4(y—y)) [1— (42*—1)*]  in GHOL.
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Then we see without difficulty that the desired function o(x,y)
can be constructed for the general R-type domain by linking the func-
tions derived from those of the above types by simple transformations,
that is, expansion, contraction, rotation and translation. Moreover such
construction of function w(x,y) can be done on a computer without
much difficulty.

The second derivatives of function w(x, ¥) constructed in the above
way are not continuous in D, but, if necessary, we can construct with-
out much difficulty the function o(x,y) having continuous second de-
rivatives by the similar method.

§3. Notations and Function Spaces

In the present section, the notations which will be used frequently
in the later secitons will be explained and the function spaces which
will be necessary for subsequent discussions will be introduced.

1°. 9.u(¢=1, 2) means du/ox; and 0,,u(i, j =1, 2) means 6*u/0x,0x;,
where x,=x and x,=y. Sometimes notations 8,# and 8,u# will be also
used for ou/0x and du/dy respectively.

2°. By a polynomial of degree m, we mean the polynomial of
the form

m

(3.1 ,,E @, 2y
,s=0

and such a polynomial will be denoted by the notation p,.(x, ¥).
3°. T,(x) denotes a Chebyshev polynomial of degree %, that is,
(3.2) T.(x) =cosk(cos™*x).

In what follows, we suppose D is a bounded domain in the (x, )-
plane and all functions are real-valued.

4°, By (:"'(D), we denote the space consisting of functions which
are defined on D, vanish on the boundary of D and have continuous
k-th derivatives in D.
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5°. By (?"‘(D), we denote the subspace of (:"”(D) consisting of all

functions with supports in D.

6°. By Vf/é(D), we denote the completion of C~(D) under the
norm |[. |12 defined by

(3.3) ll2ell3, 2oy = 1%l Z2coy + [10.0¢]| 720y + 0,0 220>

Lastly we consider a square S whose sides are x==+1, |y]<1
and |x]<1, y==1.

7°. By L3(S), we denote the space consisting of functions such
that they are measurable with respect to the Lebesgue-Stieltjes measure
generated by the function ¢(x,y)=cos'xcos™'y and moreover their
Lebesgue-Stieltjes integral

3.9 |\ 2 0x 30z, 9
is finite. In the space L%(S), the norm will be introduced by
1/2
@.5) ladle= G, =] (§ 2 0o, )|
S A

which is clearly equal to

(3.6) I:SSS e ﬁif;/yi = afxdy]”2 = B:S:u (cos?, cost) dﬂd@)}uz.

Evidently the space L3}(S) is a Hilbert space if the inner product is
introduced by

Gt 0)r={{ 4, )05, 9)do(x, ).

§4. Theoretical Background of Ritz-Galerkin’s Method

It is known that the boundary value problem (1.1) has a unique
solution %(x, y) €C*(D) N W3i(D) satisfying the equality

6l @_) + < ﬂ _ai> U 2 = — 2
4.1 <6Z ox’ ox LZ(D)T b oy , 9y LZ(D)+ (cum, @) o) (f; @) 2w

o
for any ¢(x,y) in W3i(D) if the boundary of D satisfies a certain con-
dition, say, Poincaré condition (see [7]). In what follows, the above
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condition on D will be called condition (A).
Now, consider the functional

(4.2) I(w) = SS [ (g;’:) +b< g;‘ > +cu? +2fu—ldxdy

defined for = W3(D), and let #(x,y) be an arbitrary function belong-
ing to W3i(D). Then, by (4.1), for y=#—7%, we have

(4.3) I(h) —I(u)

[ Ja( 2 Y PUIT) ) Gt ny+ 2 o) |ddy

-SS l_a< g;‘) +b< > +cﬁ2+2fﬁ]dxdy
~{La( ) +o( 2 ) +erasay=o.

The above inequality shows that the solution of the boundary

value problem (1.1) minimizes the functional /(%) in the space I?Vé(D)
provided the boundary of the domain D satisfies condition (A).

Now let {¢,(x,y)} (k=1,2,---, m) be a system of linearly indepen-
dent functions belonging to (fl(D)ﬂ T?Vé(D) and put

(4. 4) Mm(xy .'V) :é ak(”k (xr y>'

Then from (4.2), by (1.4), we see that

m

(4.5) I(n,(x,9)) = Z @, + 25 B4,

Since
(4.6) é 4,4 :SS [<a< 6u,,,> +b< u >2+ cu jldxdy
’ Ko TR D 0x oy " ’

the quadratic form > a,.@@. is positive definite. Then I(#,) as a
k,s=1
second degree polynomial of {a,} (k=1,2,---, m) assumes a minimum

value when and only when
(4.7 St B.=0 (s=1,2, -, m).
k=1

This equality coincides with determining equation (1.3) of Ritz-
Galerkin’s method. This means that I(#,) assumes a minimum value
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when #, is the m-th approximation obtained by Ritz-Galerkin’s method.
Now the quadratic form > a4 .a.a, is positive definite, therefore clearly
k,s=1

det (a;,)=0. This implies the determining equation has always a
unique solution. in other words, in Ritz-Galerkin’s method, the m-th
approximation #,(x,y) can be always determined uniquely for every
m.

Let S, be a linear manifold generated by a system of functions
o(x,y) (k=1,2, .-, m) and #, be an arbitrary function belonging to
S,.. Let #(x,y) be the exact solution of our boundary value problem
and #,(x,y) be the m-th approximation obtained by Ritz-Galerkin’s
method. Then, for #,=#,—#% and y,=u,—u, by (4.3), we have

wo ) ) o
=I(w,)—I(w)
>1(u,) —I(u)

(G ) +o( 55 ) ot Jaxar

However, as readily seen,

(4.9) ”v”]:[Sgn{a<%>2+b<_g7;_>2+cvz}dxdy:\m

can be regarded as a norm of < W3(D). Then inequality (4.8)

means that
(4.10) o —2ll; <l ttw—all;.

Since #, is an arbitrary function belonging to S,, the above inequality
implies that u, is the best approximation in S, in the norm [-||;.

It is expected that the approximate solution #,(x,y) converges
uniformly to the exact solution #%(x, y) if the difference |[u,—7%]; tends
to zero as m—oo. The subsequent sections are concerned with this
convergence problem and our discussions are based on the following
theorem which follows immediately from Lemma 1 in p. 338 of [1].

Theorem 4.1. Let T be the boundary of the domain D and
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y(x,y) be a function belonging to C.I(D) satisfying the following con-

ditions:
W {8 (5 o=
(if) [, (2Yas<x

for any point p lying in D, where [, is a suitable line segment of
fixed length L, centered at point p, and K, is a constant independent
of the point p. Then for (x,y) =D, we have

(4.11) 1nCx, 9) | < C1y/ elog dft’ +C/ e

if 2L02€/Ko and dKo>€, and
(4.12) n(x, N 1<C/s

otherwise. Here d is the diameter of the domain D and

=Lty 4=~ @2 . 1
Cl—— 2 + 6 N Cz -‘/g—_l_ -‘/5 N
A 7 d 2 1 2 1

§5. Some Properties of Double Chebyshev Series

In the present section, we shall derive some properties of double
Chebyshev series which will be used later for proving the uniform
convergence of the approximate solution obtained by Ritz-Galerkin’s
method.

For simplicity, let us suppose that the closure of domain D lies
in the interior of the square S whose sides are x=+1, |y|<1 and
lx| <1, y+1. Then clearly dist(I",3S)>0, where I" is the boundary
of D and 8S is the boundary of S.

Let u, v be arbitrary functions belonging to L3(S). Then by the
inner product

(5.1) (u,v) = S:g:u (cos®, cos ) v (cosb, cos8)dods,
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the space H= {u(cosb, cosb); u=L%(S)} can be regarded as a Hilbert
space consisting of functions defined on 0<4, §<r In such a Hilbert
space H, the system of functions

(5.2) {—efcoskﬁcosst;} (k,s=0,1,2--+)

is clearly a complete orthonormal system, where

J for k=s=0
(5.3) €=, V2 for ks=0, ks,
L 2 for &, s=0.
Let
(5.4) u(cosd, cosf) Nksioe""A"" cos ki cos s

be the Fourier series of #(cos#, cosg)EH, then clearly the Fourier
coefficient A, , are given by

(5.5) A= e,,,; gﬂgwu(cosﬁ, cos)cos k6 cos sadodo
4 0 JO
and we have Parseval’s equality of the following form

(5.6) Swngﬁ(cosﬁ, cos§)dods=r* i Ai,.
0 JO

k,s=0

By (3.2) and (3.6), Fourier series (5.4) and Parseval’s equality (5.6)
can be written respectively as follows:

(5.7) u(x, )~ 3. Ais T T(9)
(5.8) lullt == 33 Au .

Hereafter the series in the right-hand side of (5.7) will be called the
(double) Chebyshev series and its coefficient A,. will be called the
Chebyshev coefficient of function #(x,y). Equality (5.8) wvalid for
Chebyshev series (5.7) will be hereafter called Parseval’s equality for
Chebyshev series.

Now, we shall derive progerties of double Chebyshev series neces-
sary for later discussions following the method used by Urabe [5] for
simple Chebyshev series.
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Theorem 5.1. Suppose that #(x, y) is continuous and has piece-
wise continuous first derivatives in S. Let

(5.9) w(%,9)~ 3 eidi T(O T,
(5.10) 1,05, )~ €. 41, T T(9)

be the Chebyshev series of #(x,y) and u.(x,y) respectively, then it
holds that

(5. 11) Ak,s——“%(&,-11‘11’;_1,{"1‘1;{-1,:) (kzly 520))

(5.12)  Afu= 2 (Gt 1) Ayt (B 3) Ay (B5) Ausst -1,
(k, s=0)

where

(5.13)

o j V2 for k=0
* \\ 1 otherwise.

Similar relations hold also for Chebyshev coefficients of #, and .

Proof. Equation (5.11) can be easily proved by substituting the
formula (5.5) for Ai.., and Ai.,. Equality (5.12) readily follows
from (5.11) by Parseval’s equality. Q. E.D.

Now, for function u(x,y)<=L%(S), we consider an operator P,
such that

(5.14) Pot(5,3) = 23360, 40, Ti(2) T(9)

where A, . are the Chebyshev coefficients of #(x,y). In what follows,
sometimes we shall denote P, % by %, ,, % . by %, and P, . by P,.
In connection with operator P,, we then have the following theorem.

Theorem 5.2. For function #(x,y) satisfying the conditions of
Theorem 5.1, it holds that

(6.15) U~ Puld< s U= Pesdulf+ [ (1= Prcduw 3]
(m=1),

where I is an identical operator.
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Proof. By tte definition of P,, we have:

(5.16) (I=P)u~ Z e Ais To () To(9).
Then by Parseval’s equality we have:
(5.17) LIa-Pyuli=(E 5 +3 5 )4

Now let A.. and A, be respectively the Chebyshev coefficients of
u.(x,y) and u,(x,y). Then using formula (5.11), we have:

—H(I Pult=3 > <A1—1_>

k=0 s=m+1 23

- -Ak 1,s A;+1L>2
2 §1< ok
Lt 35 (AL 2+ ALD
£35S (A Al D).
Applying Parseval’s equality to (I—P,)u,(x, y) and

(I—P,_.Du.(x,y), we thus have:

(5.18) U= Puli <ot U Podu

+ ” (I—‘— Pm—~1)ux”3':|
from which (5. 15) readily follows. This completes the proof. Q.E.D.

Theorem 5.3. Suppose that #(x,y) is continuous and has piece-

wise continuous first derivatives in S. Then it holds that

-2 (u—w)p <2 (I Podul
(5.19)

”—%W—MIK " 2 =Pl (m=1).

Proof. By the assumption, the Chebyshev series of #(x,y) con-
verges to u(x, y) itself in S (For example, see Hobson [8]). Hence

we have

(5. 20) u_um:([_Pm)M: % fk,sAk.sTk<x> Ts(y)'

kor s=m+
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Now, let the Chebyshev series of 8(#—u,)/0x be

(5.21) 2 w)~ 3 0B T T(9).
Suppose m is even and positive. Then by (5.12) we have:
for k,s<m,
=V [+ 1) s (m-8) At ] =L,
Ap=2[(m+1) At (M+3) Apg s+ 1= A,
(5.22) (k=2,4, -, m),

A =2[(m+2) Apioet (MA4) Apist ] = A
(k=1,3,---,m—1),

for k>m+1 or s>m+1,

A =2[(k+1)Apr+ (B+3) A o+ -] = Ais.

Hence from (5.21) we have:

1 ’
)~ AtV E | S AL+ 3 40 T)

AL AT+ To(x) - oot To(2))
 Aas o T+ Tu) + o+ T (D) + 3 AboTi() |

+2[§{Am,s(Tz<x)+ Ti(x)+ -+ Tu(x)) Te(y)
Apar, o (To(x) + To(x) + o+ Tus () T (3)

+ MZLIA;,STM) T.(y)} +S§+1§1A2,5Tk(x) T.(y)].

Then by Parseval’s equality, we have

.23 L wl=2 A 2 s
7t ox 2
+3 3 Al 3 314
s=0k=m+1 s=m+1 k=0
mEl S aa ™ z
s=0 2 s=0
3 3 At 3 AL
s=0k=m+ s=m+1k=0
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In a similar way, it is seen that equality (5.23) is valid also
when m is odd. Then by Parseval’s equality, for any positive integer
m, we have

G20 L eudr <R L a-Poul,

from which the first inequality of (5.19) readily follows. The second
inequality of (5.19) can be derived from the first one by interchang-
ing the variable x with y. Q. E.D.

Theorem 5.4. Suppose that u#(x, y) is continuously differentiable
and has piecewise continuous second derivatives in S. Then there is
a polynomial p,(x,y) of degree m such that

(5.25) lu(x, ) —Da(x, D) 2> éCm(iZjH (I—P,)aull?)
where /(:‘,,, is a number dependent on m such that
(5.26) C.=0(1/m) as m—»co.

Proof. By Theorem 5.2, we have

G20 - PAuﬂ%gT;—m? [(Z= Pacy#+ [ (= P 3]
1 2

In addition, by Theorem 5.3 and Theorem 5.2, we have:

g =) <22 (T~ Py

<2 (T Paaueli (T P B,
(5.28)
Iy e

m+2

<Zz

[(I—= Pr2) .| 7+ [ (I = Pua) ][]

Hence by the addition of (5.27) and (5.28) we have

| + 22 SN Pl

2(m+ 1)2
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which shows that the theorem is valid for p.(x,y)=u.,(x, y). This
completes the proof. Q. E. D.

§6. Approximation of a Function Vanishing on the Boundary

Let R* be R*={(x,y):—oo<x,y<co} and consider a function

K(x,y) such that

Cexp[—1/(Q—x*—y>)] if x*+y°<1,
(6.1) K(x,y) =j
\ 0 if x*+3y°>1,

where C is a constant such that

SSRZK(x, y)dxdy=1.
In terms of K(x,y), let us define function K;(x,y) for arbitrary posi-
tive number ¢ in a following way:
(6.2) Ki(x,y)=0"K(x/3, y/9).
For any u(x,y) € L*(R*), put

(6.3) 75(x, ) = SSRZKS(x—z, y—s)u(t, s)dtds,

then it is readily seen that ﬂa(x,y)eé"“(Rz) and the support of #@;
lies in the é-neighborhood of the support of u(x,y).
Now, for the given domain D, let us assume the condition (B):
(i) D lies in the interior of the square S specified in §5,

(iD) NIRECHLZIE IS
for any positive number £<<1 as 6 —0, where
D;={peD: dist(p, 6D)>¢}
and p(x, y)=dist((x,y),8D). As easily verified, the equality in (ii)
holds when the boundary of D consists of a finite number of twice

continuously differentiable arcs.
Let us note that the equality in (ii) implies

(6.4) mes(D—D;)=0(3) (5—0),
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where mes(D—D;) is the measure of the set D—D;. In fact, let
(x,y) be an arbitrary point belonging to D— D;, then

o(x, ¥)<3,
therefore
o (x, y)=0"

Then by (ii), we have

agg dxdygggp_mp‘*(x, dxdy—0(3"),

D —D;

from which we readily get (6.4).
Now, for the domain D satisfving condition (B), let us prove the
following theorem.

Theorem 6.1. Suppose that, for the function u(x, y) EC.”(D),
there is a positive constant p, such that inequality p(x, y)=dist((x, y),
0D)<p, implies

(a) lu(x, )| < Cup®(x, 3) <x1>%>
for some positive constants 51 and xy, and the inequality 0<<p<<p,
implies

(b) 1 10.u(5, ) < T (1)
on D, and

© W, S1euce ) drdy<Cipo (n2)

for some positive contants a, 53, ke, and &;.
Then there is a polynomial p,(x,y) of degree 72 such that

1
ma

(6 5) ”u(x, y)_w<x) J’)Pm(x, J’)”f,ﬁ(n)ga

(m—o0)

for some positive constants « and C:, where w(x,y) is a function
satisfying the conditions stated in §2.

Proof. Let § be an arbitrary number such that 0<<58<Tp,, and
consider the function #s;(x,y) such that
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[u(x,y) (x,9)EDx

6.6 8 y - —_—
(6.6) (% 3) Il o (%, 9) ER*—D,s.
Put

6.7) s(x, y) = ngm(x—t, y—8)us(t, s)dtds,

then #(x, y) €C~(R*) and supp(#s;) CDs. For function #(x, y), we
shall prove that there are three positive constants C,, C., &, indepen-
dent of & such that

/'/ lluCx, ) —as(x, )7 220y < 8.

| max|6%4:(x, 9) | <Co* (5,5=1,2).

Ds

(6.8)

First, let us consider the quantity
(6.9 lueCx, 93 — (%, P[22y =[x, ) — (2, 9) [ 20,
+ lluCx, ) —#:(x, ¥) [120-4-
For the first quantity in the right-hand side, by (b), we have:
(6.10)  llu(x, ¥) —a:(x, 3D 22050

:SSBS K, ) tu(x, y) —u(x—1, y—s)}dtds]zdxdy

12452<§

:SSBS Kt s) {S:(u,(x—ﬁt, y—6s)t

12 452<§2
(0L, y—0)s)do dtds | dxdy
<mes(Dys) - [\/52 - (28) %3]
=const. X §* 7z,

On the other hand, for the second quantity in the right-hand side of
(6.9), by (a), we have:

(6 11) H%(x, y)_ﬂ5<x, y)”lz-z(D—Das)
< (2max|u]|)? mes(D— Dy)
p(x,3)=48
< const. X §*,
Thus for the quantity of (6.9), we have

(6.12) lu(x, y) —as(x, ¥) |22y const. X 8.
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Next, let us consider the quantity
(6.13)  llo.u(x, y) —8.4:(x, ¥z
=0.u(x, ¥) —0.8(x, ¥) 12w+ 0%, 3) — .75 (%, Y)|[2200-p-
For the first quantity in the right-hand side, by (c), we have:
(6.14)  l[o.u(x, y) —0.4:(x, ¥) 1o

- SSDBSB&ZHZS&{Q(t, ) {u.(x, y) —u,(x—t, y—9)} dtds]zdxdy

LI o oo

o (x—0t, y —as)s>da} dtds]zdxdy

= SSDSJ\:S: {Sgﬂmsgfa(t, $) (u..(x—0t, y—0s)t

+u,,(x—0t, y—ﬁs)s)dtds} da:\zdxdy

LT Aot

+u.,(x—0t,y —ﬂs)s)dtds} 2dﬂ] dxdy<const. X §™*

X SSD”B; {Sgi“szi;z/z?,(x—ﬁt, y—0s)+u,(x—0t, y—0s)
%/ Pﬁfdtds} zdo]dxdy

<const. X S;FSSDSS{SS (ul.(x—06t, y—0s)

12452< 52

o (x—0t, y— ﬂs))dtds} dxdy]da

S L

+u2,(x, y))dxdy} dtds |do
< const. X 8%,

To estimate the second quantity in the right-hand side of (6.13),
let us consider
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0.75(%, ) = SS(W 0.Ks(x—1, y—)us(t, s)dtds.

+(y~5)2=82

Since
(6.15) 0.Ks(x—t,y—s)=0"K.[(x—1) /5, (y—5s)/8],
we then have

(6.16)  |0.7(x, y)lgconst.xa"axgg us(,5)dtds.

(x—1)2
+(y—5)2=52

Then by (a), for (x,y)=D— Dy, we have
(6.17) 19.45(x, ¥) | < const. X 57 x C, (46) X nd°

<const. Xyt
and hence

(6.18) 18,25 (x, ¥) 3200 -p,p << const. X 6% x mes(D — Dss)

< const. X ¥,
Since (b) implies

izEzl |0 (x, 9) 1)< Cape(x, 9),
by (ii), we have
(6.19) 10.0(x, ¥) | 72c0-psp<_const. X &' .
Then, since
0.0 (x, ¥) —0.7:(%, ¥)[[20-p:0
<2 [1[0.u(x, ) | 220 ey + 110:7(%, ¥) | 220-400] »
by (6.18) and (6.19), we have
(6.20) 0.u(x, y) — 0.4 (%, ¥) ||72p-p,p< const. X 5
for some x;>0. From (6.14) and (6.20), it then follows that
(6.21) 0.u(x, y) —0.4s(x, ¥) |22y const. X 8
for some x>0. The analogous estimate can be obtained similarly for
8,u(x, y) —0,4:(x, )l 220>

Then combining these estimates with (6.12), we have the first ine-
quality of (6.8). The second inequality of (6.8) can be proved easi-
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ly from the equations:
6.22)  Saa(n9) = \| Kzt y-uslt, )dtds (5,7 =1,2).

Now we shall prove the existence of a polynomial p,(x, ¥)
satisfying (6. 5).
Consider the function v;(x,y) defined by

ﬁa(x, y)/w(x’ y) in D

(6.23) vs(x, y) = { 0 o R_D

Since the support of #;(x,y) lies in Ds, the support of vs(%, y) lies
also in Ds. Moreover by the condition (II) for w(x,y), vs(x, ) is
continuously differentiable in S. Hence, by Theorem 5.4, there is a
polynomial p.(x,y) of degree m such that

(6.24) vs(x, ¥) — (%, Y2 1200 <Z Ca(iZ,jlla?;vsH%)%-

Let us estimate the quantity [6%vs]2. Since supp(vs) ©DscD and D
lies in the interior of S, we have

(6.25) et = § O dxdy
) @
—SSDS V1-x*11—y* dxdy

< const. X SSDS(G?,%) *dxdy.

However by (6.23), on D;, we have:
(6 26) 8?]-1)5 = [wza?,-ﬂs - wﬁﬁ . G?Jw - w(a,-?z,s . 6,-w+ 6,'%5 . 6,-w)
+ 245, 0,0 - 0;0] / 0®.

Let us suppose 0<<6<6<1 where § is a number stated in condition
(II) for w(x,y). Then, by the assumptions on w(x, y), we have

lo(x, ¥) 1, 10:0(x,y)]<const. (i=1,2),
(6.27) o(x, y)=min [mino(z, ), C;] -5,

|80 (£, y) < max [max |6} (x, ) |, C,] o™
]
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on Ds. On the other hand, by (6.7) and the second of (6.8), we

have
[ |ds(x, y) | <const.,

(6.28) | 18.5(x, 9) | <const. x5 (i=1,2),
1 [612'1'7’?5<x’ .y) ]gcza-z (Zij:17 2)
on Ds;. Hence we see that
(6.29) 40s=0(7) [0(67) +0( ™) +0(™) +0()]

=00 [0 +0(™)]  (6—0).
Then from (6.25), we have
(6. 30) [16%v5]5 < const. X §78%2(§7*+ §72M)
for sufficiently small 8, because

{5‘2‘“1§5"4 for 2, <2,

6. 31
( ) oM™ for 4 >2.

Now put d=m"%, then from (6.24) and (6.30) follows

(6.32) vs(x, 3) —pu(, Y)II3, 20
<const. X m** (m+ mPhe ) m,
In order that
mets (mt 4 ) < const. X m %

for a positive number a,<1, it is sufficient that

1“042
(6.33) s 62+ 4+22,

Thus we see that if m is sufficiently large, then for a positive number

a, satisfying the above inequality, we have
(6.34) 0w (2, 9) = Du (2, D3 20y Comm

for some positive constant C,, where v,(x,y)=vs;(x,y) for d=m =,
On the other hand, from the first of (6.8), we have

(6.35) w(x, ) =@ (2, Y7 12000 < Com

for sufficiently large m, where @,(x, y) =#5(x,y) for d=m™" and az=
ks >0. Put a=min(a, @;)>>0, then inequalities (6.34) and (6. 35)
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imply:
(6' 36) ”u(x; J’) “‘7/?,,,(.'«\7, y)”%,Lz(D)éclm—a,
(6.37) loa(x, ¥) = Du(x, YR 200y Com™

for sufficiently large m.
Now, since w(x,y) and 8,0(x,y) (i=1,2) are all bounded in D,
for sufficiently large m, from (6.37) we have:

”ﬁm(x, y) '—w(xv y)pM(x! J’)”izcn)

< const. X ”U,,,(x, y) _pm<x: y) ”iz(D)

< const. X m™,
and

18:22.,(t, ¥) —8; [0 (2, ¥) P (%, )] [ 220>
=18; [w(x, )0 (x, ¥)]1 —8; [0(x, P)Du(x, ¥)] |20y
<const. X [[v,(%, ) —pu (%, ¥) [ 220>
+const. X [[0,0.(%, ¥) —8: P (%, ¥ l22>
<const.Xxm™* (i=1, 2).

Hence we have

(6.38) 1. (x, y) —o(x, ) D.(%, W} 2oy Csm™

for some positive constant C; provided m is sufficiently large. From
(6.36) and (6.38), follows inequality (6.5). This completes the proof.
Q.E.D.

§7. The Uniform Convergence of Approximate Solutions

A bounded domain D with boundary I' is said to satisfy condition
(C) if for every point p&D there is a closed line segment /, centered
at p and of a fixed length satisfying the following conditions:

(a) [, intersects I in one point at most;

(b) for some &, 1,(8)=1,MNDs>x¢ whenever 0<5<d;

(c) if Z;(B)E N (D—Ds)x¢ for 0<5<d, then 1,(5) and Z,(B) are
both single line segments and
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length [1,(8)] < K, 3

for some positive constant K.
If domain D satisfies condition (C), then we can easily see that for
any positive number £<C1 there is a positive constant M, dependent

only on & such that
(7.1) [ oxmas<m,
13ND

where p(x, y) =dist((x, ¥), I").
In fact, when ip(60)=¢, the assertion is evident. When Zp(ﬁo)ﬂv¢, let s
be the distance between a point ¢ on i,(c?o) and the end point of Z,(c?e)
lying ouside Ds,. Then by (c), s<<Kw(s), where p(s)=dist(q, I").
Thus it follows that

S" (ao)p"‘(s) dng'{,S

Ip K

seds <K5 L™
) 1—

Ty(s
where L, is the length of /,. This proves our assertion.

Theorem 7.1. Let D be a domain satisfying the conditions (A4),
(B) and (C), and w(x,y) be a function with properties stated in §2.
Let u(x,y) be the solution of the boundary value problem (1.1) satis-
fying the conditions in Theorem 6.1, then the approximate solution

#.,(x,y) of the form
(7.2) un(%,9) =0(%, Y)Pu(x, y) =0(x, y)kgoak,sx*ys

obtained by Ritz-Galerkin’s method converges to solution #(x,y) uni-

formly in D as m—>oo, and it holds that
(7.3) max | #,(x, ) —u(x, )| =0 m *logm) (m—>oo)
D

for some positive number a.

Remark. Inequalities (a) and (b) in Theorem 6.1 are valid for
solution #(x, ¥) if domain D satisfies Pcincaré condition (see [6], [7]).
However even if D satisfies Poincaré condition, it is not known whether
or not inequality (c¢) in Theorem 6.1 is valid for solution u(x,y).
Hence in Theorem 7.1 all tkese inequalities are assumed to be valid

for solution u(x, y).
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To prove Theorem 7.1, we shall use the theorem of Markov (see

[91) which reads as follows.
If a polynomial p(x) of degree m satisfies the inequality

(7.4) [p(x) | <M

on the segment of length %, then p'(x) satisfies
(7.5) ¥ @) | < 2
on the same segment.

Proof of Theorem 7.1. In Theorem 6.1, put

(7.6) { 1, (%, ) =0 (%, ) pa(%, 3,

ﬁnlcx!y)zucx’y>——ﬁm(x7y)y
then by (6.5) we have

7.7 SSD[<%>2+ (66?7; )2—!— mldxdy <const. X m™* (m—>o0)

for some «>0. On the other hand, if we put

(7- 8) nm(x>y>:u(x)y)_um(x)y);

then by (4.10) we have

(7.9) SS I:a< s >2+b< 1 >2—|—cn2jldxdy
D 0x 3y "

gSSD]:a<%>Z+ b(%)ZJr c?,?,,:l dxdy.

M=max[max @, max b, max ¢]>0
b 5 b

Now put

S =min[min @, min 5]>0,
D D

then it is evident that

516 -S{1[ (32 + (25 s

g&&n[“(?—x'n)ZJr b( %’g," >2+ cvi:ldxdy

and
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o ot
<mf [ (%) +( ’ )+t dxdy.

Hence from (7.7) and (7.9), we have

(7.10) J @) <const. Xm™*  (m—>o0)

for some a>0.
In order to apply Theorem 4.1 to our function 7.(x,y), let us
check condition (ii) in the same theorem. Put

(7.11) M,=max|u(x,y)|, M,=max!y.(x,3)|.

and let p be an arbitrary point in D and /, be the closed line segment
corresponding to p in the way stated in the beginning of §7. For our
solution #(x,y), by (b) in Theorem 6.1, we have

(o )y =(i a5

2
ﬁzglaiulz
<2Co(x,y) (0<m<<1),
therefore by (7.1) we have

(7.12) SW( du ) ds<2C* S oz, 9)ds <K

ds 1ND

for some constant K independent of /.
To estimate du,/ds, let us suppose that m is so large that

m—2<8,/2.
Put
o=m,
then by (2.2) we have
(7.13) o(x, y)>const. Xé*2 on 1,(0)

and hence

(7.14) | Dn(¥, ) | < const. X 67%2-max |u.(x,y)| on (8.
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Let us denote the quantity in the right-hand side of the above in-
equality by R,. For 1,(8), by (b) of condition (C), it is clear that

length {7,(8)] =>8,—8>80/2.

Now suppose ip(a)ﬂvqb. Then by (c¢) of condition (C), any point (%, §)
on Z,(B) can be expressed as follows:

(7.15) E=x,+1s, §=y+Ls (|s|<Kw)

where (I, 1,) are direction cosines of I, and (x,, ¥,) is a point on ,(5).
By (7.15), we then have

2m r
(T16)  Bu(E ) =PaChos 3+ 23 2| - Bt b 3o ) |57
r=1 7! ds s=0
However, by the theorem of Markov, from (7.14) follows
7.17) A 505, )| <2Ru(2m)*length 1,

< CiR,m* on [,(3),
where C;=16/5,.

By the theorem of Markov, from (7.17) it follows successively that
& 55, )| <(CimD R on L@ (=23,
Then from (7.16), we see that
- . |" 2m , 2 ,
|58, 9D | <| 1432 (Cimy- (K | R.
2m 1
—[ 1+ 52 Ciky/my | R
< exp(CiK,/m) - R,.

Hence for some positive constant C;, we have

Taking into account (7.14), we thus see that
(7.19) |Pn(x, ) | <Cio* max|u,(x,%)| on LND
D

for some positive constant Cs.
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From (7.19), by the theorem of Markov, we then have
ld Dz, ¥)| <Cio ™" em? maxlum(x )|
=Cim™**-max|u.(x,y)| on [LND
D

for some positive constant C;. Since #,(x,y)=w(x, ¥)D.(x,y), and
w(x,9), 8,0(x,y) (i=1,2) are all bounded in D, taking into account
(7.19), we thus see that

(7.20) |-z )< Comtmax|un(x, )| on L,ND

‘75
for some positive constant C;. Now by (7.11),
max | u, (%, ¥) | <M+ M,,

therefore from (7.12) and (7.20), we have

aom (G = (G ) () e

<2K+2C"% (My+ M,)*m* .

Inequalities (7.10) and (7.21) imply by Theorem 4.1 that

(1.22)  M,<Ay melog CHHAMST MYm g e

m—OL

for sufficiently large m, where A, B, G, H are suitable positive con-
stants. Now we shall show that (7.22) implies the boundedness of
M, for m—>m, provided m, is sufficiently large. Suppose M, is not
bounded for m_>m, Then there is a sequence {m;} such that m,<C
my <My <--+—>co and M,—>oo as i—>co,

For brevity, let us drop suffix 7 of m;. Then in (7.22), we may
suppose that m-—>oco and M,—>oco. Then from (7.22) we have

M, <A[m *log H(My+ M,)*m***(1+¢) m*] ">+ B(m™)'",

where ¢ is a positive constant. Then we have

log H 2log(M,+M,) , (62+4)logm
lgA I: aM?n (xMZ + txMz

10g(1+a) alogm J 1 :l”z
OLMZ + LX,M? B[_ maM?n -
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However, the right-hand side of the above inequality evidently
tends to zero as m—oco and M,—co. This is the contradiction. Thus
we see that M, is bounded for m _>m,, or in other words, there is
a positive constant M inderendent of m such that

M,<M for m_>m,.
Then (7.22) implies
M,=0[vm*logm ],

which completes the proof. Q. E.D.

References

[1] Kantorovich, L. V. and V. I. Krylov. Approximate methods of higher analysis,
Interscience, New York. 1958.

[2] Harrik, I. Yu., On approximation of functions vanishing on the boundary of a
region by functions of a special form, Mat. Sb. 37 (1955). 353-384. (Russian)

[3] Petryshyn, W. V., Direct and iterative methods for the solution of linear operator
equation in Hilbert space, Trans. Amer. Math. Soc. 105 (1962), 137-175.

[4] Mihlin. S. G., Variational methods in mathematical physics, Pergamon Press,
Long Island City, 1964.

[5] Urabe, M.. Numerical solution of multi-point boundary value problems in
Chebyshev series-theory of the method, Numer. Math. 9 (1967), 341-366.

[6] Nagumo, M., On principally linear elliptic differential equation of the second
order, Osaka Math. J. 6 (1954), 207-229.

"77] Ak6. K., On the modern and the classical solution of the Dirichlet problem,
Japan. J. Math. 36 (1966), 85-97.

8] Hobson, F. W., The theory of functions of a real variable and the theory of
Fourier’s series, Dover, New York, 1957.

[9] Natanson, I. P., Constructive theory of functions, II, Ungar, New York, 1964.






