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1. Introduction

The study of the system of linear ordinary differential equation

(1) at

was initiated by G. D. Birkhoff [1] and was continued by many
authors [2], [3], [4], [5]. Always the aim of these authors have

been the investigation of "the solutions in the large".
The system has two singular points in the entire complex t-

plane: one is a regular singular point at t = 0 and the other is an

irregular singular point of rank 1 at t=°°. Locally, in the neigh-

bourhood of the regular singular point £ = 0, we have a fundamental
set of solutions in convergent form

(2) -X-y(0 = ^23Gy(w)r (.7 = 1,2 ,-,*).
m=o

and near the irregular singular point at infinity, we have a set of
formal solutions

(3) x*(0~^*'*fl"2#*(s)r* (*=i,2,-,«),
5 = 0

and if we restrict ourselves in an arbitrary but sufficiently small

sectorial neighbourhood S of this irregular singular point, we have a

fundamental set of solutions with the asymptotic behavior as follows,

(4) Xk
s(t)^Xh(t)
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By the theory of linear differential equations, these two sets of
solutions must be connected linearly

( 5 ) Xj(f) = S TJ(S) W) (; = 1, 2 ,-., ») .
4=1

The constants T*(S) are called Stokes' multipliers, and because of

their discontinuous dependence on the choice of the sectorial neigh-
bourhood S, exact evaluations of these Stokes' multipliers have been

a difficult and important problem, called a two point connection

problem, both theoretically and practically.
Theoretically, an ingenious method of determining Stokes'

multipliers was proposed by K. Okubo in the paper [4].
Here, we shall briefly explain that method. We write the formal

solutions (3) in the form

with scalar quantities

x*(t) =

Now, we try to construct the scalar entire functions x*(f) with the

asymptotic behavior

t"x*j(t) ~ x*(t)

near infinity. In fact, if we define x](f) as holomorphic solutions of
the following differential equations that we call the "fundamental
differential equations",

(6) /^L)=(x^ + fltt-py)^(0 + l U,k=l,2,-,n).

and write these solutions in the form

then we have the relations between x*}(t) and xH(f) in a certain
sectorial neighbourhood of infinity as follows,



Calculation of the approximate values of Stokes9 multipliers 279

i.e.,

( 8 ) f »*S(f ) « x;»

Here, if we substitute tp'xk
J(t)/\

a
k»-p'T(pJ—akk) for #*(f) in the

formal solutions (3) and calculate formally, we have

( 9 ) X\f)

= **"'"V't 13 gW"][ 2r(py-«**) »!=° s=°

= **"'""* V" f]rGv- -a**) m=-°
We denote the coefficients of fw in these power series by

(10) ^j(w)
s^o

Then, if we could prove the convergence of the factorial series
of 5 in the right hand side of (10), we could expect to obtain the
relations between the coefficients Gy(m) of convergent power series
solutions (2) and the coefficients Fk

3(m) from the linear combination
(5) and the formulas (4), (9).

(11) XXO = ^SGyW"

= 2

2 TX

oo r n
= *"' 2 S r j ( S ) - i - -Fm)«— L*-i

Therefrom, we obtain for non-negative integers

(12) G,(m) = 2fXS)JPXm)

where we put

f J(S) = Ti(S)- j '" '" (;, fe= 1, 2 ,..-, «) .
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From the relations (12), we will be able to determine Stokes*

multipliers T](S) theoretically by only solving the linear equation

for a certain non-negative integer m0 and then, from the initial condi-

tion of the coefficients Gj(m) which satisfy a system of difference

equations, all the coefficients of negative powers of t in the right

hand side of (11) vanish.

However, in general, we cannot expect to get the values of

Fj(m) explicitly, because F](m) are represented by the factorial
series including an infinite number of the coefficients Hk(s) of formal

solutions.

The convergence of the factorial series (10) was proved by

investigating the location of singular points of certain auxiliary

systems of differential equations under the pentagonal condition in

the papers [4], [5]; and all, or only some part of Stokes' multi-

pliers can be calculated in case of two, or more than three dimen-
sional system of differential equations respectively.

The author proved the convergence by the simple method of

norm estimation in the paper [6].

The object of the present paper is to show that our method,

which was used to relax the pentagonal condition, is useful not

only theoretically, but practically in the approximate evaluation of

Stokes' multipliers with sharp error estimates. This will be demon-
strated by computing Stokes' multipliers for Airy's equation by our

method and by comparing with the known exact values of them as

a special example of a general system of ordinary differential equa-

tions of the type (1).

In section 5, together with a new result for an explicit value

of the determinant for the system (12), we will show how our

method works for a general system of higher dimensions.

The author would like to express his sincere thanks to Professor

M. Hukuhara for his constant counsel and warm encouragement and

to Professor K. Okubo for his kind advice.
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2. Exact Values of Stokes' Multipliers
(Method of contour integration)

Ordinarily, to obtain exact values of Stokes' multipliers, integral
representation of solutions of a given ordinary differential equation
is used and the saddle point method is applied to those integrals
to derive asymptotic behaviors.

In this section, we shall explain briefly the two point connec-
tion problem for Airy's equation and compute the exact values of
Stokes' multipliers by this method.

Airy's equation

(13) d^jjt = tx(t)

has one set of holomorphic solutions in the neighbourhood of a
regular point t=0 as follows,

(14)

where

(15)

and another set of solutions which has the asymptotic behavior in
a certain sectorial neighbourhood of t=oo as follows,

(16)
x\f)

where c0=
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a?)

On the other hand, we have the following integral representa-

tions of solutions of Laplace type

(18) xjk(t] = \ <f*-W» ds , (/, *= 0, 1, 2 ; j*k)
JTj-rk

where ry denotes the path of integration as follows,

(19) Tji s=r <P*v*>i (0^r< oo) (/= 0, 1, 2) .

Then, from these integral representations we obtain the power

series expansions of solutions at £ = 0,

(20) *„(*)

O',* = 0, 1,2 ;;=

and we take two solutions xol(t), xl2(t] as the fundamental set of
solutions of Airy's equation (13).

Hence, the solutions x0(t) and x^t) can be represented by the
linear combination of the above fundamental solutions jr01(0 and

follows,

(21)

The constants AQJ B0, A± and B1 can be calculated by the values

and the values of the first derivatives of solutions at t=0 and we
obtain

r(4)3-1/3x/3~ i r(4V 1/3(i-^'v:

= . ^ 3 / D V 3 /

(22)

(ir)
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Now we shall investigate the behaviors of the solutions x0(t)

and x&f) in the neighbourhood of infinity. For that purpose, we
only seek the asymptotic behaviors of xQ1(t) and xlz(t} in a certain
sectorial neighbourhood of t=°° because of the above relations (21).

In order to obtain the asymptotic forms of x01(t) and xlz(t), we

apply the saddle point method to the integrals of the extended

Laplace type (18), and we have

(23) \

• -^2

\aigt

From (21), (22) and (23), we obtain the following connection

formulas of two sets of fundamental solutions of Airy's equation

in the sector

(24)
r/i\3_1/6 r/ 1\

= - - V3/

3. Approximate Values of Stokes9 Multipliers
(Estimation method)

We shall calculate the values of Stokes' multipliers approxi-
mately by our method of norm estimation in this section.

For that purpose, we first have to reduce the single Airy's

equation (13) to a system of differential equation of the type (1).

Here we change the variable by
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(25) t = |f'2

and denote t again by t. Starting from the vector

with Xi(f) = x(f), x2(f) = x'(f), we perform the constant linear trans-
formation

(26) X=PX

where the constant matrix P is

- P ")U -l).
(27)

Then, we obtain the desired system of differential equation as

follows,

Here the eigenvalues of the first matrix A on the right are

P! = O, p2= —— and the eigenvalues of the second matrix B on the
o

right are X^l, X 2 =—l.
The system of differential equation (28) has the following con-

vergent power series solutions in the neighbourhood of f=0,

(29)

and the formal solutions in the neighbourhood of t=°° are

(30)
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The coefficients G^m) and G2(m) of the convergent power series
solutions Xj(f) and X2(t) satisfy the following difference equations,
together with given initial conditions respectively.

(31)

1^(0) = 0

6" IT

(32) i , I

^6 6 '

Similarly, the coefficients H\s) and H2(s) of the formal solutions
Xl(t) and X2(f) satisfy

(33)

(° °\
. (o -2) H (0) = °

(34)

10 -~^ = °-

According to the result of the previous paper [6], Stokes'
multipliers can be determined by solving the linear equations (10)
for m0=0, since the eigenvalues of the matrix B satisfy the penta-
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gonal condition 1= Ixj = |X2 | < 1^ —X 2 | =2.

In order to solve that linear equations (10) for mQ=Q, we first

have to obtain the values of the factorial series

(35) F}(0) = fj H'(s)g1(s) (j, k = 1, 2).
s^Q

Since the exact evaluation of this infinite factorial series seems

impossible, in general, we will calculate the approximate values of

W).
Now from the difference equations (31), (32), we calculate the

coefficients of power series solutions needed later.

(36)

G,(0) =

Since the coefficients g$(m + s) of power series solutions of

fundamental equations are given by

we have for

(37)

Ix7x —x(6s+l)

.A)
6 /

(-I)x5xllx-x(6s-l)

Ix7x-x(6s+l)
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gl(s) = x(6s —

Next, from the estimation formula of the coefficients of formal
solutions Hk(s)y we have

«= \\A\\+\akk\ = - - t - -= l . (*=1,2),

(38) ||g*(j+jY)|| ^ (*=1,2).

From (37) and (38), we can calculate the remainders of the
factorial series (35) which are used as the error estimate as follows,

(39)

\\Hk(N)

T(N+^
x

X

To obtain the simple estimates of the infinite series in the right
hand side of (39), we use Stirling's formula for the gamma function
and we have

Hence, for a large positive integer N, we have



288 Mitsuhiko Kohno

_ 9 s+N

y/T 2 1 0/ 1 \]
/ L Qs + Ar \ s + A 2 / JV(s+A02

Similarly, we have

N-w.

\

Hence we obtain the following estimates,

Consequently, the estimates of the remainders (39) are

^(0) £

(40)
r(

6_/J v o/ir-i/3 /£_-! o\X &D4 \K— 1, £) ,

Next we shall solve the difference equations (33), (34). We have

/ IN

12'
and, if we put

*•«-(*•>).
V^W
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we obtain

( stoh(s\-\ hl
2(s) = 0

6

6 1

and, solving the above equations, we have the recurrence formulas
as follows,

(41)

Calculating the recurrence formulas (41), we obtain

/ #M- [5xllx-x(fo-7)][7xl3x-..x(fo-5)]
I /&, I o I — •

(42) 72>XS!

A,/ v = 6x [5x 11 x - x (fo-7)][7x 13x - x (65-5)]
' *

Also we have

72;

and
,6x[5x —x(6s-7)][7X'x

(43) 72*x (.-!)!

Finally, using the formulas derived above, we can write down
the formulas F*(0) in the form

'~14 +

(44) F((Q) = ]
|o+d •

7 12s x(s-l)!x

1 ^6x[7x-x
10 « 12sX5!x(6s-l)

,_6 -- , .
s

I n - 3
 +^V-36x[7x---x(6s-5)] , ,

" 12'x(5-l)!x(fo-l) '
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(46) F\(Q) -

(47) F2
2(0) =

The linear equations

S /"1 //Y\ "VI 1TkT?k{(\\
^W/ — X i 1 2" 2\W

x 6 = 1

are now replaced by approximate equations

with solutions

(48)

(49)
j—S j — S

Now we shall show an example of the numerical calculation

below. Owing to the digital computer and the table of gamma
function used, we put N= 6 and calculate the exact values of seventh

order below the point.
The following tables are the results of the numerical com-

putations carried out for N=6.

Calculation of a

s

0

1

2

3

4

5

-6xX[5x-"X(6s-7)]

-30

-330

-5610

-129030

12s X s\ X (65 + 1)

3744

196992

12441600

92565504

a

6
1
14

-0.0080129

-0.0016752

-0.0004509

-0.0001394

a -5.9182930
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Calculation of 0

*
0

1

2

3

4

5

36x[5x---x(65-7)]

180

1980

33660
774180

12SX (5-1) !x (65+1)

1872
65664

3110400
18513100

0

0

3
7

0.0961538
0.0301535
0.0108218
0.0418180

£ = 0.6075185

Calculation of

s

0

1

2

3
4

5

6x[7x---x(65-5)]

42

546
10374
259350

12s x s\ X (65-1)

3168

176256
11446272
865935360

r

-6
1
10

0.0132575
0.0030978
0.0009063
0.0002995

r = -5.8824389

Calculation of d

s

0

1

2

3
4

5

-36x[7x---X(65-5)]

-252
-3276

-62244
-1556100

125X (5-1)! X (65-1)

1584
58752

2861568
173187072

d

0
3
5

-0.1590909
-0.0557598
-0.0217517
-0.0089851

£=-0.8455875

From r(—) = r(0.16) = 5.5712058 ,

r(—) = r(-0.16) = -6.7776601,

v/— = 1.7724539

where in this case the first two values are derived by interpolation
from the table [11], the error terms can be calculated as follows,
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(50) F'(0) = F2(0) = 6 x [5 x • • • x (QN- 7)][7 x • • • x (6N-5)] x 2N

72Nx(N-l)lx(2N-l)x-x3xlxV^~

rd
= 0.0035156,

_ 6x[5x-.-x(6Ar-7)][7x---x(6A^-5)]x2 jV

= 0.0077717 .

And from Calculation of a, 0, 7 and S, we have

a + 13 = 6.5258115

•y-S = -5.0368514.

Hence, from (48) and (49), we obtain the approximate values

of Stokes' multipliers as follows,

(52) T\ = T\ = -J— = 0.1532376 ,

(53) T\ = -T2
2 = — — = -0.1985367 .

7 — 8

4. Comparison of the Approximate Values with the Exact
Values of Stokes' Multipliers

Now we shall compare the approximate values derived in sec-
tion 3 with the exact values derived in section 2.

If we apply the Theorem 3 of the previous paper [6] to the
system of Airy's differential equation (28), we have in the sector

(54)

e*{£s=°

+ r;r(f
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X2(t}^ T]f( —
6

6

where t = ~f<2.
3

Here the first row of the vector solutions X^(t) corresponds to
the solution xQ(t) and the first row of the vector solution X2(f)
corresponds to the solution xtf).

Therefore, in order to obtain the exact values of T] (/, ^ = 1,2),
we make the first term coefficient of the first row of ^00, X2(t)
accord with the first term coefficient of *0(f), xtf) respectively.

From the linear transformation (26), it follows that

-

Hence, from (24) and (54), we have the following exact values

-' xy =

_
6 A 3 / o/2 ^2'3

3\

i.e.,
/

r; =
(55)

r(4-
i 9 = — i ; — -

r --^
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Here, using the values

r(—) - 1.3541906

r(—) - 2.6795252 ,

we calculate numerically the values of the right hand side of (55)
and obtain

rf-f-V"3 / = 0.1539315 ,

= -0.1987153.
r

The results are

Exact value

Approximate value

Error (E—A)

Relative error f-^l
\JUr '

T\ = T\

0.1539315

0.1532376

0.0006939

0.0045074

e : Estimation error

0.0035156

X 2

£-0.0070312

Exact value
Approximate value

Error (E— A)

Relative error f -Jj-J

T\ = — T\ j E : Estimation error

-0.1987153

-0.1985367

-0.0001786

-0.0008986

0.0077717
X 2

5-0.0155434

From the above tables, our method seems to be effective in the
numerical determination of Stokes' multipliers even for a general
system of the type (1).

5. Remark on the Determinants of F](m) and

the Errors of T]

In the section 1, we explained that Stokes' multipliers of a
given system of ordinary differential equations of the type (1) are
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determined by only solving the linear equations

(56) G/ro) = E T]Fkj(m) (j = l, 2 ,-, «)

whenever the factorial series representing F](m) are convergent.
Hence, it is meaningful to investigate the determinants of the
matrix with n column vectors F](m) in more detail apart from the
approximate evaluations of Ffari).

If we consider Fj(m) as functions in m, F](m) are indeed the
general solutions of the difference equations satisfied by the coef-
ficients Gj(m) of convergent power series solutions, that is, Fj(m)
satisfy the following difference equations

(57) (pj + m-A)Fkj(m) = BF](m-l}.

Now, we denote the determinants of Fj(m) by Cj(m) as follows,

(58) Cj(m) = det{F}(fw), F](m),-, F?(w)} .

From the difference equations (57), we have

Therefrom, we obtain

(59) C/ffi) = 1

On the other hand, for a large positive integer in, we have the
following asymptotic forms from the factorial series expansion,

F](m) =

Since the eigenvectors H*(0) (&=1, 2 ,•• - ,«) are linearly inde-
pendent and the det {H\0\ H\0),-,H*(0)}=1, we have

(60) Cj(m) =
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Hence, from (59) and (60), we obtain

(61) c,(0) = ( 77 rdii+Py-fa+i). rto-aj \ h
' ^r(w+p,-fltt + i)r(p,-p»+i)/l

Here, if m tends to infinity, by Stirling's formula

and by the invariance of the trace of a matrix

2 «*& = 2 P* .
4=1 *=1

we obtain

(62) CXO) =
*=

But this is an identity relation because Cy(0) is independent of m.
Finally, we obtain

ffiTl C (m} — 7(63) cx«)-/

which we can calculate explicitly independent of the values of F](wi).
Now we shall solve the linear equation (56) for a certain

appropriate positive integer m0. The exact values of Stokes'
multipliers are given by

(64) Tk = det {F](m0) • F*,(mJ ' ' -Gjfa) • • - FRm,)} (j k = 12 _ ,
j Cj(m0)

But, as described in the preceding sections, we shall not, in
general, be able to calculate the exact values of F*(m0).

So, we substitute the sums of the first arbitrary N terms
Fk

jjf(m0} for Fj(m0) and obtain the approximate values of Stokes'
multipliers as follows.

fk = de^y***okZ^j /~* / \c/»o

Then, using the norm estimates, the errors ej are
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(66) £J
C/w0)

From (66), we may say that the smaller the absolute values of
Cy(m0) will be, the greater the errors will become. But Cj(m0) never
vanish, because, in that case, pj — pk=--m1 (m^mQ + ].} is satisfied
for some k and we have convergent power series solutions involving

logarithmic functions and the different linear equations determining
Stokes' multipliers from (56). See [4], [5].

In conclusion, our method is effective except for the case when
it is difficult to judge the appearance of the logarithmic terms.
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Eratta

In the Theorem 3 of the previous paper "The convergence
condition of a series appearing in connection problems and the
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determination of Stokes' multipliers", the author commited a small
error of dropping the constants T(pj — akk) which correspond to C*
in the Theorem. 5. 3. of the paper "A two points connection problem
involving logarithmic polynomials".

Since in the former paper a two point connection problem
involving no logarithmic terms is treated, the constants C* involve
no values of the derivatives of gamma function as the case of the
latter paper and are easily given by c0 = \n

k
kk~pjT(pj — akk). (see the

latter paper, 277 p., 304 p.).
Therefore the constant T(pj — akk) should be attached between

\a
k
kk'pj and eXkt in the formulas of the following rows from 348 p.

to 350 p.

348p

11 th row

15 th row

16th row

24th row

349p

7th row

10th row

22th row

350p

3th row

11 th row

14 th row

The correct connection formula follows


