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The First Boundary Value and Eigenvalue
Problems for Degenerate Elliptic Equations, I

By
Kazumasa SUZUKI*

Introduction

The preceding paper [3] referred to the elliptic equation

i i(ﬁi]’%) —qu=f
Hi=10%; 0x;

which is degenerate on the boundary. In this paper we discuss the

first boundary value and eigenvalue problems for the elliptic equations

of the same form which may degenerate in the interior of the

domain. The equations treated in this paper include as their special

type uniformly elliptic equations.

We treat only weak solutions. However, we weaken the restric-
tion on the coefficients. Our method to solve the problems owes
to Sobolev [2], in which we find the boundary value and eigenvalue
problems for the Laplace equation.

In §1 we arrange some inequalities to be used in the succeeding
sections. Section 2 is devoted to some basic lemmas applied to a
variational method. We solve, by a variational method, the first
boundary value and eigenvalue problems in §3 and §4, respectively.

The author wishes to express his sincere thanks to Prof. M.
Hukuhara for his helpful suggestions and constant encouragement.

§ 1. Inequalities

Let QO be a bounded domain with definite measure in the m—
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dimensional Euclidean space E. We denote the space of measurable
functions # defined in Q with

lly = ([ 1u12av ) <oo

by L, and the space of measurable functions # defined in Q with

[lu|l. = vrai, max |u(x)| < oo
by L...
By C.. we denote the set of infinitely differentiable functions
defined in E with supports strictly contained in Q.
When we have

5 w95 qv = —S w;tdV
e 0x; Q
for some function # defined in Q and for every function §EC'm we
call w; the generalized derivative of # with respect to x; and denote
. ou
it b .

y 0x;

By W< we denote the space of functions # measurable in Q
and having the first order generalized derivatives also measurable

in Q, and for which

lallwe =[], {8 2+ wiefav " <eo.

i=1

As is well known W is complete.
We denote the closure of C. in W by Vf/'j,“. For pe W

(4
we shall denote by W the subset of W defined by
4 0
W = tulu—pe WP} .
First we arrange some lemmas which give some inequalities in
W
Lemma 1.1. When m=2, for any uc W we have
| 2ms tomcr+#7—2) = Boar | VU 37057

where 0<r<1 and B,,, is some constant not depending on u.
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Proof. Take {#,=C.} such that
H”—”k|IW§1)”‘>O(k"> ).

Obviously we have

o < [ [ S

(1) ) =5 | |2

£

and, therefore, we have

[ (x) | ™/ P < <~1—)m/(m_1)ﬁ<51 qukldx,->1/(m—D .

2

=1

From Holder’s inequality it follows that
° mjcm—1) [ poo
S_wluk{ m/(m—l)dxjé (%> ¢ <S~ | Vuk|dxj)1/(m—1)

><S (][S_qukxdx) e 1)dxj

=1
ixi

(3 s ™

< S dxiso;lvukldxiyﬂm_n-

i

IA

In a similar way we have

S dxlg dxz---g [u,| ™" Vdx,,

g(%)”’(m_”qldxl [ are|” Ivildm, .

Thus we have

1,
(2) ||“k||m/cm—1>§5 VRl
Putting
Up = u(zzz—n/(m(l-l—r)—z)
we get

1l lamftmcr 73y S e Vil lars 0

m(l+r)—2

181
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Since we also get

Hobe— Ui/ |omt (1 -2>2) _mllv(”k u ||V @~ )orasr

because of

IV (g — 1) osri0> = (mes Q) 2|V (s, — )],
=(mes Q)"||u,—uy||wp—>0 (k, k'— o),

we have

< m

12| syms tomcs - 7>-2) =—Zl—_‘*_T~2"V””z/a+w-

Q.E.D.
Obviously from (1) and (2) follow the following corollaries.

Corollary 1. When m=1, for any uc W we have
1
S NI T
[2el| =5 [ Vul|
Corollary 2. When m=2 for any uc W we have
”u} lmlm—1) = —‘”vunl .

Lemma 1.2. For any uc W we have
Hu”z/(1+r)<er,||vu||2/(1+r) )
where 0<r<1 and B,,’ is some constant not depending on u.

Proof. In the case m=3 or m=2, =0, by Holder’s inequality

we have
“qu/(1+7) <(meS ‘Q')l/m| |u| 2m/ {mC1+7)—2}
and therefore we have

}|ui|2/(1+r)§er,HVui|2/(1+r) (Cf- Lemma 1' 1)'

In the case m=2, =0, from Corollary 2 to Lemma 1.1 follows

et orc1 = > (mes Q) 2HVUl orcirs »

In the case m=1, by Corollary 1 to Lemma 1.1 we have
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ot arcir é—;‘mes QUVull 0049 -

Lemma 1.3. For any ucs WL we have

ull, =B, ltall} 2 1V

Pm"

2/(1+7)

where 0 < 7r<min {2, 1} and p,,,(0<p,,,<1), B,,” are some constants
m

not depending on u.

Proof. In the case m=3 or m=2, »+0, from Holder’s in-
equality follows

ey

wdV — S wut=dV
Q Q

< S uz/(1+r)d V)WH—’)/Z(S u(z—w) 2 dV>{2—w(1 iz
“\Je o 2—a(l+r)

)

for every « such that 0<a<f—2-. Putting a«=2—mr, we have

+7r
Ilu|I§§'||uiI%,‘(’{"Ir,}]ulI’z’”,,f,/(m(1+,)_z)
and therefore we have
2
Hu!Izéer""Hul1§R§"Ir>|lvu||§”fu+r)

(cf. Lemma 1.1).
In the case m=2, »=0, by Corollary 2 to Lemma 1.1 we have

lal 3 =L 2] vl

= (mes Q){[ull;|Vull,

I

(I I N

(mes Q)VZ| |u| Iz/(1+r)”vu| Iz/(1+r) .

In the case m=1, by Corollary 1 to Lemma 1.1 we have
S wdV = S uz/(1+r)u2(1~1/(1+r)} av
Q Q

1 27 J(14+7)
< S w/ngy {? (mes Q)| Vi 140 }
Q

333 RVl 157453

1 Ay 2r /(14 7
< E(mes Q)
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Lemma 1.3. When m=2 for any us W we have

11-2,
Iz

Hu“m(z—r)/(m—l) éer”/Hul " HVMHf/'Hw) ’

where 0<r<1 and p,,/0<p,’'<1), B, ' are some constants not
depending on u.

Proof. Putting #=u" in the inequality in Corollary 2 to
Lemma 1.1, we have

o _
IIu”ilm/cm-néEIIu” 'Vull,

= [‘Vu[[z/(1+r>‘[u||g&l—1>/(1—r>

@
2
for every a such that «>1. If we put a=2—r, then we get

12—r 2— —-r
null;@_ﬂ,(m_n§~2—’zlwnmmuui|; :

Lemma 1.4. If a subset W in Wi, is bounded in WS, r,

then W is velatively compact in L,, where 0<r< min{g, 1}.
m

Proof. As is well known, 9 is relatively compact in Ly,
Taking a Cauchy sequence {#,=%} such that

lots— sallosc1rs = O (B, k' — 0),
from Lemma 1.3 follows
ot — | = By 00— s |35, 1V i — )N 221,
— 0 (k, kB — o).
Therefore 2 is relatively compact in L,. Q.E.D.

Next we define some functionals on W as follows :

_ w ou 0v
D[u, U] = SQ zu2=1ﬁija_x,- 5;]‘dV:

HJu,v] = SgpuvdV,
Dlu] = Dlu,u), H,[u]l= HJu,u],

where u, ve Wb,
We shall give some inequalities with respect to these functionals.
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Let (p:;) satisfy
0=p.(x) ; £ ]Z;lpijgigj =p:(x) ; 173 in Q,

where (¢,,--+,£,) is any real vector, p,' L,,(r=0) and p,=L..
Hereafter, when this condition is satisfied we say that (p,;) has the
degeneracy of the »-th degree.

Lemma 1.5. Assume that (p;;) has the degemeracy of the r-th
degree.
Then for any us WP we have
Do T Vull3/qam = D[] < oo,
where 0<r<1 (when r=0, we read 1/r= o).

Proof. From Holder’s inequality it follows that

Ivalten = [§ () B2 "av]”

<l2,71f, 32,2 (34) (24 Yav

J

The finiteness of D[«] is evident.

Lemma 1.6. Assume that

M _ (m=3 or m=2, r=+0)
2—mr
pELr1 (7’1 = S (m=2, r=0)
1 (m=1)
and
2m
A = =
A2 (m=3 or m=2, r+0)
PEWENL, (=9 2 (mez -0 )
(&) (mzl)

where 0<r < min {—2—, 1}.
m

@
Then for any ucs W5 we have

| Ho[u]l =liplly (Conrl V@ —=@)llosa1 o+ 21],,)

where C,,, is some constant not depending on u.
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Proof. When m=3 or m=2, 40, by Holder’s inequality we

have
| H, L] ggg \plurdV

§I[Pi{m/(z—-mr)(|u“2m/(m(1+r)—2)
= i |P| |m/(2—mr)(“u'¢i !2m/(m(1+r)—2} + ||¢||zm/(m(1+r)—2} )2
é “pllrl(erl IV(u_ 47)} |2/(1+r)+ H(pi !zm/(m(l-l—r)—z})z

(cf. Lemma 1.1).
When m=1, »=0, we have

H, (11 = {_lplwdV=|lpll-liul}

=|lpl lr1(| [t —@llorcem+llpli)*
é I !pHrl(er/| |V(u_ q))hzl(ﬁ-r)_{_ ”‘PHz)z

(cf. Lemma 1. 2).
When m=1, we have

(H L= plwav
Q
< 1ol 2] < llpl1i(l [ — @}l + i@l

<llpl (5 IV@—)l-+ligll-)
(cf. Corollary 1 to Lemma 1.1)
<ol (5 (mes Q¥ (=l r+ i )

Lemma 1. 6. Assume that

2—mr

( m(Z—r)(ng) )
l 1+¢& (€ is some positive constant) (m=1)

pEL,,3 (7’3 =
where 0< r<<min {3, 1}.
m
Then for any us WP we have

VH, [ | <C.0 llpll el 3 2n2\Vdl 0

where P, (0<p,,,'<1) and C,, are some constants not depending

on u.
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Proef. When m=2, by Holders inequality we have

(i< 1plwav
=lpllmca-r7c —omr 18] Fnca—rrcm—1> -
From Lemma 1.3 follows
| H, [ud| <B,.""llpllyy 1l ;" IVl [ -
When m=1, we have

| H, L] <llpllsylloil3rgrcry-1>
= 1pll gl el 573777 fae] [ 27

<lipllul 57575 x|V
(cf. Corollary 1 to Lemma 1.1)

27
< {5 (mes )2} ol ullrs s V2,

Lemma 1.7. Assume that

2m
___EM (> =
( A-r)i2 (m=3 or m=2, r=+0)
7,

fEL,, = 2 (m—2, r=0) ,
1 (m=1)
and
_22m s =
ewenL <r ) mA1r)—2 (m=3 or m=2, r:i:O)>
g 2 2 (m=2, r=0) ’
oo (m=1)

where 0=r<1.
(4
Then for any ue W we have

I(f’ u)l g”f||r4(cmr”HV(u_¢>||2/(1+r)+ “(p”rz) ’

where
(f, ) = 5qudv.

Proof. When m=3, or m=2, v+ 0 from Holder’s inequality

follows
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[y @) | 1S oms tmcs - 42|08 Loy s 221
S Nams - mer -V 86— Ploms tmcr 9520 + Py tmer 221
§||f“zm/tz—m(r—1>}(er‘Iv(u‘_¢)”z/(1+r>+ P |2t tmcr+>-21)
(cf. Lemma 1.1).
When m=2, =0 from Schwartz’s inequality follows
[(fs )| <1 [l ]ul ],
S N% = @llsasr + @)
SN B IV @ —P)ilyarm+lell)  (cf. Lemma 1.2).
When m=1, by Corollary 1 to Lemma 1. 1 and Holders inequality
we have

|(f5 ) | {1 S lfeel -
= 1h(le—plls+llpll)

=I5 IV @—el - i)

<I1711( 5 (mes Q) PV @ =)+ Il )

§2. Completion of WP

If (p:;;)=(p;;) has the degeneracy of the »-th degree, the func-
tional \/D[.] plays the part of a norm on cél’. We denote by
DWSP the completion of W with respect to / D[-]. For pe W

we define

DW = {u|lu—peDWP} .
When ueDI‘/’Vé‘) <O§r<min(£, 1)), take a corresponding Cauchy
m

sequence {ukeV‘f}?}. Since D[u,—uy]— 0(k, K’ — ), we have
Iluk—uk/liwg}gm)»O(k, k’—o0) (cf. Lemma 1.5 and Lemma 1.2) and
therefore we have |ju,—uy|,—>0 (§, B'—o0) (cf. Lemma 1.3). Thus
u is identified with some function #’ belonging to W&,.,,NL,. The
preceding lemmas keep valid for Dﬁ/?’ (or DW) in place of T/‘f/?
(or Wb).

Lemma 2.1. Assume that (p:;)=(p;:) has the degeneracy of the
r—th degree and that
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" (m=3 or m=2, r+0)
—my

9=0, g=u,, (71 = o (m=2, r=0) )
1 (m=1)
ﬁ(—l‘z—ﬂr)jf (m=3 or m=2, r=£0)

feL,, (74 = 2 (m=2, r=0) >

1 (m=1)

2m _

WL AL md+7r)—2 (m=3 or m=2, (r+0)

PEW NL, <72 = 2 (m=2, r=0)

) (m=1)

where v is some constant with 0<r<min {2, 1}.
m
Then we have
—oo< inf (D[ul+ H[u]+2(f, u)< oo .
D
Proof. From Lemmas 1.5, 1.6 and 1.7 follows
inf (D[u]+ H,[u]+2(f, u))<oo.
DI/?/;D
Again by these lemms we have

Dlu]+ H,[u]+2(f, u)

=18 iVl =21 F 1l (Cons IV (= @) a1 1+ )

=110 Tl IVl 30— 2C 0 (| F 11 V8 Laca
=2/l 11, (Conr"IVPlloca s+l

=10, oI VUl n—E7Cu | F 112, — EV ULy
=211, Co" VPl oy 1 o+l

=17 A= ONVHll i — 7 C I FII7,

=2/ f 1l (Conr1IVP 1011+ 2l],)

c,

where € is some constant with 0<&<{|p,”"||;t and C is some con-

stant not depending on u.

%

Lemma 2.2. Assume that (p:;)=(p;;) has the degeneracy of the
r—th degree and that
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P2P0>0
m@2—7r) .~

pa€L, <7’3={ o (Mm=2) )
1—¢& (& is some positive constant) (m=1)

where v is some constant with 0<r<min {%, 1}.
Then we have
— o0 <igf D[ul+H,[u]) <o,
where 1
= {ucsDW® |H,[u] = 1} .
Proof. From Lemmas 1.5 and 1.6" follows

inf (D[u]+ H,[#])<oo .
10,

Note that from Young’s inequality follows

o6l 2 2mr | [Vt |17 7 < (L= By VE 2w ]

+pmr”51/p 'I/{'vu'lz/(1+r) ’

and that for =2, we have

|:%II§§P0_1Hp[u] = Po—1
By Lemmas 1.5 and 1.6 we have

D[u]"'H [u]2Hpo_l}ll/rHvu[‘z/(l-rr)
” 12
—Cm,’th,aHuI'z(l Py )Ilvuilzf(u.r)
g Hpo_1||1/r||Vu||2(/1+r)_Cmr/Hqua(pmr” llp""’/flvu|§§/(1+r)
A=y VEHE w2, ™)
= (10071577 — &#m"Coy Do 1@l NIVl 10
— &1 2w 0p, " Co' (L — Do a1,
=C,

where ¢ is some constant with 0<&E<(C,,, p,..”" || D, ll./»llqll,,) " ?»" and

C’ is some constant not depending on .

Lemma 2.3. Under the same assumptions as in Lemma 2.2, if
we have

Dlu]+H,[«]<C
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for some us LW, then we have
Dlu]=C,
where C' is some constant not depending on u.

Proof. From the the condition of the lemma follows
Dlu]=<C+ [H,[«]|
SC+Cp/llglly [l 2n || Vatl g, (cf. Lemma 1.6')
SC+C gl (Do 8 2m IV Ul 311 110+ (L= D) €7 PmrPpy ™)
SC+E82m"Cpy/ Doy 11, 57| 77D [0e]
+ &MY (L= P’ VP Con’ Nl

where & is any positive constant. Choosing & so small that

" o1 1
ellp”” Cmr/pmr”||an3”pn l”l/%'é? ’
we have

D[u]<2C+267" *u"(1= b, )py 'Cpr’ Il -

§3. Boundary Value Problem

Consider the boundary value problem for the degenerate elliptic
equation

(3) > %(Ptjg—;‘)—qu -/ o0
with the boundary condition

(4) Uu=q on 9Q),

where p= Wb,

We define a weak solution # of this boundary value problem
as follows:

If uEDVq[;/;D and if for any teDW$ we have
D[u’ §]+H4[u» g]“’“(f; E) =0 )

then we call # weak solution of the problem (3)-(4).

Theorem 3.1. (Uniqueness). Assume that (p;;) = (p;;) has the
degeneracy of the r-th degree, and that
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M (m=3 or m=2, r=0)
2— mr
qzo’ qEL"l (7’1 = oo (m=2, 7’20)
1 (m=1)
2m - —
A1 T2 (m=3 or m=2, r+0)
fEL, (ﬂ = 2 (m=2, r=0)
1 (m=1)
2m
> =
A2 (m=3 or m=2, r+0)
pe Wi nL,, (’2 = 2 (m=2, r=0) )
o] (m=1)

where v is some constant with 0=<r<min {g, 1}.
m
Then the weak solution of (3)-(4) is unique.

Proof. Let #, and u, be two weak solutions of (3)-(4). Then
we have for any t€DW

D[u,, £1+ H,lu, £1+(f,0) = 0

Dlu,, 1+ Hylu,, §1+(f, ) = 0.
Therefore we have

Dlu,—u,, £+ H [u,—u,, £] = 0.
Putting &=u,—u,c DW, because of ¢=0, we get

Dlu,—u,] = 0.

From Lemmas 1.2 and 1.5 follows

([, — o] 110> = By 11V (s — ) a0

=B, 15, Ily,D[u,~u,] = 0.
Thus #,=u, almost every where in Q.

Theorem 3.2. (Existence) Under the same assumptions as in
Theorem 3.1, the problem (3)~(4) has a umnique weak solution u, and
moreover u, satisfies

D[u,)+ H,[u,]+2(f, u,) = igf (DLul+ H,[u]+2(f, ).
DWE
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Proof. By Lemma 2.1

inf (D[u]+H,[u]+2(f, u)=d
DW

is finite. Taking a sequence {#,=C V(ffé"} such that
Um (DLw]+ Hy [ ] +2(f, w) = @,

we have

< I uk—uk'] uk—uk/:D
o= i (o5 e

Il

ks B> o0

5] )

lim {—;—(D[uk] + H, Tug ] +2(F, ua)

ks b/ >0

+%(D[uk/] +H [uy1+2(f, uy))

(o)

1 1
—d+=—d—d =0,
2 +2

IA

ie.,
kl}t}lmD[uk—uk/] = H,[u,—uy]=0.
Therefore there exists u,= DI(;V?’ such that
im D[u,~w.] = lim Hy[#,~u,] = 0,
and thereafter from Lemma 1.7 follows
ii»rg (f, uy—u,) = 0.
Thus we have

D[u,]+ Hy[u,]1+2(f, u,)
= lim (DLup]+ HoLue]+2(f, wa) = d .

Moreover for any t&DWS and any real number p we have

tim {2 (D[] + Holug))+ 5 (DLuy]+ Hy[1)

193
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(DLuto+ pt 1+ Hy Lty + p814-2(f, tty+ pt))
— (DL, + Hy[ ]+ 2(f, u,))
= pXDLE1+ H,[£1) +2p(DLu, §1+ Hy[uo, £1+ (S, £)20,
and thereafter
Dlu, {1+ Hqlu, £1+(f, ) = 0.
Hence u, is a weak solution of (3)-(4), which is a unique solution

by Theorem 3. 1.

Example 1. Consider the problem

oS ) (WE =)
> ox, 2 % < PIEZ 0x;
U= on 0Q,

}-—quzf in Q,

where

— {x]1=3 27<2},

>
I
-

" _ (m=3 or m=2, r+0)

2—mr

920, ¢=L,, (73 B o (m=2, r=0) )’
1 (m=1)

2m
M > =
mA—7) 12 (m=3 or m=2, r=+0)
(“ 2 (m=2r=0) >*
1 (m=1)
2m
M (p= =
N mdr) 2 (m=3 or m=2, r=+0)
PEWPNL, (7= 2 (m=2, r=0)

{ 00 (m=1)
and 7 is some constant with 0<7<min {3, 1}.
m
This problem has a unique weak solution.
Example 2. Consider the problem
= 0 {(3_4"" 2>r 2_,\/7" zr<vm 2_1"8%}
Sor A ) AR wWE e ) g

—qu=f in Q,

U=q on 9Q),
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where

R ELEY)SPTE

M _ (m=3 or m=2, r+0)
2—mr
920, g€L,, <7’1 = oo (m=2, r=0)
\ 1 (m=1)
2m _
j m—ryrz =3 or m=2, r=0)
feL,, <74 = ‘ 2 (m=2, r=0) )
\ s} (m=1)
2m ~ —
S m(i iz M8 or m=2 r¥0)
peWNL,, (7’2 = l 2 (m=2, r=0) >
o (m=1)

and 7 is some constant with 0<7<min {—2—, 1}.
m

Again this problem has a unique weak solution.

§4. Eigenvalue Problem

In this section we treat the eigenvalue problem for the degenerate
elliptic equation
(5) M

isj

0 ( 6u> .
—\ pij = )—qu+nrpu =0 in O
1 0x, ‘b’ax,. 7 P

with the boundary condition
(6) u=20 on 00.
When # is a non-trivial weak solution of (5)-(6), we call # and A
a weak eigenfunction and a weak eigenvalue for (5)-(6), respectively.
Theorem 4.1. (Discreteness) Assume that (p:;)= (p;;) has the
degeneracy of the r-th degree and that

m2—r) —
ps9€L,, <7’3= 2—mr =2 >,

. 1+& (€ is some positive constant) (m=1)
PZPO>O ’
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where r is some constant with 0<r<min {3, 1}.
m

Then the spectrum of the problem (5)-(6), i.e., the totality of the
eigenvalues for (5)-(6) with respective multiplicity, is discrete.

Proof. Suppose on the contrary that we had a sequence of
eigenvalues {1,} such that limx,=2,=+ . Let u, be an eigen-

function corresponding to A,. For any §EDW§“ we have

D[um t] + Hq [um g] —)“nH[um g] = O *
If x,+=), we get
7\‘nI{P [um un’] = D[um un’]+Hq[um un/]
= D[unl’ un]+Hq [un’7 un] = 7\'n'I{P [unlr un]
= 7\‘n’-lqp [un) unl:l *

Therefore we have
Hp [um un'] =0.

Thus we can construct a system of eigenfunctions corresponding to
{\,} (we denote it again by {u,}) such that

1 —
HP [um un/] = (n n)
L 0 (nw).
Then we have
D[un]+H4[un] = 7\'nITI'ﬁ [un] = 7\n .

From the boundedness of {A,} results the boundedness of
Dlu,]+ H,[u,], D[%,] (cf. Lemma 2. 3), ||V#,]|,ja+r (cf. Lemma 1.5),
and thereafter ||#,||,jq+,» (cf. Lemma 1.2). Hence from Lemma 1.4
it follows that {«,} is relatively compact in L,. Taking a Cauchy
sequence in L, from {u,} (we denote it again by {«,}), we have

H,€Ju,—u,]—0 (n, W — o) (cf. Lemma 1.6).

On the other hand by the selection of {#,} we have

HP [un—un’] = HP [un]—zHP [um un’]+H9 [un,] = 2>0 ¢

This is a contradiction.
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Theorem 4.2. (Existence). Under the same assumptions as in
Theorem 4.1, the eigenvalue problem for (5)-(6) has weak eigenfunc-
tions u,, 4,, - ,u,, - corresponding to weak eigenvalues N, <A, <---
A=+, and moreover u, satisfies

Dlu, 1+ H,[u,] = inf (D[u]+ H,[u]) = X,,
where "
B, = {uEDI/f/QDIHp[u] =1, Hlu,uy]=0 (W =1,---,n—1)}.
Proof. By Lemma 2.2
iﬁf (DLu]+H,[u]) =2,

is finite. Taking some sequence {«,,=,} such that

lim (DLt ]+ Hy [, = Ao,

we gain the boundedness of D[ «,, |+ H,[«,;], D[«,;] (cf. Lemma 2. 3),
IVU,illosiir> (cf. Lemma 1.5) and thereafter ||u,ll,q+r» (cf. Lemma
1.2). From Lemma 1.4 follows the relative compactness of {u,;}.
Taking a Cauchy sequence in L, from {u,,} (we denote it again by
{n,.}), we have

lim |l#,,,— %\, = O
kB>
and thereafter
lim HP [unk—unk/] = lim Hq [unk—unk’] = 0
kb >0 k>0
(cf. Lemma 1.6"). Therefore for any positive number & and for
large k=k,(5) we have

H, [——”’*k;”"’@’]«i— :

12}[‘,[%] — _%Hp[u”k] +%HP [u"k,]__HP[unk;unk/]
&
1—=
> 4
and
D[unk+unk’] H[unk_'_unkl_]z nH[unk+unk,]
R B I i

> min {7&,,, A, (1— %)} .
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Thus we have

0= D[ Yottt | F[ Hub— Y’ | — L (D[] H, [as])

4 % (Dl 1+ Hy [, 1) — <D[L"%u—k] + Hq[%u—k‘])

<7%§+}L2ﬁ— min {)»,,, n, (1—%)} = max {6, E<1 +%ﬂ>} .

or

0> D[unk_l‘nk’]+ H [unk_unk’]ZXnH[unk—“nk’:lzfﬂ ,
= 2 ! 2 - 2 4
i.e., we have
EN — / —— / 7\,”
T"g D[ﬁ’—‘#]ﬁ- Hq[@’?“ﬂ]gs max {1, 1+Z} .
Thus we have

N

hm D[unk_unk/] = h/m Hq [unk—unk’]
= lim Hp[u”k_unk/] = O .
IRES
This implies that there exists #,=%8, and that u, satisfies
D[”n]+Hq [un] = 7\';1 .
Moreover for any {=%, and any real number p we have
Dlu,+pt1+ Hy[w,+ p&1—N,H, [, + pt]
= pX DL+ H,[E] N H, [£]) +2u(Dlu,, §]
+ Hq [un’ ?.::I - XMHP[un) :]) J— (D[un] + Hq [un] - 7\nI:IP [un])
= p(DLE]+ H [N H, [£]) +2u(D %, ¢ ]
+ Hq [un’ g] - 7\’an [um {]) 20
and therefore we have
D[un) é‘] + Hq[uﬂi :]_)‘nHP[un’ C] = O M
Now for any £ DW§ set

n={— ﬁun’Hﬂ[un’: é‘] .

n/=1

Since

(Hy[n]) e, ,
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we have
DLty €14 Hy Lty 1 NuH, L1y, €]
= D[u,, n]+Hy[u,, n]—N\,H,[u,, {]
5 Tty €Dty 1+ H Lty 1N Hy Lt 107])
= D[u,, 7]+ H,[%,, 7]—2,H,[«,, {]
5% H, L, )DLty 0,1+ Holtt, 1N Hy Lt 2,])

W=

=0.
Example 1. Consider the eigenvalue problem for

oS (Va3

—qu-+nrpu = 0 in Q,
=20 on 00},

where

Q- {x|1<«/§] x,;<2} :
=1

m2—r) . -
=2
P qELr3 (7’3 = { 2—mr (m_ ) >,
1+¢ (€ is some positive constant) (m=1)

p=p,>0
and 7 is some constant with 0<7<min {g, 1}.
m

This problem has weak eigenvalue and its spectrum is discrete.

Example 2. Consider the eigenvalue problem for

52 (o) oo (1)

—qu+rpu = 0 in Q,

}

on
0x;

u=20 on 90,

where

Q:{xll<«/ix;<3},
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(- m@2—7) -
py ¢€L,, (7’3 = 2—mr (m=2) >’

1+& (¢ is some positive canstant) (m=1)
pP=Zpy> 0

and 7 is some constant with 0<7<min {3, 1}.
"

This problem also has weak eigenvalues and its spectrum is
discrete.
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