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On the Stability of Modified Friedrichs Scheme
for the Mixed Problem for Symmetric

Hyperbolic System

By

Yoshinori KAMETAKA*

1. Introduction

It is well known that the well posed Cauchy problem admits
the consistent stable finite difference scheme. By the Lax's equi-
valence theorem the solutions of that scheme converge to the true
solutions of the Cauchy problem.

In the case of mixed problem these general theory is not yet

established. Especially in the case of m-space variable we can find
no example of consistent stable finite difference scheme. But we
can say in the case of well posed mixed problem consistency and
stability assures L2 convergence of approximate solutions to the true
solution. Many authors obtained the condition for the stability of

finite difference scheme with boundary condition (Strang [1], Kreiss

[23, Osher [3]). But they did not find consistent stable scheme
which approximate well posed mixed problem for hyperbolic system.

We consider in a half space first order symmetric hyperbolic

system. On the plane boundary we set dissipative boundary condi-
tion. In the interior of the region we must take the consistent
scheme which is stable for the Cauchy problem. Here we consider

a modified Friedrichs scheme as a most simple explicit scheme which

is stable for the Cauchy problem. We can find consistent boundary

scheme which assures the stability of the whole scheme.
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2. Symmetric Hyperbolic System

Consider a mixed problem for symmetric hyperbolic system in

the half space R™

(1)
Qt dx

(2) P_B(y) u(t, 0, y) = 0 (t, y) e [0, T] x j

(3) «(0, #, j>) = u\x, y) (x, j) e [0, oo) x,

Assumption 1.

\ dN(y))

is a real diagonal NxN matrix,

d1(y),-tdp(y)>S>Q>-S>dp+l(y)}-,dlf(y) p + q=N Fi(x,y)i=l,-,
m—1 are real symmetric NxN matrices

7g are identity matrices of order p and # respectively, b(y) is qxp
real matrix.

Under the assumption 1 the mixed problem (1), (2), (3) is well

posed.

As a finite difference approximation to the mixed problem (1),

(2), (3) we take the modified Friedrichs scheme

(10 K-Ufe) = - «(y + l, *) + «y -1,4

j, k - 1{) + X z)( j» {«(; + U) - «(; - 1,*)}

> + 1,) - u(j,k - 1,)} ] (j ^ 1)
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2') u"+\0, k) = .B-
2 \-2(m— 1) '=1

+ «(!,

(3') ««(/,*) = «°(/, *)•

Here we use the abbreviation wn(./, k) = u(ri\h,jh, kh\ (j, k) = (j, k± , ••• ,

*«-i) J> *• are integers, lf-=(0 , - • - , 1 , - • - , 0,), h is mesh-width, X/z is

time-step and X is mesh ratio. This scheme (I7), (20, (3') is accurate

of order 1 to the mixed problem (1), (2), (3).

Assumption 2.

(B-\y)P+)*(B-\y)P+^I+2\D(0, y)

that is b*(y)b(y)^2\D+(y\

Assumption 3.

V5(m— 1) .

Theorem 1.

Under the assumption 1, 2, 3 the modified Friedrichs scheme

(10, (20, (30 is stable, and the solution of (I7), (20, (30 satisfies
following energy inequality

INIizA*-)^ const. H^HzA*-) .

In the constant coefficient case we may take the constant in the

above inequality equal to 1. Here

Remark.

To clarify the meaning of the condition in the assumption 2

we shall remark the following fact. In the case of constant coef-

ficients if we take too small value of the mesh ratio X, we can

construct the solution of the modified Friedrichs scheme which

violates the local energy inequality of the form
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3. Proof of Theorem 1

We shall prove the theorem 1 only in the case of constant
coefficient. Proof in the case of variable coefficient is reduced to
that of the constant coefficient case by usual technique.

First we shall introduce the discrete Fourier transform of the

function which is defined only on the mesh point in the half space J?+

u = u& 7) = 2 */j^i

By the ParsevaFs equality

= X]

Here

= I

Let remark following relations

(4) 2 -(*/+i + */-i) *"''''* = cosfw — (u,-

(5) ^ — (Uj+^-Uj^

Under the discrete Fourier transform with respect to y the modified
Friedrichs scheme is written as

m— i
1 r 2 2 COS 17,- n

(6) ^ ^ A U +^ + *-i a
4 L m — 1 J

2̂

r Zj cos *}i -]
lP+\ -^ ^Q + ̂ i

L m-l J

we abbreviate hereafter «5 as ^y
The amplification matrix of (I7) is
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(8) C=C&,) = .
^ \ VYl JL

F- sin 77 = F! sin 77j H h Fm_! sin r]m_l

/ Q \ r**f~* I r«/T,o £ I ^"1 /-•rko ->n I _1_ ^\ 2( D cin £ _i_ 77*. oin •y^^2
i^ c/ ) L/ U — — I COS ^ + 2 i COS 77z- I + Ai \LJ Sin g ~r jf * Sin 77^

4 \ m — \ s^1 /

<!-— sin21- ^ | sin 77 |2 + 2X2D2 sin2 77 + 2x2(F-sin:
~ 2 2(m-l)

] sin 77 2 = sin2 ^ + • • • + sin2 77 m _ x .

By ParsevaFs equality it is sufficient to show

(10) - - |< + 1 !
\ 2 j>i / \ 2

Replacing ^'j+1 in (10) by the right hand side member of (6) and

(7), and restricting X as assumption 3 we calculate as follows

(11) 2

(12) S !S,|

sn

Using relation (4) and (5) and by Parseval's equality

(13)
2\ m — 1

f\(Z) sin ? + F- sin 77)2! - -1 xZ?(^ + g-'f «,
2

4
1 m-i 1

z 1 02(m — 1) 1=1 2

By the assumption 2
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(14) 4
2 8 \m— 1

/ 1 HI- l

• - rS COS 77,4)

— (I+2\D)u0-u0 + Re— (/+2XD)
8 4

o

It follows that

- i ^ i 2 + g

y^i 2(m — 1)

S - - - 7 7 -
8 8 4(w - 1)

sn 77

0 — 2 cos 17,-Mi) • j'\F- sin ^
4(m — 1) •=

• ~i, . 2

—1)

This completes the proof of the theorem 1.
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4. Non Symmetric Perturbation

Next we consider the case in which (1) is constant coefficient

symmetric and simultaneously regularly hyperbolic outside some

compact set K in J?+, on the compact set K (1) is variable coefficient

and regularly hyperbolic, and on the neighbourhood of the plane

boundary of the region R™ (1) is symmetric hyperbolic.

Theorem 2.

In this case theorem 1 is also true. But we must modify the

assumption 3 on the non symmetric region K as follows

Assumption 3'.

X sup I ^.(x, y, f , 97) | ̂ -^^=^ ,
(w— 1)V '

Here //,y is the eigenvalues of

5. Hyperbolic System with One Space Variable

In this case Friedrichs scheme is as follows

(1") «"+1(;) = ^{u^(j + l) + u9(j-l)}+^\D(j){un(i + l)-un (./-I)}
Zi Zt

(2") MB+1(0) = B-'P+«"(1) .

(3") u\j) = u\j) (;^0) .

Assumption 2X/.

Assumption 3r/.

Theorem 3.

Under the assumption 1, 2", 3" the Friedrichs scheme (1"), (2'/),
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(3") is stable and same energy inequality as that of theorem 1 is
true.

The author thanks Professor M. Yamaguti for his kind advice
and encouragement.
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