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Multiple Time Analyticity of a Quantum
Statistical State Satisfying the KMS
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Abstract

A multiple time expzctation @(AB;(#)---B,(t,)) in a stationary state ¢
satisfying the KMS boundary condition is studied. It is found to be holomor-
phic in a simplicial tube domain 0<Im#,<Im ¢,<---<Im£,<f, continuous and
bounded in the closure and the expectation of cyclic permutation of operators
are obtained as its values on various distinguished boundaries of the domain.

§1. Introduction

The Gibbs ensemble in quantum statistical mechanics satisfies
the Kubo-Martin-Schwinger (KMS) boundary condition and a
general property of such a state has been discussed by several
authors [17, [2], [3], [4]. In this paper we shall study the analy-
ticity of @(AB,(t,)---B,(¢,)) in t,---f,. The main theorem is Theorem
3.1 and 3.3 of section 3.

In passing, it is shown by the analyticity method that the
center of the representing algebra is time translation invariant. It
is also pointed out that the KMS boundary conditicn holds for the
weak closure, which will be used in [4].

§2. The KMS Boundary Condition and Analyticity

We shall discuss an analyticity tube domain for single time
expectation function in this section. We also give a proof that the
center of the representative algebra is elementwise time translation
invariant.

Received July 9, 1968.



362 Huzihiro Araki

Let A be a C* algebra, 7(f) be a one parameter group of
automorphisms of 2, continuous in #, and ¢ be a state of 2 invariant

under 7(f):
@1 PA) = pr(B)A), A
Definition 2.1. ¢ satisfies the KMS boundary condition if
e2  [euronin = (oCoB1a 50w,
2.3) 7ty = | £y eirerdp

for arbitrary two elements A and B of 2 and for arbitrary function
f in the class 9.

Lemma 2.2. If @ is 7(f) invariant and satisfies the KMS
boundary condition, and A and B are elements of 9, then there
exists a function F(¢) of a complex variable ¢ such that

(1) F is continuous and bounded for 0<Im ¢<g.

(2) F is holomorphic for 0<Im ¢ <g.

(3) For real ¢,

2.4) Ft) = (A7(5)B), F(+iB) = p([()B1A) .

Proof. We note that a representation =, of U on a Hilbert
space H,, a cyclic vector Q, and a continuous one parameter group
of unitary operator U,(#) are uniquely determined by the relation

(2.5) P(A) = (Qp, 7e(A)Q)

(2.6) Up()mo(A)Qp = mo(7(£)A)s .

In particular,

2.7) P(AT(#)B) = (Qq, mo(A) Uy(t)7o(B)Qy)

is a Fourier transform of a finite complex measure g, :
(2.8) PATOB) = (e# du(8) .

Similarly

2.9) P OB1A) = [ dus(p
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A complex finite measure can be considered as a dual to the
Banach space C, of bounded continuous functions vanishing at
infinity, in which & is dense. Hence (2.2) implies

(2.10) dp, = 2 dug.
Let X be the characteristic function of (0, o) and set
(2.11) du = Xdu,+ 1 —X)dus -

It is a finite complex measure. Let

(2.12) go(D) = e "? X(p) +e* ™2 (1-X(p)) ,
which is a bounded continuous function if 0<a<B. Therefore
(2.13) dp, = g.dp

is a finite complex measure and
2. 14) F(t +ia) = S ¢?t A ()

is a bounded continuous function of # and a for — oo <<+ oo,
0<a<B. From (2.10), (2.11), (2.12), we see that (2.4) is satisfied.
For 0<a<p, ¢*? g,(p) satisfies the Cauchy-Riemann relation with
respect to {-+ia in the topology of C, and hence F(¢+i«a) is holomor-
phic in t+ia for O<a<g.

Remark 2.3. The existence of F satisfying (1), (2), (3) is
equivalent to the KMS boundary condition. This is known except
that the boundedness of F in the tube has not been treated in the
literature.

Lemma 2.4. Let U =(=,A)", @,(4)=(Qq, AQy), 7,()A
=U,0)AU, ()" (A=¥). Then ¢, satisfies the KMS boundary con-
dition with respect to 2, and T, if ¢ satisfies the same with respect
to U and T.

Proof. We prove (2.2) for ¢, A=7,(}) and Bez()”’. A
similar argument will then yield (2.2) for general A in =,()”.
Since B=1 obviously satisfies (2.2), we consider B in the weak
closure of 7,(2). By the density theorem, it is enough to consider
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B in the weak closure of the unit ball of 7,(20).

Let T be such that SI f@#)|dt<e. Since U,(f) is continous in
1:1>T
t, we can find an open interval I, containing ¢ such that

(2.15) Up(#) " 7o (A)*¥Qp— Up(t') 7o (A)*Qol| <&
for any #'I,. A finite number of such I, ---I,, cover the compact

interval [— 7, T]. Let N be the weak neighbourhood of B defined
by

(2.16) N = {B’; [(Uo(t,)"'me(A)*Qq, (B—B)Qy) | <&, j=1-+-n} .
Then we have for B'EN, ||B’||<1,

@10 ||p@ro@-B)@L <2lAlese (170

We have a similar equation for the right hand side of (2.2). Since
(2. 2) holds for B’'==(2), we have (2.2) for B in the weak closure
of the unit ball of =(2l). Q.E.D.

Corollary 2.5. The element of the center of #,(3)” is invariant
under ().

Proof. Since U,({)RU,(!)"*=R holds for R==,(2), it holds for
R=7,2) and hence for R==,2l)"” and therefore for R= the center
of z,(Q)”. Thus

(2.18) P:(Am()B) = o,([7.(1)B]A)

if B is in the center of #,(A)”. Lemma 2.2 implies the existence
of a function F(¢) which is holomorphic for 0<Im £< @ and con-
tinuous for 0<Im¢<QB. (2.4) and (2.18) implies, due to the edge
of wedge theorem, that F({) is an entire function with period ig.
Since F is bounded, it must be a constant. Since 7,(#)B is in the
center of 7z, (W)”, we see that @,(A,[7,(t)B]A,) is constant of # and
hence +,({)B=B.

Remark 2.6. This corollary can be proved also from (2.10)
directly. Namely, w,=us and (2.10) imply up,=c8(p)dp, from which
it follows that @(A7(¢#)B) is independent of .
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This proof can be use to show that a state is invariant under 7(f),
if it satisfies the KMS boundary condition (This is pointed out
by H. Miyata).

The equation (2.10) at p=0 implies that Q, is a trace vector
for E({0})7z,(A)E({0}). This is used in [4].

§3. Analyticity of Multiple Time Expectation Values

Theorem 3.1. Let @ be a 7(¢) invariant state of U satisfying
the KMS boundary condition. Let A, B, ,---, B, be arbitrary n+1
elements of A (r=1,2,---). There exists a function H(,,---, ¢,) of
n complex variables such that

(1) F is holomorphic for

3.1) 0<Im§,<--<Im¢,<@

(2) The boundary value of F for Im{,=--=Im¢;=0, Im¢;.,
=...=Im¢,=@ in the distribution sense is the function

(3.2) P([r(t;4)Bjn] - [7¢,)B, AL @#)B.] -+ [(¢,)B,])
where j=0,---,7# and ¢,=Re¢,.
Proof. Let us consider the Fourier transform of (3.2) in dis-
tribution sense :
(3. 3) fj(pn ,"'7pn) = S¢([T<tj+1)Bj+1] [T(tn)Bn]X

x A[T(¢)B,] - [T(tj)Bj]) g ittt byt
xdt, -~ dt,/@n)"

(2. 2) implies
(3 4) fj+1(p1’ » pn) = eﬁf’j+1fj(pl’ 3"y pn) .
Let X; be the characteristic function of the following region

(3' 5) Bj = {(pl 7"'7pn); pk+pkk1+ "'+pj>0 ’ k:]., "').i
pj+1+”'+pk<0’ k:]+17,n}

where j=0,---,n. Let g be a nonnegative function in the class 9
such that
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(3.6) {2ty -+, p)dp,ap, =1

and X/ be the regularization of X; by g:
(3' 7) ng(pl PR pn) = ij(p1_7'1 PR pn—rn)g(rl PR rn)drl o d7’” .

If we denote a vector with the first 2 components equal to 1 and

the last (#—£k) components equal to 0 by ¢, (#=0,---,%), then

B,={p; max (p, ¢,)=(p, ¢;)}. From this we see that Lnj Ej is the
k j=0

entire space and B;N B, is in the plane orthogonal to g,—g, if j+£,
namely dim B;NB,<n. Hence

n

(3.8) DIXF=1.

=0
Let us define the following distribution

(3'9) H(plf";pn; t1+ia1 ,"',l‘,,—l-ian)
= 2 ng(pl PR pn)hj(pl "%y pn7 (22 an)fj(pl )""ﬁn)
expz’i}tjpj
where

(3.10) hy(p, -+ by; o -+ @) = exp {kgl(akﬂ_ak)(pjﬁﬁhﬁ et )

— 3} (@ ats ) Dut Panit -+ 8,)
and «,=0, a,,=6. If
(3.11) 0<a, < <a, <8,

then (3.10) implies that 7%; decreases exponentially whenever
(b, ¢;—q.) tends to + oo for one /. On the other hand the part of
B;, in which (p, ¢;—q;)<R for all / and a fixed R>0, is compact.

Hence
exp i(pt,+ o+ Dt )i Dy o bus e )X E(D, - D)

is in the class & and satisfies the Cauchy-Riemann relation with

respect to each {,+icx,. We now define
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(8.12)  F@ -t = |Hp b5 Lo £)dp, - A,

which is holomorphic for ¢ satisfying (3.1). Furthermore, the
Fourier transform of the boundary value of F for Im §,=---=Im¢{;
=0, Im¢;,,=--=Im¢,=8 becomes

(3.13) 2XE Dy DD+ Dys y - @)Dy D)
where a,==a,;=0, @;,,=--=a,=B. From (5.10) we have
(3. 14) hy(p, -+ Dy oty - at,) = (eXp B(bpirt+D)) if k<j
1 if k=j
l exp —B(Dj+ - +py) i k>
Hence, from (3.4), we have

(3.15) BBy - Do 0y oo @)Dy -+ D) = f5(Dy -+ D)
for all .. By using (3.8), we see that the boundary value in ques-
tion is (3.2).

Remark 3.2. (i) The above theorem and its proof are stated
in a form which holds for Wightman fields. The next theorem
uses the fact that A and B; are bounded operators. (ii) In the
discussion of the analyticity, it is more symmetric to consider

(3.16) P(AL(E) -+ A, ()

on the space {(¢,---#,) mod (1,---,1)}. The step function X; can be
written in terms of the edge vectors of the simplicial domain in
question. For such a technique, see generalized 6 function intro-
duced in [5].

Theorem 3.3. The function F in Theorem 3.1 is continuous
and bounded in the closure of the simplicial tube domain (3.1).

Proof. We investigate each summand more closely. By

definition (3.3), we have

(£t ) exp it St +sp} -,
(3.17) = (Qy, Qrr1Uy(s, r2— Sei1)@piz -+ @,Up(—5,)Q,Us(s))
Q. Uy(s;—5,) -+ Up(Sp— 5-) Q1)
Q] = 7z‘¢[7(t1)31], QO = 7T‘P[A] .
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On the other hand

(3.18) Xu(p, 1) = [[ 0(bi+-++82) [T 6(=(Bus -+ +2,)
hk(pl ot ﬁn > oy an)

n
e"("’,—‘“i-l)(ﬁ;"‘""*‘ﬁk) ” e(mj+1_mj)(ﬁk+1+“'+ﬁj)
j=k-+1

IR

i

where 0 is the characteristic function for positive reals. We note
that

(B.19) 2t = 8Dt D)+ G —8) (Dot D)+ o
=+ (tk_ tk—1)pk“ (tk+z - tk+1)17k+1 - (tk+3'_ zlk+z) (pk+1 +pk+2)
- "._(tn—tn—l)(pk+l+ "'+pn—1)+tn(pk+1+ "'+pn) .
If we set

~ 1 (> _, 1
3.20 0(2) = — Fdp = ———
( ) @ 2r So ¢ ? 2miz

B.2) 2@ 2) = (g8 ) exp—i 3 zipidp,-dp,
we have

(3.22) [Ib,+ a3 @@ (0, p,) exp —i( sib)dAp, -+ dp, | 2n)"
= gz, - zn)g(zl)g(zz—zl) g(zk'_zkﬂ)g(zkﬂ_zkﬂ)

(-2,
where
(3.23) lesl—ial, [=1--Fk
(3.24) lesl“iaz‘i'iﬁ, l:k+1"'n.

Combining (3.17) and (3.22), we obtain the following expres-
sion for the integral of the kth term of (3.9).

(3 25) Sg(zl Z”)dsl dS”(.Q,p, Qk-‘rlX(zk %—2~_zk+1)Qk+2
'"QnX(——Z”)QOX(ZI)QIX(Zz—2’1) X(zk_zk—l)Qk‘Q?)

where

(3. 26) X(2) = Uy(Re 2)4(2) . ‘

For any testing function g in the class 9, we have



Multiple time analyticity of a quanium statistical state 369

(3.27) (gt -vx@-0at = [2@deU ;)
where Im =0, Re {=0,

(3.28) g = | g,

(3. 29) Ut¢; 9 = S:e"ﬁ“ dEMN) ,

E is the spectral projection of U,(?).

The integral in (3.29) is ambiguous at the lower end but this
ambiguity does not affect (3.27). If the lower end is ¢=+0, we denote
U:. We define (3.29) as an average of U} and U™

The expression (3.25) is then equal to

(3.30) [g(b,~ 230 QuiU*Crrrs 0u)Ques
QU (5 40U s 4)Qu UG 40Qu0)dp, -+ P,

where

(3.31) & =idlopi—ar) [=0,,n
(3.32) A, =0, a,=0

(3.33) a = {p,+---+pk if i<k
(3.34) — (Pt o+ 10) if [>k.

We now take the limit of sequence g=g® such that S g>dap, --- dp,
=1, g"=0; g¥=0 for >p°=1/v). Let B(o, - o,) be the region
in which o,9,>0 for all /, where o,= 41. Assume that

(3. 35) paloy o) =lim | gdp, - dp, .

B(oyon)

Then the limit of (3.30) is

(3- 36) UZU Mk(°'1 O'n)('Q% Qk+1U3k+1(§k+1 ; O)Qk+z"'
= Q,U%, . 00QUE (5 0@,
.“ng(gk—l ; 0)Q£Q0)
where =0 and >} u(o, - o,)=1.
In obtaining (3.36) we have used the fact that U~*({; ¢q)

—U%(; 0) strongly tends to zero as ¢—0 with o¢>0, and that
U+ ; ¢)il is bounded uniformly in ¢ in the neighbourhood of O.
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Since
(3.37) 3¢5 0) = S+ ™ AE(L)
is bounded and continuous for Im¢,=0 (and holomorphic for
Im ¢,>0), (3.36) is bounded and continuous in Im &, =0.

Corollary 3.4. F is given by

(3.38) F(, -+ §,) = 22 FuCy o+ L)
(3 39) Fk(€1 é‘n) = Z@nﬂk(o-l o'n)(ﬂ‘h ”W(Bk+1)U-gk+1(§k+z—tkﬂ)"'

b Cn—Ea)me(B) U, (1B~ )7e(A) UG, (n,)
”?(31) Us g(gz_ £ gk(gk—‘ Ek—l)”‘l’(Bk)QW) ’
where

(3. 40) 30 = r ¢ dE(V)

and (o, .-+ ,) is the volume of those part of the ball p*+ - +p,>=
of the unit volume which is defined by ¢,;¢,>0, ¢,®=p, + ---+ p,, for
Ik, ¢;®=—(pp_s+ - +p)) for I>k.

Proof. This follows from (3.36) where we take as g a func-
tion obtained by smoothly cutting off tails of

C) exp —v g b
Remark 3.5. If we insert a formal expression
Ui () = —SU (t) (Im £>0)

into (3.38) and (3.39), we obtain an unsubtracted form of the
Bergman Weil formula.
Remark 3.6. As a special case of =1, we obtain
(3.42)  F(©) = (Qy, QU (IB—5)QuQ) + (Q, Q.U *(0)Q,0)
where
(3. 43) U+(e) = Si ¢t dE(\) +%E( o}).
By setting =0, we have
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(3- 44) (Qw: QbUJr(iB)QaQrp) = (pr; Qa(l_ U+(0))Qb9'¢) .
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