
Publ. RIMS, Kyoto Univ. Ser. A
Vol. 4 (1968), pp. 361-371

Multiple Time Analyticity of a
Statistical Satisfying the

Boundary Condition

By
Huzihiro ARAKI

Abstract

A multiple time expectation ^(ABjC^)---^^)) in a stationary state <p
satisfying the KMS boundary condition is studied. It is found to be holomor-
phic in a simplicial tube domain 0<Im ^<Im j f 2 <-- -<Im tn<fi, continuous and
bounded in the closure and the expectation of cyclic permutation of operators
are obtained as its values on various distinguished boundaries of the domain.

§ 1. Introduction

The Gibbs ensemble in quantum statistical mechanics satisfies
the Kubo-Martin-Schwinger (KMS) boundary condition and a
general property of such a state has been discussed by several
authors [1], [2], [3], [4]. In this paper we shall study the analy-
ticity of (p(ABl(t^"-Bn(t^i) in t ^ - - t H . The main theorem is Theorem
3. 1 and 3. 3 of section 3.

In passing, it is shown by the analytic! ty method that the
center of the representing algebra is time translation invariant. It
is also pointed out that the KMS boundary condition holds for the
weak closure, which will be used in

§ 2. The KMS Boundary Condition and Analyticity

We shall discuss an analyticity tube domain for single time
expectation function in this section. We also give a proof that the
center of the representative algebra is elementwise time translation
invariant.
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Let §1 be a C* algebra, r(t) be a one parameter group of
automorphisms of 31, continuous in t , and <p be a state of §1 invariant
under r(f) :

(2.1) <p(A) = <p(r(t)A\ A^K.

Definition 2. 1. cp satisfies the KMS boundary condition if

(2. 2) <p(AT(t)B)f0(t)dt = <p([T(t)BlA)ft(t)6t ,

(2.3) £(0= T f(p)e-'*-"dp
J — CO

for arbitrary two elements A and B of 31 and for arbitrary function
/ in the class 3).

Lemma 2, 2. If <p is T(/) invariant and satisfies the KMS

boundary condition, and A and B are elements of 31, then there
exists a function F(£) of a complex variable f such that

(1) F is continuous and bounded for
(2) F is holomorphic for 0<Im£</3.

(3) For real t,

(2. 4) F(0 = <p(Ar(t)B),

Proof. We note that a representation n9 of 31 on a Hilbert
space H9, a cyclic vector £1? and a continuous one parameter group

of unitary operator Uv(t) are uniquely determined by the relation

(2. 5) <p(A) = (

(2. 6) U^TT^A)^

In particular,

(2. 7) <p(Ar(OS) - (O^,

is a Fourier transform of a finite complex measure //,0 :

(2.8)

Similarly

(2.9)
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A complex finite measure can be considered as a dual to the

Banach space C0 of bounded continuous functions vanishing at

infinity, in which 3) is dense. Hence (2. 2) implies

(2. 10) d^0 = e*p d^P .

Let % be the characteristic function of (0, oo) and set

(2. 11) d/* - %d^0 + (1 -

It is a finite complex measure. Let

(2. 12) ga(p) = e-* X(p-) + eP

which is a bounded continuous function if 0<a</3. Therefore

(2. 13) dMtf - &d^

is a finite complex measure and

(2.14)

is a bounded continuous function of t and a for —

0<a<£. From (2.10), (2.11), (2.12), we see that (2.4) is satisfied.

For 0<a</3, eitp g»(p) satisfies the Cauchy-Riemann relation with

respect to t-\-ia in the topology of CQ and hence F(t + ia) is holomor-

phic in t + ia for 0<a</3.

Remark 2. 3. The existence of F satisfying (1), (2), (3) is

equivalent to the KMS boundary condition. This is known except

that the boundedness of F in the tube has not been treated in the

literature.

Lemma 2. 4. Let ^ = (̂ (31))", ^(A) = (fl*, A£19),

= U(f>(t}AU(p(t)-
1 (AeS^). Then ^ satisfies the KMS boundary con-

dition with respect to 3^ and r19 if <p satisfies the same with respect

to SI and r.

Proof. We prove (2.2) for <px, Ae^Sl) and

similar argument will then yield (2. 2) for general A in 7 (̂31)".

Since B = l obviously satisfies (2.2), we consider 6 in the weak

closure of (̂31). By the density theorem, it is enough to consider
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B in the weak closure of the unit ball of

Let T be such that \\/Q(t)\dt<£. Since Uv(t) is continous in
\t\>T

t, we can find an open interval It containing t such that

(2. 15)

for any f'e/,. A finite number of such Itl—Itn cover the compact
interval [— T, T]. Let N be the weak neighbourhood of B defined
by

(2. 16) N = {B' ; | (U9(tj)-
l7c9(A)*n99 (5-5'XV> I <£, j = !-»} -

Then we have for B'^N, ||B'||<1,

(2. 17) | J^Ar(0(B-BO)/o(Od* I <2||A||£ +36 J |/0(f) |df .

We have a similar equation for the right hand side of (2. 2). Since
(2.2) holds for B'e^Sl), we have (2.2) for B in the weak closure
of the unit ball of 7r(3l). Q.E.D.

Corollary 2. 5. The element of the center of (̂§1)" is invariant
under T^).

Proof. Since U(f(t}RU(p(t)-
l = R holds for R=n(p(^), it holds for

R=7t9^K)f and hence for R=7t(p(^iY/ and therefore for J?= the center

of 7r,(3l)". Thus

(2. 18) ^(Ar^OB) = ^i(C^i(OB]A)

if B is in the center of ^(Sl)". Lemma 2. 2 implies the existence
of a function F(f) which is holomorphic for 0<Imf</3 and con-
tinuous for 0<Im^</3. (2.4) and (2.18) implies, due to the edge
of wedge theorem, that F(f) is an entire function with period if}.
Since F is bounded, it must be a constant. Since T^(f)B is in the

center of 7 (̂21)", we see that <pi(ACTi(OS]^2) is constant of t and
hence rl(t}B = B.

Remark 2. 6. This corollary can be proved also from (2. 10)
directly. Namely, ^=^ and (2.10) imply ^Q=cS(p)dp9 from which
it follows that cp(Ar(t)B) is independent of t.
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This proof can be use to show that a state is invariant under r(t),
if it satisfies the KMS boundary condition (This is pointed out

by H. Miyata).
The equation (2.10) at p = 0 implies that £1? is a trace vector

for £({0}K(3l)E({0}). This is used in [4].

§ 3. Analyticity of Multiple Time Expectation Values

Theorem 3, 1. Let cp be a r(t} invariant state of 31 satisfying

the KMS boundary condition. Let AyB^y"^Bn be arbitrary
elements of 31 (w = l, 2, •••). There exists a function H^ , - • • , fw) of
n complex variables such that

(1) F is holomorphic for

(3.1)

(2) The boundary value of F for Im f1= — =Im ?y = 0, Im
= -- = Im£n = /3 in the distribution sense is the function

(3. 2)

where j = Q,--,n and ^ f e=Ref& .

Proof. Let us consider the Fourier transform of (3. 2) in dis-
tribution sense :

(3. 3) //A, ,-, AJ = ^([r(^+1)S,+1] - [>(O0J X

(2.2) implies

(3. 4) /y+1(A, ,-,^J =

Let Xy be the characteristic function of the following region

(3.5) Bj= {(Pit-tP*)', Pk+PkH+-

where y = 0, ••- ,» . Let g be a nonnegative function in the class
such that
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(3.6)

and %/ be the regularization of %y by g :

(3. 7) %/(A ,-, A,

If we denote a vector with the first k components equal to 1 and

the last (n— K) components equal to 0 by qk (k = Q , - • - , »), then

Bj={p] max (A qk) = (p, g/)}. From this we see that Q 5y is the
* i=='°_ __

entire space and Bj{}Bk is in the plane orthogonal to qj — qk if ./=*=£,

namely dim JBj nBk<n. Hence

(3. 8) 2 %/ - 1 .
j = 0

Let us define the following distribution

(3.9)

exp i 2 ^-^-
y=i

where

(3. 10) AXA - ^« ' ai -• a-) = exP

and a0 = 0, an+1 = /3. If

(3.11)

then (3. 10) implies that hj decreases exponentially whenever

(p, qj — qi) tends to + °° for one /. On the other hand the part of

By, in which (p9 qJ — ql)<R for all / and a fixed R>Q9 is compact.

Hence

is in the class 6" and satisfies the Cauchy-Riemann relation with

respect to each tk+iak. We now define
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(3.12)

which is holomorphic for £ satisfying (3.1). Furthermore, the
Fourier transform of the boundary value of F for Imf1='" = Im£'y

= 0, Im fy+1 = • • • = Im %n = /3 becomes

(3-13) 2 %/(A ... AJ**(A-A,; «i - <O/*(A - AJ

where a1=— = a~09 aj+1= — = an = /3. From (5.10) we have

(3.14) /^(A — A,; ax ... cO = fexp /3(pk+l+ —+£y) if *</

1 if *=j

1+...+^) if 6>j
Hence, from (3. 4), we have

(3.15) hh(p, - pn ; «„ -. aJ/,(A •••£,)= /y(A - ^)

for all &. By using (3.8), we see that the boundary value in ques-
tion is (3.2).

Remark 3. 2. (i) The above theorem and its proof are stated

in a form which holds for Wightman fields. The next theorem
uses the fact that A and B{ are bounded operators, (ii) In the

discussion of the analyticity, it is more symmetric to consider

(3-16) ^(O'-A/O)

on the space {(tl ••• tn) mod (1 , • - • , 1)}. The step function Xy can be
written in terms of the edge vectors of the simplicial domain in
question. For such a technique, see generalized 9 function intro-
duced in [5].

Theorem 3. 3. The function F in Theorem 3.1 is continuous

and bounded in the closure of the simplicial tube domain (3.1).

Proof. We investigate each summand more closely. By

definition (3. 3), we have

(3.17)

J exp i { S (ti + 5/)A) dp,- dp
- (IV, Qk+1Uv(sku-sk+1)Qk+2

Qi = 7^1X^)5,], Q0 = ^[A] .
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On the other hand

(3.18) %,(A ...£,)

= fl e^*i-*i-ixpi+"'+p*> [ e^j+i-<*
i =1 J^*-1-!

where (9 is the characteristic function for positive reals. We note

that

(3.19) 2^A = /1(A+

If we set

(3.20) £(*)

(3.21) ^ -. O

we have

(3. 22) /z,(A - ^B ; ai-cOX/(A - j>J exp -»

where

(3. 23) 0/ = Si — icLi , / = 1 ••• k

(3.24) Zi = Si-ic

Combining (3. 17) and (3. 22), we obtain the following expres-

sion for the integral of the kth term of (3.9).

(3. 25)

where

(3. 26) X(z) - C7,(Re z)8(z).

For any testing function g in the class 3), we have
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(3. 27) g(t-$X(t-Q6t = g(ti<i<lU +(Z ; q)

where Imf^O, Ref=0,

(3.28) g(t) =

(3.29) U+tt; q)=

E is the spectral projection of Uv(t).
The integral in (3.29) is ambiguous at the lower end but this

ambiguity does not affect (3. 27). If the lower end is #±0, we denote
C/J. We define (3.29) as an average of U% and [71.
The expression (3. 25) is then equal to

(3. 30) g(£ .- pn)(£lv, Qk+lU
+(Zk+1 ; qk+l)Qk+2

where

(3.31) fi = i(«i+i-a/) / = 0 , - , »

(3.32) <*n+1 = /3, a0 = 0

(3.33) ^ = lpt + ...+pM if /^fe

(3.34) \-(pk+i+...+pl) if / > f e .

We now take the limit of sequence g=gm such that lg°°dA

= 1, ̂ }^0; ^cv)=0 for 2A2^(1M- Let BC^ — o- J be the region
in which o-/^/>0 for all /, where o-/=±l. Assume that

(3. 35) p,h(<r, .- O = lim ( ^r^dA ..- d^ .
v J

J3C(ri-"0-«5

Then the limit of (3. 30) is

(3. 36) JZrtfa - O(n* Q^i^s^C^+i ; o)o,+2..-
' +ofa; 0)Q1-

where //,^0 and

In obtaining (3. 36) we have used the fact that f/+(£ ; ^)

a(? ; 0) strongly tends to zero as ^-^0 with crq>0, and that
(f ; ^)|| is bounded uniformly in q in the neighbourhood of 0.
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Since

(3.37) Ut(£', 0) =

is bounded and continuous for Im£/^0 (and holomorphic for

Imf,>0), (3.36) is bounded and continuous in

Corollary 3. 4. F is given by

(3.38) F(^ - f J = 2 F^ - rj

(3. 39) F&, - rj = I] A^fo -
- -

where

(3.40) tfS(f)

and juLk(o-1 ••• o-J is the volume of those part of the ball p^ -\

of the unit volume which is defined by cr/0/cA)>0, qi^=pi^ ----- \-p* for

,) for

Proof. This follows from (3. 36) where we take as g^ a func-
tion obtained by smoothly cutting off tails of

Remark 3. 5. If we insert a formal expression

into (3. 38) and (3. 39), we obtain an unsubtracted form of the

Bergman Weil formula.

Remark 3.6. As a special case of « = 1, we obtain

(3. 42)

where

(3. 43)
+0

By setting £ = 0» we have
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(3. 44) (ft,, QbU
+mQA) = (fl,, Q.(l- £7+(0))Q6fV).
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