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On KMS Boundary Condition

By

Huzihiro ARAKI and Hideo MIYATA*

Abstract

An invariant state satisfying the Kubo-Martin-Schwinger condition is
studied. It is shown that the decomposition of a given state into extremal
invariant states yields states satisfying the KMS boundary condition if and
only if the cyclic representation associated with the given state is ??-abelian,
and that, if this is the case, the decomposition coincides with the standard
central decomposition. The structure of the cyclic representation when it is
non ?7-abelian is analyzed and typical examples are given. One of the examples
gives a case where the cyclic representation is G-abelian but not Ty-abelian.

§ 1. Introduction

The Gibbs ensemble in quantum statistical mechanics satisfies
the Kubo-Martin-Schwinger (KMS) boundary condition and a general
property of such a state has been discussed [1], [2], [3], [4]. It
is known that the center of the relevant TF*-algebra is time trans-
lation invariant [4], From this it follows that the standard central
decomposition yields again invariant states satisfying the KMS
boundary condition. It is then an interesting question whether any
further decomposition is possible and meaningful.

There exists theorems on the possibility of a unique decompo-
sition into extremal invariant states under various assumptions:
(weakly) asymptotic abelian [5], [6], ?7-abelian [7], M-abelian [8],
large [9], G-abelian [10].

In this paper we shall show that, for an invariant state satisfying
the KMS boundary condition, a decomposition into extremal invariant
states is possible and yields exclusively states satisfying the KMS
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boundary condition if and only if the cyclic representation associated
with the given state is ^-abelian. If that is the case, the decom-
position coincides with the standard central decomposition.

If the restriction of the representation to the subspace of
invariant vectors is abelian (G-abelian), then any decomposition finer
than the central decomposition is shown to yield a state not
satisfying the KMS boundary condition- If the restriction of the
representation to the subspace of invariant vectors is a factor, then
it must be a finite factor. If it is type I, the structure of the state
is in a sense completely analyzed. It is a tensor product of two
spaces, where the time translation acts only on one space in which
the invariant vector is unique and on the other space the state is a
trace. If the given state satisfies the KMS boundary condition, then
the part of the representation algebra in the first space does not
contain any time translation invariant observable. The general case
is a combination of abelian and factor situations. Typical examples
for the two cases are given. In particular, we have an example
where the system is (non trivially) G-abelian but not ^-abelian and
the state is a factor state.

From the analysis of the present paper, we have the impression
that the central decomposition is probably optimal "good" decom-
position for states satisfying the KMS boundary condition, as was
hinted in [11], footnote to proposition 4. If the stationary observa-
bles are not commutative, a further non-unique reduction is possible
according to their expectation values, but this does not change the
structure of time dependent part.

§ 2. Preliminaries

Let r be a continuous representation of a locally compact group

G by automorphisms of a C*-algebra §1 and cp be a r(G) invariant

state of 21. Let the Hilbert space Hq» the representation n<p of SI,

the cyclic unit vector H^ and the continuous unitary representation

U<p(G) of G be canonically associated with cp, namely
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(2. 1) <p(A) =

(2. 2) U,(g

Let E0 be the projection on the subspace of Hv consisting of all

UV(G) invariant vectors. Let

(2. 3) R, = M21) U Uf(G))"

(2.4) J?, =

(2.5) C^

(2. 6) C2 = R2

(2.7) C0 = ^

The set of all r(G) invariant central elements of 7r(Sl)" is C0.

Theorem 2. 1. The following equalities for von Neumann alge-

bras on E0H<f hold :

(2. 8)

(2. 9)

Proof. Because of Uf(g)E,=Et and [7 (̂̂ )̂ (31) ̂ (g)-^^^) for
, we have

(2. 10) E^A = ^^(Sl)"^"^ .

Since U9(g')RUv(gY'i = R for ^=^(§1) implies the same for l?=w»,(3l)/,

(2. 11) E0R2EB = (E^WEn .

Since E0 belongs to R^ and R2, these are von Neumann algebras and

(2. 12) (E&EtfE, = RJE,

(2. 13) (EJRJEJE, = R2'E0 .

Since R1 contains 7cv(^X), R^ is contained in 7zv(§l)' and

(2.14)

Finally, let Ae^(Sl)", Bew^)', geG. We have £/?(

= ̂ (91) and hence ^(gMSlX^te)"^^?!)'. Hence
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(2. 15) Dr,(A), «,(r(g)Bft = 0 .

Let I/TJ, ̂ lf2^E0H<p. Then we have, from (2. 15)

(2. 16) (^, 7r9(A) Uv(g)7r9(B)^ = (^, *9(B) U^g-

Taking the Godement mean and using the mean ergodic theorem
[8], we have

(2. 17) (oK, n9(A)E0v(B)^ = (^, ^(B)E0^G4)^2) .

Hence

(2. 18) IE^9(A)EW £0^(fi)£0] = 0 .

Therefore

(2. 19) £o7r,(a)'E0 c (Eo7r,(3l)E0)'.

From (2. 19), (2. 14), (2. 12) and the commutant of (2. 10), we have
(2. 8). A similar calculation yields (2. 9).

Theorem 20 2. A state <p is extremal in the set of all invariant
states of §1 if and only if /?/ is trivial (i.e. the set consisting of
multiples of the identity operator).

Proof . Let I?/ contain a nontrivial projection E. Then E^l^
c£l<p for any constant c because 7z>(3l)n<p is dense in Hv and E
commutes with ^(21). Now

(2. 20) ^

(2. 21) <p2

are r(G) invariant states of §1 and

(2.22) <p =

(2.23) 1>\

If cp is extremal, then <px must be <p, namely

Since ^(^4)*^ is dense in HV9 we have E£l<p = XH^, which is a con-
tradiction. Hence <p is extremal only if /?/ is trivial.

Next assume
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(2.24) <p - X^-Kl-X)^, 0<X<1

Then

(2.25) cp,(A)^\-^cp(A)

for all A^Q. Hence by a standard argument

(2. 26) <p,(A) = (n

where Be^Sl)', 6^0, !|B||^X-\ If ^ is r(G) invariant in addition,
we have

(2. 27) U(p(g)BQi(p =

for g^G. This implies

(2.28)

is 0 on IV Since 7z>(§l)n<p is dense in /Jp and (2. 28) is in ^(Sl)',

we have

(2.29) U,(g)BU,(gYl = B .

Namely B^R^. If J2/ is trivial, then S = c 1 and hence cpl = q>.

Therefore, if RJ is trivial, <p is extremal.

§3. KMS Boundary Condition

In the rest of this paper, the group G is the additive group of

reals.

Definition 3. 1. AT (G) invariant state <p satisfies the KMS
boundary condition if for any f(p) of the class 3),

(3. 1) <p(AB(f$ = v(B(f,}A}

(3. 2) fa(t) = j dpf(p) exp ( - ip[t + ia])

(3.3) B(f) =

Corollary 3. 2. If a G invariant state <p satisfies the KMS

boundary condition, then the center of 7zv(5l)" is elementwise G
invariant ;

(3.4) Uv(g)AU9(gr* = A if AGE 7 (̂91)" fWSiy.
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Proof. See [4]B

Corollary 3. 3e If a G invariant state cp satisfies the KMS

boundary condition, then the vector state <f> of 7z>(§l)" defined by O«p

satisfies the &MS boundary condition relative to the r(G) defined

by U9(g), g^G.

Proof. See [4].

Theorem 3. 4. If a r(G) invariant state 95 satisfies the KMS

boundary condition, then the following conclusions hold : (1) £19 is

a trace vector for #/, #/, E,pv(yi)"E09 and E^V^K)'EQ. (2) flv is a

cyclic and separating vector for Ejrv(yi)'EQ and for E^tp^ay'E^ on

EQHV. (3) n«p is separating for J?/.

Proof . If Be/?2'C7r«p(Sl)", then B(t) = B. Further

(3.5) J /•(*)<» = 2*/(0)

is independent of a. Hence by the KMS boundary condition for <f>

(3.6)

where fl is the normal extension of <p to

In particular, $ is a trace on J?2'. Since EQ^(R2'Y, EQn(p = Dl(p and

EQRz=E^rtp(^iy/EQ9 ^ is a normal trace on EQ7t9^K)f/EQ with the trace

vector IV Since O^ is cyclic for E<?c<p(yi)"E09 it must be separating,

and it must also be a cyclic and separating trace vector for the

commutant of E07z>(2l)"jE0 on E^H^ Hence £lv is a cyclic and sepa-

rating trace vector for S07r«p(§l)/£0=Jff1
/£1

0 in Hv. (See Theorem 2. 1)

Since A^R^AE^R^E^ is an isomorphism, H^ is also a faithful

trace vector for jf?/.

Theorem 3. 5e For a r(G) invariant state cp satisfying the KMS

boundary condition, the following conditions are equivalent :

(i) J?/ is trivial,

(ii) <p is extremal among r(G) invariant states of q>,

(ill) dimE0H^^l,

(iv) M(7r(p(r(t)A)) = (p(A)l, A^l where M is the Godement mean.
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The same equation holds if M is replaced by and invariant mean ??.

Proof. The equivalence of (i) and (ii) is given in Theorem 2. 2.
If U/ is trivial, then EQ7c9^K)fEQ is trivial and has a cyclic (and

separating trace) vector £lv on E0H9. Hence E0H<p must be one
dimensional. Hence (i) implies (iii). Conversely, if E0HV is one
dimensional, EJHf is trivial and hence J?/, which is isomorphic to
EJRi, must be one dimensional. Hence (iii) implies (i). Finally we
have

(3.7)

where we have used (iii) in the last step. Hence (iii) implies (iv).
Conversely, (iv) implies that 7zv(§l) is ?7-abelian. It is known that
if 7z>(3T) is 7?-abelian, then the weak cluster property (iv) implies

(i), (ii), (iii).

Theorem 3.6. Let SI be separable. In order that a r(G)
invariant state <p satisfying KMS boundary condition is an integral

of a family of r(G) extremal invariant states satisfying KMS boundary

condition, it is necessary and sufficient that 7 (̂31) is ??-abelian. If
7r<p(3l) is ??-abelian, the central decomposition of the state cp coincides

with the decomposition of 95 into extremal G invariant states.

Proof. If 7T,p(§l) is ??-abelian, then any r(G) invariant factor
state of 7z>(§l) is extremal. On the other hand, the KMS boundary

condition implies that the center of nr^Sl)" commutes with Uv(t) and
hence it is contained in J?/. Therefore, if 7 (̂31) is ??-abelian and <p
satisfies the KMS boundary condition, then cp is a factor state if

and only if it is an extremal invariant state.

Now consider a general state <p, which satisfies the KMS boundary
condition. Let F be any central projection and consider the new
state

(3. 8) <pF(A) = (flV9
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Then cpF is r(G) invariant because F commutes with U9(f). Further,
since n<p(A)" satisfies the KMS condition, we have

(3. 9) <pF(AB(f$ =

Hence <pF is orthogonal to AB(f0)—B(f^A for any /e.2). This
implies that the factor components in the central decomposition are
r(G) invariant and satisfies the KMS condition almost everywhere.

Thus if 7r^(Sl) is T?-abelian, the central decomposition of <p is
(after a possible modification of measure zero components) a unique
decomposition into extremal r(G) invariant states and the resulting
factor states satisfy the KMS boundary condition.

We now come to the converse. If a r(G) invariant extremal
state cpt: satisfies the KMS boundary condition, then 7̂ (31) is ??-abelian.
Let ha be an M-filter giving an invariant mean rj. Then we have

(3.10) \im^(C^B,A(ha)-}C2) = Q
a,

for each f, C1( C2, B, AeSl, where

(3. 11) A(h.) = J T(t)Ah.(t)dt .

Since

(3. 12) ^(C^B, A(ha)']C1)\ <2||C1i| ||CJ| ||fi|| | [A||

we have by a theorem on bounded convergence

(3. 13) lim rtC^B, A(ha)-]C2) = 0
a

for

(3. 14) <p = J wMg)

where /j, is a nonnegative measure with the total measure 1. Hence

7z>(9l) is 5?-abelian. Since

(3.15) <pt(A-T(f)A) = 0

(3.16) <pt(AB(fJ-B(fdA) = 0

for all %, we have the same for (p. Hence <p satisfies the KMS
boundary condition Q.E.D.
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Remark. Consider a state 95 which satisfies the KMS boundary

condition and for which 7rv(2I) is 7?-abelian.

From the KMS condition, we have

(3. 17)

= rigy(ihe same)

) = 0 .

Since B(/0), 6^21, f^S) is uniformly dense in 21 and the same for

C2(/0'), we see that Af {[^(A), ^(r(/)B)]}=0 for any A, BeSl, in

weak sense.
In the course of the above proof, we have obtained

Corollary 3. 7. Let 21 be separable and (p be a r(G) invariant

state of 21 satisfying the KMS boundary condition, the central
decomposition of q> yields factor states which are r(G) invariant and

satisfies the KMS boundary condition. The same holds for any

partial central decomposition (namely the diagonalization of a sub-

algebra of the center).

Corollary 3. 8. Let 21 be separable and <p be a r(G x GJ invariant

state of 21 which satisfies the KMS boundary condition with respect

to the one parameter group G. Further assume that (̂21) is M-

abelian or 7?-abelian for amenable group or weakly asymptotically

abelian for a non compact group or large, with respect to Gx. Then

the decomposition of (p into extremal Gl invariant state yields r(G)

invariant state satisfying the KMS boundary condition with respect

to G.

Proof. This follows from the previous Corollary and the known

fact that R± is in the center of 7 (̂21)" if ?>(2l) is M-abelian or
^-abelian or weakly asymptotically abelian or large.

§ 4. Non ff-abellan Case

We now analyze the general structure when 7r(p(2I)// is not

??-abelian8 By Corollary 3. 7, the central decomposition always yields
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a r(G) invariant state satisfying the KMS boundary condition, our
problem is reduced to a factor state <p which is r(G) invariant and

satisfies the KMS boundary condition- For this case we have two
steps of possible decomposition towards extremal invariant states.
First step is the decomposition according to the central part
RiE0 n RZ'EQ. If this part is understood, we may proceed to the case
where RJEQ is a factor on EQHV. These two steps will be discussed
here, together with typical examples. The first step necessarily yields
a state not satisfying the KMS condition. In the second case, one
can find the structure more explicitly. Our example also shows a
case where n^)" is G abelian but not ?7-abelian.

Theorem 4.1. Let Ra be a sub- W*-algebra of (R^EQ) fl (R2'E0)

in E0HV. If Ra is not contained in CEQ (C is the center of 7z>(§l)")

then a decomposition of <p into r(G) invariant states diagonalizing

Ra necessarily yields some states which do not satisfy the KMS
boundary condition.

Proof* Let F be a projection in Ra. Since it is in R2'EQ9 there
exists a projection F in J?/ such that FEQ = F. We note that F

commutes with E0 and Fe 7^(21)" Z) ./Si/• Now we assume that

(4.1) cpF(A} = (fl,, AFCIJ, AtEnM}"

satisfies the KMS boundary condition and derive the conclusion that
F commutes with any 7cv(B), Be§l and hence is in the center of

7zv(2l)". (If <pF(A} satisfies the KMS condition for Ae^(31), then it
satisfies the same for Ae7rff(9l)" by Corollary 3. 3.)

We have

(4.2)

We note the previous result (eq. (3. 6)) that

(4.3) (p(AF) = (p(FA), A^7t9

(4.1) implies

(4.4) <p(AB(fJF) = <p(B(fp)AF)
= <p(AFB(fa}).
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We set A = Ai(ft')A2. Then we have

(4.5) v(AJ[B(fJ, F]A(/oO) = 0 .

Since n<p$Si)"£l<p is dense in Hv, and C(/0) is uniformly dense in ?r(2l)",

we have the desired conclusion :

(4.6) [B, F] = 0, Be 7 (̂31)".

Remark 4B 2. After the reduction is made by diagonalizing the

center of R^E^ we obtain <p which is still a trace on RiE0 and R2EQ.
Then J?/E0 and R2'E0 are now factors of either type /„ or type 11^

For type /„ situation, we have the following theorem. We expect

a similar structure for type II± case.

Theorem 4, 3* If O^ is a trace vector on factors of type In,

RiE0 and R2EQ9 then 7zv(3l)" have the following structure :

(4. 7) H9 =

(4. 8) n, =

(4.9) **&)" =
(410) Rl =
(4.11) £7^(0 - [7(0 ®1

where [7(0 is a continuous unitary representation of G on H^ £1L is

the unique U(t] invariant vector in H^ and f!2 is a trace vector on Q2

and Q2, If ^> satisfies the KMS boundary condition, then R2=1®Q2,

namely there is no stationary observable in Qlm

Proof. We know that R^ is isomorphic to R^E^ Let E2 be the

central carrier of EQ in R2. Then K=E2R2 is isomorphic to R2E0

and is a weakly closed subalgebra of R2. Thus we have two type /„

factors RI and K which commutes with each other. Then (I?/ U K)"

is a factor of type 7nz and A-> AE0 is an isomorphism of I?/ U K onto
(Rl

/EQ{jKEQY/ = B(EQH(p)y where E0 is in the commutant of JR/UK

It is easily checked that (I?/ U/S7 n^(Sl)// = 4 have the property

Tt^Y'^Q.K. Hence we have the structure of (4.7), (4.9), (4.10),

where I®Q2 = K and Q1®1 = Q1. Since cp is irreducible for (Q2UQ2')">
(4. 8) follows. Since cp is a trace on K and I?/, f!2 must be a trace
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on Q2 and Q2. Since (/fl)/?/)"^ coincides with EJS99 Q2 is invariant
under U9(f), which implies (4. 11), and flj must be a uniqne invariant

vector (up to a constant) on fli.

We now show that if Ox satisfies the KMS boundary condition and

some A in Q1 commutes with U(f), then A must be a multiple of the

identity. First, the uniqueness of invariant vector and U(t)Aflv = fltp

implies An<p = \nv> for a scalar X. Next we have from the KMS

condition

(4. 12) (nlf B,AB,(f^ = (fll9

Therefore, we have A = X1.

Example 4. 4. (4. 7) ~~ (4. 11), where Q2 and Q2' may be any
finite factor, gives an examples, which are not G-abelian. In this

case any further decomposition with respect to J?/ which is obviously

non unique yields states which differ with respect to stationary

observables Q2 but which are essentially the same for the time

dependent part Qlt In general Ql can contain also stationary ob-
servables for which f^ is necessarily an eigen state.

Example 4, 50 Let / be a finite subset of reals. Let H^ and H2

be both L2(/), namely the Hilbert space of {/(#) ; x^I} with (/, g) =

2 /(#)*#(#)• We define a basis ex by ex(y) = 0 for x^y and ex(x) = l.

We define U(t) on H9 = Hl®H2 by t/XO(^®O = gf"fC*~J'5(^®O- ^(a)
is defined as B(H^)®\. We then see that ex®ex, x^I span EQHq>.

An operator in flC-ffJ can be represented by a matrix A(x, y). Then

J?x consists of all A®1 for which A(x, y) = Q if ^=1=^ and the A(x, x)

are arbitrary. R2 consists of 1®A with the same A. R1EQ = R2EQ is

abelian and hence we have G-abelian property. We set

(4.13) O^ = l£e-txex®ex

(4. 14) <p(A) = (a*, Atlv) = 2 A(x, x)e~**.
X

Then H^ is cyclic for 7 (̂31), invariant under U(t) and <p satisfies the

KMS boundary condition :
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(4. 15) F,(0 = <p(AB(ty) = 2 A(*,
xfy

(4. 16) F,(0 = 9>(B(f)A

= 2 A(*',
x'v'

(4.17) F2(t) =

However 7r(5l) is a factor and its center is trivial. From our theorem,

7r(§l) cannot be ^-abelian. In fact

(4. 18) M {[_A, B(t)-]} (x, y) = A(x, y)(E(y, y) - B(x, *))

which is non zero for some A unless EQBE0 is a multiple of the
identity operator on EQH.
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Note added in proof :

From (3. 7), it follows that ha in the proof of Theorem 3. 6. can

be taken to be a sequence hn which is l/« in [0, ri\ and 0 outside.

The authors are indebted to Dr. Winnink for the following comments :

Theorem 3. 6. follows easily from results in [12]. Theorem 4. 1

overlaps with Theorem 3. 6.




