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Abstract

unaer the condition that a certain hermitian operator has a self-adjoint
extension a necessary and sufficient condition that a bilinear Fermion Hamil-
tonian can be diagonalized by a Bogoliubov transformation is obtained. Under
the same assumption, any bilinear Fermion Hamiltonian can be diagonalized
in a slightly extended sense by an extended Bogoliubov transformation. The
meaning of this diagonalization from the view point of the Clifford C* algebra
is discussed. It is shown that a parallel treatment is possible for a bilinear
Boson Hamiltonian (with complications concerning unbounded operators and
an indefinite metric) if a spectral theory of pseudo hermitian operator on a
Hilbert space of an indefinite metric hold in parallel with that of definite
metric Hilbert space.

§1. Introduction

Several authors have investigated the diagonalization of a
general bilinear Hamiltonian by a Bogoliubov transformation [1],
[2], [3], [7]. We shall present a complete solution of this problem
for the case of canonical anticommutation relations (the Fermion
case). We shall indicate a similar procedure for the Bose case,
which is however quite incomplete due to the lack of a spectral
theory of a pseudo hermitian operator on a Hilbert space of an
indefinite metric.

In section 2, we shall discuss various view point on the Clifford
algebra, which was the motivation for our treatment, though this
section is logically unnecessary for the later sections. In section 3,
we formulate the notion of Bogoliubov transformation in an abstract
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fashion. In section 4, we introduce a bilinear Hamiltonian as a
derivation of a Clifford algebra, which is an infinitesimal generator
of a one parameter group of automorphisms of the Clifford algebra
if a certain operator has a selfadjoint extension. Then the problem
of diagonalization is reduced to the problem of finding a projection
operator satisfying a few properties and this problem is easily
solved by a spectral theory of a selfadjoint operator. In section 5,
the abstract language in preceding two sections are written out in
the conventional notation and the main theorems are stated as
Theorem 5.4 and Theorem 5. 6.

In passing, it is shown that any automorphism defined by the
bilinear Hamiltonian has an invariant state in which the canonically
defined Hamiltonian is positive semidefinite. It is also pointed out
that an infinite dimensional Clifford algebra is * isomorphic to C*
algebra obtained by adjoining evenoddness operator to the Clifford
algebra.

In section 6, we indicate how a parallel treatment can be done
for the Bose case to the extent that a Hilbert space of an indefinite
metric can be treated in parallel with a Hilbert space of a definite
metric.

§2. Alternative Definitions of the Clifford Algebra

We shall here collect various view points for Clifford algebra,
of which we shall use one in later discussions.
A standard definition of the canonical anticommutation relations

[4] is

Definition 2.1. Let K be a complex Hilbert space. A CAR
algebra over K, denoted by A ,x(K) is the quotient of free * algebra
with complex coefficients, generated by symbols (a*, 1), (f, @) (f€K)
and the identity 1, by (the two sided * algebra generated by) the
following relations

@1 (f, &)* = (a*, 1),
@.2) L@*, 1), (@, &1 = [(f,a), (& a)], =0
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(2.3) La* 1), (g o)+ = (& 1
2.4 (@*, c.fi+c.fr) = cla*, f)+c.(a*, 1)
where

(2.5) [A, B], = AB+AB

A standard definition of the Clifford algebra [5] is

Definition 2.2. Let H be a real Hilbert space. A Clifford
algebra over H, denoted by . (H) is the quotient of the free *
algebra with the complex coefficients, generated by the symbol ¢(f)
(feH) and the identity 1, by the following relations

(2.6) o(f)* = $(f)
@.7) d(f) = (f, N1
(2 8) qb(clfl -+ czfz) = c1¢(f1) + Cz(ll"(fz)

where ¢, and ¢, in (2.8) are now reals.
The two definitions are related by

Lemma 2.3. Given K and U ,z(K). Equip K with a real inner
product

(2' 9) (f’ g)IIZ Re (f) g)K:

making K a real Hilbert space, which we denote by H. Then the
mapping =, defined by

(2.10) ro(a®, f) = % () —ip(BF))
2.11) wnlf, @) = é— () +id(BF))
2.12) 2l = 1

generates ¢ * isomorphism of A.,x(K) onto U ;(H). Conversely,
let H and A ;(H) be given. Further, given an operator 8 in H such
that

(2.13) B=-1, B*=—-p4.

Introduce a complex inner product into H by
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(2.14) (f:8)x = (f, @u—i(f, Bz

This makes H a complex Hilbert space, which we denote by K.
Then the mapping =,, defined by

(2.15) mup(f) = (@*, f)+(f, @)
(2. 16) 7[121 =1
generates ¢ * isomorphism of A ;(H) onto A x(K). =, and =, are

the inverse of each other if B on H happens to coincide with the
multiplication of 7 on K.

Proof. To show that =, is a homomorphism, it is enough to
prove that the images of the relaticns (2. 1)-—(2. 4) are contained in
the two sided * ideal generated by the relations (2.6)~(2.8). To
show that =, is a homomorphism, it is enough to prove that (2. 1)
~(2.4) imply (2. 6)~(2.8). To show that r,, is an onto isomorphism,
construct H as indicated, define the operator 8 on H by B(f)=/(if),
consider =, for this H and 8 and prove that =z, and =,=, are
the identity mapping. This also shows that »,, is an onto isomor-
phism. The verification of these statements are straight-forward,
among which we only mention

@.17)  [mup(NT = @ [P+, @+ 1), (f, a)] = (f, /)
2.18)  [¢(N), (@] = % {o(f+'—d(f—2)} = 2(/, g)ul
(2.19) (f, Bg)+(g, BF) =0 (Bf,Bg) = (f, &

(2 20) [77"21(a*, f), 71'21(g’ a)]
- %[(f, 9+ (Bf, Bg)+i(f, Bg)—i(Bf, &)1

Q.ED.
The CAR algebra and Clifford algebra can be defined even if

we make K and H a Hilbert space with an indefinite metric.

Definition 2.4. Let K be a complex Hilbert space and v be a
linear operator on K such that
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2.21) vV=1, y*=9.

An indefinite CAR algebra ;. (K, vv) is the quotient of the free
* algebra, generated by the symbols (0%, f), (f, b) (f=K) and the
identity 1, by the following relations

(2.22) O*, f)* = (vf, b)
(2.23) L®*, 1), (g b1+ = (g, v N
(2 24) (b*7 C1f1+czf2) = cl(b*) f1)+(,'2(b*, fz) .

Definition 2.5. Let H be a real Hilbert space, v be a linear
operator on H such that

(2. 35) =1, v*=9.
An indefinite Clifford albebra ;.. (H, v) is the quotient of the

free * algebra, generated by the symbol (/) and the identity, by
the following relations

(2. 26) V()* = (vf)
2.27) V() = (f, v/
(2 28) 1l’(chfl + szz) = clll’(fl) + Cz‘l’(f2)

where ¢, and ¢, are reals.

Lemma 2.6. Let E be any projection operator in H and
v=(2E—1). Then the mapping =, defined by
(2.29) zop(f) = Y(ES) +iy(1—E)f)
(2. 30) el = 1
generates a * isomorphism of . (H) onto U (H, v). Conversely,
given H, v,
(2.31) () = ¢([1+v]f/2)—ip([1—v]1f/2)
2. 32 7l =1
generate a * isomorphism of ;. (H, v) onto Uc (H). The two

mappings are inverse of each other.

Preoof. The same as Lemma 2.3, except for the calculational
part, which is straightforward.
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Lemma 2.7. Let E be any projection on K and y=2E—1. Then

(2.33) wa(a*, f) = (a*, Ef)—i(@*, 1—E)f)
(2.34) zu(f, @) = (Ef, &) +i(1—E)f, a)
(2. 35) 7yl =1

generate @ * isomorphism of A.,x(K) onto Wc.(K, v). (Converse
mapping =,, can be defined similarly.)

Proof. The same as Lemma 2. 6.

Lemma 2.8. If there exists 8 which satisfies (2.13) and com-
mutes with v, then

(2. 36) zr(f) = &% F)+(f, b)
(2.37) 7yl =1

generates a * isomorphism of ;. (H, ) onto W;cA(K, v) where K is
related to (H, B) as in Lemma 2.3. If (K, v) is given first, then
define (H, B) from (K, i) as in Lemma 2. 3, and there always exists
a * isomorphism 7z, of Wc,(K, v) onto Wi (H, v) generated by

(2. 38) w(b%, F) = % () —iv(BF))
(2. 39) ol f) b) = %(w(f)“«lf(ﬁf))
(2. 40) 7l = 1

Given v, the required B exists if and only if dimensions of the
projections (1+v)/2 and (1—v)/2 are even.

Proof. The same as Lemma 2.6.

§3. Bogoliubov Transformations

We now introduce a new view on CAR algebra which is a
natural frame for the study of Bogoliubov transformations.

Definition 3.1. Let K be a complex Hilbert space and T be
an antiunitary operator satisfying
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3.1) =1, Ti= —iT
(F"zb'v P‘r’"z) = ("1”27 ‘P'l) .

A selfdual CAR algebra gpc(K, T) is the quotient of the free
* algebra, generated by (B*, f), (f, B) (feK)and 1, by the follow-
ing relations

(3.2 (B*, f)* = (f, B)

(3.3 LB*, 1), (& B+ = (g, /1

(3.4) (B*, c.f,+0of) = ci(B*, ) +c,(B*, £)
(3.5) (B*, ) = (Th, B).

Remark 3.2. The last relation for gy replaces (2. 2) for A ag-
A useful relation is

(3.6) (B*, f) = é(f, TA)1.

Lemma 3.3. If dim K= even or infinite, there exists a pro-
jection operator E such that TET'=1—FE, and the following =,
generates g * isomorphism of sy (K, T') onto Wcr(EK)

3.7 ms(B*, ) = (a*, Ef )+ (T(1—E)f, a)
(3.8) ms(f> B) = (Ef, a) - (a*, TU1—E)f)
(3.9) zol =1,

Conversely given K,, define K=K ,dK, EK=K, Choose a complex
conjugation operator 7 on K, (namely any (antiunitary) operator
satisfying T?=1, Ti=—iT, (Tf, Tg)=(g,f)), and define T'(fPg)
=(Tg®Tr). Then the mapping =, defined by

(3.10) mu(a*, ) = (B¥, f®0) (=0D7Tf, B))
(3.11) ms.(f, @) = (B¥, 0B Tf) (=(fPO, B))
(3.12) 2yl =1

generates a * isomorphism of Acx(K,) onto Ws,(K, I') which is the

inverse of z,,. The space K has either even or infinite dimension.

Proof. The same as Lemma 2.6. We only mention the follow-
ing calculations :
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3.13)  [=s(B*, f), =g, B)] = {(Eg, Ef)+ ([T (1 —-E)f, T(1—E)g)}1
= {(g Ef)+(g A-E)N}1 = (& /)1
(3.14) 7, (B, Tf) = (a*, ETf)+ T —E)T¥, )
= (a*, TA—E)f)+(Ef, a)
= n,(f, B).

The existence of the desired projection E for given I' can be seen
as follows. Since I' is a complex conjugation, there exists a T°
invariant basis {f,, n=1,2,---} of K. (f+Tf and i(f—T(f)) are
both T invariant and one of them is nonzero if f=0. Thus one
can choose successively an orthonormal I' invariant basis vector f,
from the T invariant subspace (f,, f,+-fs-)" of K.) Since K is even
dimensional, we can pair f,,_, and f,,, #=1,2,---. Now define E as
a projection on the subspace spanned by 27V*(f,,.,~+if,,). It satis-
fies the required property TET'=(1—E).

Remark 3.4. We may write B*=(a*, a), B=<Z*>, where (a, g)
is understood as (7g, @) and (g, a*) is understood as (a*, Tg).
When (K, T) is given, the operator 7 can be chosen to be any
complex conjugation on £EXK. 7T on (1—E)K is defined as TTT'(1—E).
Then TT =1 is a linear operator satisfying v*=1, v*=v and (1—E)y
=oFE, and the identification of (1—E)K with EK is done by the
unitary mapping . It is also possible to start from an arbitrary
unitary mapping v (identification) of EX onto (1—E)K, satisfying
yI'=T%*. Then T=qvT is a complex conjugation.

Definition 3.5. A projection E satisfying TET'=1—EF is called
a basis projection of K. A unitary operator U is called a Bogoliubov
transformation between two basis projections E and F if U com-
mutes with T' and UEU '=F.

Lemma 3.6. For any two basis projections E and F, there
exists a Bogoliubov transformation between them. If a unitary
operator U commutes with T" and if E is a basis projection, then
UEU™" is also a basis projection.

Proof. Let f,f,-- and g,g,-:- be a complete orthonormal basis
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for EK and FK respectively. Since dim EK=dim FK =—é— dim K,

we can use the same index set for f and g. Since T is antiunitary,
T'f; and T'g; are complete orthonormal bases for (1—E)K and 1—-F)K
respectively. We define

U; (c:fi+dTf) = E,: (c:g:+diT'g) .

Then U is unitary, commutes with T" and UEU '=F.
The last half of the lemma follows from

(38.15) TUEU'T =UTETU'=UQ—-E)U*'=1-UEU™".

Lemma 3.7. If dim K is finite and odd, there exist mutually
commuting projections E,, E, and E, such that TEI'=E,, TEI'=E,
E +E,+E,=1, dim EK=1. Ugp(K, T) is * isomorphic to a direct
product of gpc((E,+E,K, I') and a two dimensional abelian algebra
{el+cx} 2°=1, x*=x. Uspc((E,+E)K,T) is * isomorphic to
Acar(EK).

Proof. There exists a T" invariant orthonormal basis f,-::f,,+

of K where dim K=2x#+1. Now we define E,K, E,K and E K to be
subspaces spanned by

{fitif fitifo S tifond, {fimifs fimifs - Son—ifan}s {fonnad
Then the required properties hold. If we set

(3.16) x =2 (20)"(B¥, £)(B*, ) (B, fonrs)

then it commutes with all elements in gy (K, T') and x*=1, x*=x.

Obviously, {c1+c,x} and Uspc(E,+E,)K, T) generate Ugpc(K, IN).
The last statement of the lemma follows from Lemma 3. 3.

§4. Bilinear Hamiltonian

We now define a bilinear Hamiltonian as a generator of a one

parameter automorphism group of CAR algebra. We need a C*
algebra view point for this purpose.

Lemma 4.1. If K has a finite even dimension, then all non-
zero representation of . ,x(K) is * isomorphic and defines a unique
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C* norm on U ,x(K). If K is infinite dimensional, the C* norm
of Wcar(K) CUcar(K), dim K'=finite and even, defines a unique C*
norm on cx(K). The completion A ,xz(K) of Wc,x(K) with respect
to this norm is a C* algebra.

Proof. Known.

Lemma 4.2. If S is a selfadjoint operator on K, the mapping
7(¢S) defined by

(“4.1) T(tS)(a*, f) = (a*, &% f)
4.2 T(tS)(f, a) = (€ f, a)

generates a * automorphism of UAc,x(K), continuous in # The
infinitesimal generator 7'dr(¢S)/d¢=d(S) is a densely defined deriva-
tion on A x(K). In particular if f is in the domain of S.

4.3) dr(S)@*, f) = (a*, Sf)
4.4) dr(S)(f, a) = —(Sf, a) .

Proof. Known.

Remark 4.3. The derivation dr(S) is often denoted by
(4.5) dr(S)A = [(a*, Sa), A].

This is due to the following situation. Let S be a trace class
operator and

(4.6) (x, Sy) = 23 M, (i 9) -

Then dr(S) is an inner derivation and

4.7 (a*, Sa) = 2 n:(a*f)(f:10) €A ar(K)

satisfies (4.5). By extending this notation, 7((S)A is often written
as

4. 8) T(tS)A = i “S» A g5

though ¢i“*5® is not an element of algebra for a general selfad-
joint S.
It is also possible to write
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(4.9) dr(S)A = —[(e, $*a¥), A]
(4.10) T(AS)A = @S A gicarsran

If S is in the trace class, and (x, Sy)= > ni(x, f))(g; ¥), then
(4.11) (a, S*a*) = 323 \i(g;, a)(a*, f) EAcar(K)
4.12) = (tr S)1— (a*, Sa) .

Even if S is not in the trace class, it is conventional to say
that (a, S*a*)= — (a*, Sa) +constant and that the constant cancels
out in (4.9) and (4.10). This language is made rigorous in the
present discussion by using the notion of automorphisms and deriva-
tions of a C* algebra. )

We now consider a similar derivation on gy (K, I).

Lemma 4.4. Let S be a trace class operator on K such that

4.13) (%, Sy) = 2N, (g6 ), 22 INHIFlgdl < oo
Then

(4.14) (B*, SB) = 22 \(B*f:)(g:B) €Uspc(K,T)
and

(4.15) 1 LB, SB), (B%.)] = B* a(S)f)
(4.16) al(S) — —é—(S—I‘S*l“).

We have

4.17) Ta(S)T = —a(S)*.

If TST'= —S*, then a(S)=S5.

Proof. For A=(B*, f), we have A*A+ AA*=||f]|/’1 and hence
[|Al|<1. Therefore

I B, £ @B 2 Pl £l gl

and (4.14) converges in norm. (4.15) follows from
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4.18) %[(B*, SB), (B*f)]
- % SIAB*, £)[(gs B), (B, )]s
_[(B*, fi)’ (B*; f)]+(gi, B)}

= (B% /)
where (B*, f) in the second term is to be replaced by (I'f, B) and
(#.19) f'= = 20l NIf—Tf, fTg}

= 31 {ulgs N~ TV (i &)
= a(S)f .

Lemma 4.5. There exists a maximal norm of all * representa-
tion of sy (K, T') by operators on a Hilbert space. The completion
Aspc(K, T) of Aspc(K, T') by this norm is a C* algebra.

Proof. If K has an infinite dimension, this follows from Lemma
3.6 and Lemma 4.1. If K has a finite dimension, the s, (K, T)
has a finite dimension by Lemma 3.6 and by the known fact on
Wcar(K), the lemma holds for this case, too.

Lemma 4.6. Let S be a selfadjoint operator satisfying I'ST
= —S. Then the mapping

(4. 20) T(tS)(B*, f) = (B*, &'t f)
(4. 21) T#S)1 =1
generates a * automorphism of Uspc(K, I'), centinucus in ?.
Proof. Let
S = SlxdE(x)

be the spectral decomposition of S. Then I'ST = —S implies TE(A)T
=FE(—A). Sicne I' is conjugate linear, we have

4.22) Tes T — Se“”" TdEO)T

— [em aB(—n) = e
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Namely ¢*5* commutes with T

Since the quantity entering in the definition of gy is an inner
product (f, g) in K and the mapping f—Tf, and since ¢S induces
an isomorphism of (X, T") onto (¢! K, T")=(K, T") with respect to this
structure, we see that (4.20) and (4.21) induce a * isomorphism of
Wspc (K, T) onto Ugpc (¢S K, T) =WUsp (K, T). Thus it is an automor-
phism of Wgpc(K, T') and hence an automorphism of its unique C*
extention Agpc(K, T).

Definition 4.7. Let S be any linear operator on K. Then we
use the notation on the left hand side of the following equation to
denote the right hand side if f is in the domain of «(S).

. 23 [+ ®%sB), B+, = B a®)).

The notation is extended as a derivation on * algebra generated by
(B*, f), f in the domain of «(S).

If S is selfadjoint, the automorphism 7(fa(S)) is denoted by
the following expression :

(4.24) T(ta(S))A = ¢iB B A gmicBSBE

The symbol (B*, SB) is called a bilinear Hamiltonian. It is
said hermitian or selfadjoint if S is hermitian or self-adjoint,
respectively.

Lemma 4.4 motivates this definition.

Lemma 4.8. Let S be a selfadjoint operator on K such that
I'ST'=—S with a spectral projections E(-) and let E,=E((0, «)),
E_=E((—<, 0)), E,=E({0}).

If dim E)K is even or infinite, then there exist a projection E
on K, a selfadjoint operator S, on EK and a * isomorphism = from
Nspc (K, T) onto Ac,r(EK) such that K=EK®TEK and =7(tS)
=T1(tSy).

Proof. From I'ST'= —S, we obtain TE(A)['=E(—A) and hence
TE.I'=E_, TEI'=E, Since dim EK is even or infinite, and since
E,K is T invariant, we can find a subspace E, K of E,K such that
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TE,I'=E,—E, asin the last part of the proof of Lemma 3.3. Set
E=E.+E, S,=SE. By construction, TET'=1—E and [S, E]=0.
We have

(4. 25) ¢S f = ¢S Ef 4 T eST(1—E)f
=" Ef+T e T(1—E)f

and ¢S is a one parameter unitary group on EK. We now use
the mapping =, from spc (K, T') onto U ,x(EK) defined in Lemma
3.3. It can be extended to a * isomorphism of UAgpc(K, I') onto
Acar(EK). (4.25) now shows that

7 T(ES) = T(tSy)7ys - Q.E.D.

Lemma 4.9. Let %, be a * algebra consisting of ¢,1+c¢,x where
x°=1, x*=x. The following semitensor product ., x(K)RQA, of
Acar(K) with U, defines a C* algebra.

(4. 26) (€A, +¢,A)RB = ¢,(A,®B)+ ¢,(4,B)
4. 27 AQ(e,B,+6,B) = c,(ARQB) +c,(AQB,)
(4. 28) (cA)RB = AR(cB) = c(ARB)

(4.29) (A,®x)(4,®B) = {A((—-1A)} RxB
(4. 30) (4,R1)(A4,®B) = A,A,RB.

There exists a * isomorphism of A x(K)QA, onto gy (K PK,P
K, T) where K’ is one dimensional, T(fPgPc)=(TgPRTfPc*), T
is any complex conjugation on K, (i.e. (Tf, Tg)=(g, f), T?’=1), and
Acar(K;) is mapped onto the subalgebra gy (K, PK,PO,T) of
s pc(KPK,PK', T).

Proof. The mapping = given by
(4.31) n(B*, f©gdc) = (B*, f)+(Tg, B)+cx
(4. 32) 7l =1
generaters a * isomorphism of Ugpc (K, PK,BK’, T') onto W (KR

%, as is easily proved in the same way as Lemma 2.3. (The
inverse map is

z7(@*, f) = (B*, fPOPO), ="'z = (B*, 0P0Dc), etc.)
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Therefore = can be extended to a unique C* closure Ugpc. Its
image is then the C* closure of g x(K)R®U,. Since A, is finite
dimensional, it must be g, x(K,)RU,.

Lemma 4.10. If dim E K is finite and odd in Lemma 4. 8, then
there exist projections E and F, a selfadjoint operator S, on EK
and a * isomorphism 7z from gy (K, I') onto Ac,r(EK)®2A, such
that dim FK=1, K=EK@TEK®FK and =#7(S)=(r(tS,)®1)=.

Proof. In the proof of Lemma 4.8, we now have dim E,K=odd.
Hence we can find three mutually orthogonal subprojections E, E,
and F of E, such that E,+E,+F=E, and TE,I'=E,, TFT'=F, as
in Lemma 3.7. We set E=E,+E, and S,=SE. Then TET=E_
+E,, E+TET+F=1, [S, E]=0, SF=0, and

(4. 33) ¢S f = ¢S Ef +T e*S T(TET) f + Ff .
The mapping is given as in Lemma 4.9 where K,=EK, T is an
arbitrary complex conjugation on EK, and the identification of

EK=K, and (1—E)K is done by the mapping 7TT'=+. Then the
required properties are satisfied.

8 5. Diagonalization of a Hermitian Bilinear Hamiltonian

Definition 5.1. A projection operator E diagonalizes a bilinear
Hamiltonian %(B* ,5B) if TET=1—F and 1—E)SE=ES(1—E)=0.

E diagonalizes %(B*, SB) in an extended sense if ETE=0 and
S=ESE+(TET)S(TET).
Remark 5.2. Motivation of this definition is as follows. If

and only if TET=1—E, we have a * isomorphism of Ugy(K, I')
onto A ,x(EK), by Lemma 3. By this isomorphism, B* and B are

identified with (a*, ¢) and <Z*> (Remark 3.4). Hence (B*, SB) can

be written in a matrix form

5.1) (a*, a) (Sn Su>(a )
Szl SZZ a*
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where S;;=E;SE; with E,=F, E,=1—E. (B*SB) is said diagonal in
conventional terminology if it can be written as

(®.2) (@*S,a) + (a, S,a*) .

This condition is expressed by S,=S,,=0 namely ES1—E)

=(1—E)SE=0. This motivates the first definition. In the second

case K=EK@®TEK®(1—E—-TET)K. B* and B are identified with
a \

(a*, a, ¢) and (a*) where a* and « part satisfies CARs whereas ¢
¢

anticommutes with «, ¢* and defines a certain gy by itself. The

stated condition then says that the (B*, SB) is of the form

®.3) 0 S, 0]a*

(@*,a,¢)(S, 0 0)\/a
0O 0 O)q’))

To the extent that we forget about ¢, it is again of the desired
form (5. 2).

If the dimension of (1—E—TET)K is even or infinite, then we
can divide and absorb ¢ into ¢* and ¢. Thus it is reduced to the
first case. If the dimension is odd then we can make ¢ one
dimensional. If we are allowed to add one more ¢’ anticommuting
with a, a* and ¢, then the entire system is reduced to the first case.

As we have seen in Lemma 4.4, the derivation depends only

on a(S)=(S—TIS*T")/2 and hence we do not lose generality by

assuming T'S*I'=—S. Since I‘=<(% g ) for a complex conjugation

T on EK in the matrix representation of (5.4), we have the
requirement

5.4 [TS;‘;T TSETT [su su}
' TS*T TS*T| |S, S.l.

It is customary to write TA*T=*!A and TAT=A. Then we have
the requirement
tSlz = _Slz ’ tSm = _Sz1

5.5
5-9) tSu+S, =0
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where
(5- 6) (B*SB) = (a*’ Sua) —l—(d, Szza*)
+(a*, S,,a*)+(a, Sua) .

We note that in ref. 2, the following matrix was considered instead
of our S.

SZI SZZ—‘

5.7
( ) LSn sz_ll .

The hermiticity for S gives the requirement

S;l; = Sny S;kz'_— Szz

5.8
( ) SE:SZI'

Hence S can be written in terms of two operator S,=R, and
S,=R, as

R, R
-9 & %)
where R, R, satisfies
(5.10) R¥—R, 'R,— —R,.
It is also customary to use the notation
(.11) (@*, f) = Sa*(x)f(x)dx
(.12) (f, @) = STf(x)a(x)dx
(5.13) (f, Sg) = | TF@)S(, 9)g(3)dxdy

where a*(x), a(x), S(x, ), R(x, y) can be taken in distribution sense
or x can be taken as a discrete index variable, in which case de

is replaced by a summation. With this notation, we may write
(5. 14) (a*, Ra) = | a* ()R, y)a(y)dxdy

and similar expressions for (a*, Ra*) and (e, Ra).
Remark 5.3. Diagonalization problem. If we start with

A ar(K,) and %(B*SB) in the form of (5. 6), we introduce K=K DK,
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and I‘=<(7)- g) using the complex conjugation 7 which is used to
define the matrix element S(x, y) in (5.13). Then the projection
operator F onto K, is a basis projection for (K, I'), which however
does not diagonalize the given (B*, SB). We then loock for another
basis projection E which diagonalizes (B*, SB). If E is found, then

we denote the annihilation and creation operators in Uc.x(EK) by
b and b* instead of @ and a*, which are already used for Ucagr(Ky).

Then we have
5. 14) %(B*SB) _ é—{(b*, Rb)— (b, *Rb*)}
— (b%, Rb)

where R=R* and last equality is in the sense described before.

The pair of b* and b are related to ¢* and a by a Bogoliubov
transformation U, as was paoved in Lemma 3.6. The requirement
that U is unitary is equivalent to the information that the mapping
is one to one onto and the canomical anticommutation relations hold
for b* and b. The requirement that U commutes with T" is equi-
valent to the information that the expression for &6* and b are
adjoint of each other. Thus our definition 3.5 for a Bogoliubov
transformation coincides with the ordinary definition.

From these two remarks and Lemma 4.8, we obtain

Theorem 5.4. Given the hermitian bilinear Hamiltonian

*) Sll SIZ
(5. 15) (a a)[ }(“ )
SZI SZZ a*
and assume that

(5. 16) a(S) = %(S—I‘SF)

has a selfadjoint extension, where

S=7S, S.| F=[0 T"t

(5.17) [ s, SzzJ T 0

—

and 7 is a complex conjugation operator. (The hermiticity of
(5. 15) means S*DS.)
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Then it can be diagonalized to the form
(5.18) (b*, Rb)

by a Bogoliubov tronsformation if and only if the dimension of the
eigenspace belonging to 0 is either infinite or even.

Proof. The sufficiency is already proved. To see the necessity,
we note that a basis projection E which diagonalizes (5.15) must
satisfy TET=1—F and (1—E)a(S)E=Ea(S)A—E)=0. The last
requirement implies [E, «(S)]=0 and hence E must commute with
all spectral projections of a(S). From the property T'a(S)I'=—a(S),
and TET =1—E, it follows that TEE(0)I'= —(1— E)E(0), where E(0)
is the projection to the O eigensubspace of «(S). Therefore
dim E(0)K must have either even or infinite dimension.

Definition 5.5. Let E be a basis projection, F be a projection
such that F(TFT)=(I'FT)F=0. An isometric operator U commuting
with T is called an extended Bogoliubov transformation if UEU*=F.

Given a bilinear Hamiltonian %(B*, SB) in the form (5.15) for

Acar(K,). An isometric operator U on K, PK, diagonalizes

%(B*, SB) if it is an extended Bogoliubov transformaticn from the

projection onto K, to a projection F which diagonalizes -%(B*, SB)
in an extended sense (cf. Definition 5. 1).

Theorem 5.6. Given the bilinear Hamiltonian (5. 15) for which
a(S) has a selfadjoint extension. Then it can always be diagonalized
to a form of (5.18) by an extended Bogoliubov transformation.

Proof. This follows from Lemma 4. 10.
We now add a few results concerning the significance of the
diagonalization from C* algebra point of view.

Theorem 5.7. Let @ be the Fock vacuum state for Uc x(EK)
and S be a selfadjoint operator on K such that T'ST'=—S. Then ¢
is invariaat under 7(¢S) if and only if [E, S1=0, namely if and only
if E diagonalizes S.
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Proof. For the Fock vacuum state @, we have

(5.19) o((f, B)(B*, 1)) = lEfII.
If @ is 7(¢S) invariant, we must have
(5. 20) e S Eet® = FE,

Hence [E, S1=0, namely E diagonalizes S. Converse is known.
Remark 5.8. Thus the diagonalization of %(B*, SB) is possi-

ble if and only if there exists “a” Fock vacuum state which is

invariant under T(fa(S)).

Definition 5.9. Let @ be a Fock vacuum state of U, r(K).
Let N be the number operator on H,. Then the representation 7,
of Acar(K)RA, generated by

(5.21) 7o(A) = 7,(4) if AU (&)
(5.22) p(x) = (—1)N
is called a pseudo Fock representation of Uc,x(K)R2U, and the

vector state defined by Q, in this representation is called a pseudo
Fock state.

Theorem 5.10. For any selfadjoint S on K, there exists either

Fock or pseudo Fock state which is invariant under 7(£S).

Proof. This follows from Theorem 5.7 and Lemma 4. 10.
Q.E.D.

Theorem 5.11. Let S be a selfadjoint operator on K, then
there exists a state @ of Ugyc(K), invariant under 7(fa(S)) such
that the operator H defined by

(5. 23) ¢t 2, (A)Qy = wo(t(ta(S))A)Qy
is positive semidefinite.

Proof. We can reduce the problem, by the foregoing results,
to the case where Ugpc(K) is identified with either Ap,r(K,) or
Ncar(K) R, and 7(ta(S)) is 7(2S,) for a selfadjoint operator on K.
Let E; and E_ be two projections such that E,+E_=1, E,S,=0,
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E_S,=0. (It is essentially the spectral projection of S, for the
positive and negative real axis, where 0 eigenvalue space is divided
into E, and E_ in an arbitrary manner.) Then

(5.24) P((E-f, a)(a*, E_f)) =0
(5.25) P((@*, E.f)E*f,a) =0

defines the state uniquely which is Fock for E. and anti Fock for
E_. The associated state ¢ for Uc,x(K,)®Y, is constructed as be-
fore. Then it is known that @ and ¢ satisfies the required property
for T(¢S,). Q.E.D.

In passing, we mention the following remarkable fact. In the
Fock representation, the evenoddness operator (—1)¥ is not contained
in 7N ar(Ky)) if K, is infinite, because any operator A in 7(cx(K))
which commute with (—1)V satisfies

(5. 26) lim [ILA, (%, f)]1I = 0

for an orthonormal f;, whereas (—1)¥ does not have this property.
Thus if we adjoin (—1)¥ to z(Uc,r(K,)), they generate a C* algebra
B which is larger than z(Nc,x(K,). Since 7 x(K,)) is a faithful
representation of . ,x(K,) (the latter being simple), B is a faithful
representation of A Ax(K)R,, which is isomorphic to A ,x(K,) by
Lemma 4.9 and Lemma 3.3 if dim K| is infinite. Thus A, x(K,)
is isomorphic to A, ,x(K,) “plus” evenoddness operator.

§6. The Bose Case

We now briefly describe a similar analysis for canonical com-
mutation relations. We omit the analysis in §2 for this case a part
of which is found in [6]. Here we shall be content to describe a
program without caring for a mathematical rigour. Hence we shall
use unbounded form using creation and annihilation operators. We
shall also use unbounded operators without considering the domain
questions.

We start from (a*, f) and (g, @) which satisfies
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(6.1) L(g a), (@ f)]- = (g, N

(6.2) L(g a), (f, @] = [(@* g), (a*, f)]- =0

where [A4, B]_.=AB—BA and feK, for a complex Hilbert space K.
(a*, f) is linear in f and (f, @)=(a*, f)*. We consider K=K,PK,,
a projection operator E on K,50, a complex conjugation 7 on

K, I‘=<2~ g) and define
(6.3) (B*, f) = (a* Ef)+(T(Q—-E), a)
(6.4) (f, B) = (Ef, @)+ (a*, Tl - E)/)

which satisfies

(6.5) L(g, B), (B*, f)]1=(& 7/ )1
(6. 6) B*, f)* = (f, B)
(6.7) (B*, f) = I'f, B)

where 7=<(1) _(1)>=2E—1 and we have used TET'=1—E. (B*, f) is

linear in f.

If F is a linear operator on K such that
(6. 8) TFT =1—F, F*=F, oF= F*y
(6.9) (f,vf)>0  for 0+feFK

then we can obtain a new creation and annihilation operators b*
and b appropriate for F in the following manner. Let K, be FK
equipped with a new inner product

(6.10) (& Nrw = (& YFH( = (g 7))

(If F happens to be the original E, this coincides with (g, 1)) .
For feKy, we define

(6.11) ©* f) = B*f), (f,b)=(f,B).

Then (6.1) and (6.2) for b* b can be checked by using (6.8) and
(6.6). (Note that F*yF=vF, F¥*y(1—F)=(1—F)*yF=0.) Further,
if we define B* and B out of this b* and b, we obtain the original
one, because (B¥*,f)=(B*, Ff)+(B*, 1—F)f)=(B* Ff)+T(0—F)
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f, B). Thus we call any F satisfying (6.8) and (6.9) as a basis
(nonorthogonal) projection.

Let the completion of FK with respect to K norm be K.
Then the dimension of K and K,=EK must be the same and there
exists a unitary mapping U, of K, outo K, which is densely defined
operator from K, onto K. By construction, U, satisfies U *yUE=E,
UU*=vyF* FUE=UE, EU¥F*=UXF*=U}* where U,* is defined
by (f, U,g)=(U*f, g) together with U*f=EK for all g EK. We
define U=U,E+TUET. Then U satisfies

(6.12) [T,U]=0, UtxU=v, UyU*=1¢

UE = FU.
Conversely, if U is an operator satisfying (6.12), then F=UEU%*y
has the properties (6.8) and (6.9). Thus we shall call the operator

U as the Bogoliubov transformation from a basis E to a basis F.
We now consider a bilinear form

(B*’ SB) = (d*, a)‘isu Sl?.‘](”
1S S..] )

which can be understood as describing the following derivation

(6. 14)

a*

(6.15) %[(B*, SB), (B*, f)] = (B*, a'(S)vf)
a/(S) = %(SJrI‘S*I‘).

It is then enough to consider those S satisfying S=a’(S)
or

(6. 16) I'ST = S*.
The hermiticity requirement is

(6.17) S*=S.
In terms of S;;, we have

S=TR R, R*=R, 'R,=R,.
(6.18) L ]

R, R

A basis projection F diagonalizes S if the transformation (6. 15)
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brings a* and « to b* and b associated with F, respectively. Namely

(6.19) Sy = FSYyF+(1—F)Sy(1—-F).
For this, it is necessary and sufficient that
(6. 20) FSy(Ql—F)+(1—-F)SyF =0
namely
(6.21) [F,Sy]1=0.
If F diagonalizes S, then in terms of b, b* associated with F, we
have
6.22) %(B*, SB) = (b*S,b), S, =FS.

The operator S,y satisfies the property
(6. 23) S*(F) = (vF)(S) -

Namely it is hermitian relative to the inner product of the space
Kp. If S,y has a selfadjoint extension, then we have a unitary
operator ¢i%" on Kp. We define 7(S) by

(6. 24) T(S)(V*, f) = (%, &5 f)

(6. 25) T(tS)(f, b) = (&5 f, b)

which induces an “automorphism” of “CCR algebra”. It is often
written as

(6. 26) T(tS)A = eI B"SBI? A ¢iB'SB?

of which the derivation %(B*, SB) is an infinitesimal generator

... d
i aT(l‘S).

As a result of the above formulation, the problem of the dia-
gonalization of a bilinear Hamiltonian by a Bogoliubov transforma-
tion for the Bose case is reduced to the following :

Given S satisfying
(6.27) S¥*=S, TST =S

where T is a complex conjugation. Find an operator F such that
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(6. 28) TFT =1-F, F*=F, vF* =F, vF>0

(6. 29) [F,Sy]=0
where
(6. 30) ¥=1, y*=¢q9, Ty= —ql.

This problem can be solved if we have the following type of
spectral theory of pseudo hermitian operator on a Hilbert space of
indefinite metric. Let v and a complex conjugation I' be given
satisfying (6.30), on a Hilbert space of a definite metric. An
operator H is called pseudohermitian with respect to the indefinite
metric (f, gy=(f, vg) if

(6.31) (f, Hg)y = (Hf, &)y

An operator E is called a pseudoprojection if it is pseudohermitian
and

(6. 32) E'=E.

We say that a pseudo spectral theory holds for pseudohermitian H
if there exists a mutually commuting pseudoprojection valued mea-
sure E(A) on real line such that E((— oo, o0))=1 and

6. 33) H-— SxdE(x) .

To apply these notions to the problem under investigation, we
note that S+ is pseudohermitian. If a pseudo spectral theory holds
for Sv, then we consider three spectral projections.

(6- 34) E+ = E((O’ oo)) s E_ = E((_OO, 0)) ’ Eo = E({O}) .
Since T(Sy)T'= —Svy we have
(6. 35) TE.'=E_, TET =E,.

We now want to take into account the condition (6.9) for a
basis pseudoprojection and construct the desired E. This again
hinges on the spectral theory which we do not have at the moment.
We shall treat only the case where the spectrum of Sv is discrete
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and the multiplicity is finite. Let E, be an eigenprojection belonging
to AM=£0. If feE,H satisfies (g, vf)=0 for all geE,H, then setting
g=Er, = H, we have (\r, Evf)=0, namely O=E,*yf=«vE, f=vf.
Hence f=v(yf)=0. Thus v restricted to E,H is nonsingular and
we can find a basis f,---f, in E\H such that (f;, v/)=¢&;8;n &;

=41. Let Ef be defined by Effj:%(l +¢€,)f;. Then it satisfies

yE*=(E*)*y and vE>0. If EF is chosen for a v, then we choose
£ =TE{T". Because I'yI'= —r, this E%, have the required pro-
perty. For A=0, we have TEI'=E, Hence f<EH implies
TfeEH. Now it is always possible to find a T invariant basis f;
of EH: Tf;=f; From I'yI'= —v, it follows (f;vf,;) =0, and (f,;vf,)
is pure imaginary. Since ¢ is nonsingular, it is always possible to
find an f, for given f, such that (f,vf,)+0. Let o be the sign of
Im (fyvf)). Then gf=f,+isf, satisfies (g;vg7)=0, (g/vg)>0, T'g/
=g7. We then modify the rest of the basis f; to f;/=f;— (g, vf;)
gi(gt, vg) ' —(givfgi(grygr)™'. We can apply the same procedure
to f/f/---. Proceeding successively in this way, we can exhaust £ H
and we obtain a basis g7 which satisfies (g5vg7) =0,.8,.0, I'g}=g7.
We then define E by Ejgi=3,.g5. F= ;E{ satisfies the required
property: [F, H]=0, yF=F*y, F*=F, yF>Q.
Because of the existence of T, dim E H is always even in the

present case.
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