Publ. RIMS, Kyoto Univ. Ser. A Vol. 4 (1968), pp. 413-418

Wave Operators for $-\Delta$ in a Domain with Non-Finite Boundary

Dedicated to Professor Atuo Komatu in honor of his 60th birthday

By

Teruo Ikebe*

§1. Introduction

Let $\Omega \subset \mathbb{R}^n$, $n \ge 2$ be a domain (open connected set) exterior to obstacles such that the obstacles, not necessarily finite in number, form a closed set enclosed in a *cylinder* $S_{r_0} = \{x = (x_1, \dots, x_n) = (\tilde{x}, x_n) \in \mathbb{R}^n : |x| \le r_0, r_0 > 0\}$. The complement of S_{r_0} is, therefore, contained in Ω . We consider the differential operator $-\Delta$ on $C_0^{\infty}(\Omega)$,¹⁾ which will be denoted by A. It is easy to see that A is a welldefined, non-negative definite operator in the Hilbert space $L_2(\Omega)$, so that it has at least one self-adjoint extension. Let H be any such extension.²⁾ We are to compare H with the operator H_0 in $L_2(\mathbb{R}^n)$ defined as follows: $D(H_0)^{3)} = \{u \in L_2(\mathbb{R}^n) : |\xi|^2 \hat{u}(\xi) \in L_2(\mathbb{R}^n)\}, (H_0u)^{\wedge}(\xi)$ $= |\xi|^2 \hat{u}(\xi)$ for $u \in D(H_0)$, where \hat{u} denotes the Fourier transform of u, i.e.,

(1.1)
$$\hat{u}(\xi) = (2\pi)^{-n/2} \text{ l.i.m.} \int e^{-i\xi \cdot x} u(x) dx.^{4}$$

 H_0 is also known to be the unique self-adjoint extension of the negative Laplacian defined on $C_0^{\infty}(\mathbf{R}^n)$.

Let J be the bounded linear map: $L_2(\mathbb{R}^n) \rightarrow L_2(\Omega)$ defined by

Communicated by S. Matsuura.

Received July 11, 1968.

^{*} Mathematical Institute, Faculty of Science, Kyoto University.

¹⁾ $C_0^{\infty}(\Omega)$ is the set of all infinitely differentiable functions with compact support in Ω .

²⁾ We may say that different boundary conditions give rise to different H.

³⁾ D(A) denotes the domain of A.

⁴⁾ l.i.m. $\int \cdots dx = \text{limit}$ in the mean for $R \rightarrow \infty$ of $\int_{|x| \leq R} \cdots dx$.

Teruo Ikebe

$$(1.2) (Ju)(x) = u(x), x \in \Omega.$$

414

Then the wave operator $W_{\pm} =_{\pm}(H, H_0; J)$ for the pair (H, H_0) and the *identification operator* J is defined to be the strong limit

(1.3)
$$W_{\pm}(H, H_0; J) = s - \lim_{t \to \pm \infty} e^{itH} J e^{-itH_0}$$

if it exists. Now we assert the following

Theorem. The wave operators W_{\pm} exist and are isometries.

The existence of the isometric wave operators W_{\pm} implies that there is a subspace M in $L_2(\Omega)$ reducing H such that the part of H in M is unitarily equivalent with H_0 (see Kato [2]). Consequently, the absolutely continuous spectrum of *any* self-adjoint extension of A is never empty and contains at least $[0, \infty)$, since H_0 is known to have the absolutely continuous spectrum $[0, \infty)$. This property is thus independent of whatever (homogeneous) boundary condition may be attached to $-\Delta$ in Ω .⁶⁾

In closing this Introduction we mention that the existence and some related properties of the wave operators have been obtained for a bounded (set of) obstacle(s) (see, e.g., Ikebe [1], Lax-Phillips [3] and Shenk [4]).

§2. A Decay Principle

If $\varphi(x)$ is a (measurable) function defined on \mathbb{R}^n or Ω , let us denote by φ the operator of multiplication by $\varphi(x)$.

Lemma 2.1. Let $\varphi(x)$ be a bounded function on \mathbb{R}^n such that supp $(\varphi)^{r_1} \subset S_r$ for an r > 0. Then for any $u \in L_2(\mathbb{R}^n)$ we have

$$(2.1) \qquad \qquad ||\varphi e^{-itH_0} u||_{L_2(\mathbb{R}^n)} \to 0 \qquad (t \to \pm \infty)^{.8}$$

Proof. In order to show (2, 1) it is sufficient to prove that (2, 1) holds for u in a fundamental set D, since the operator norm of

⁵⁾ Cf. Kato [2].

⁶⁾ See footnote 2).

⁷⁾ $\operatorname{supp}(f) = \operatorname{support} \operatorname{of} f(x)$.

⁸⁾ The norm of a Hilbert space X is designated by $|| ||_{\mathbf{X}}$.

 $\varphi \exp(-itH_0)$ is uniformly bounded in t. Let D be the totality of such functions u that $u(x) = f(\tilde{x})g(x_n)$ with $f \in C_0^{\infty}(\mathbb{R}^{n-1})$ and $g \in C_0^{\infty}(\mathbb{R}^n)$. For $u = f \cdot g \in D$, we have

(2.2)
$$(e^{-itH_0}u)^{\wedge}(\xi) = e^{-it|\xi|^2} \widehat{f}(\widehat{\xi}) \widehat{g}(\xi_n) ,$$

which implies

(2.3)
$$e^{-itH_0}u(x) = (2\pi)^{-n/2} \int_{\mathbb{R}^{n-1}} e^{i\tilde{x}\cdot\tilde{\xi}-it|\tilde{\xi}|^2} \hat{f}(\tilde{\xi}) d\tilde{\xi} \times \int_{\mathbb{R}^1} e^{ix_n\xi_n-it|\xi_n|^2} \hat{g}(\xi_n) d\xi_n \,.$$

Fixing \tilde{x} and integrating with respect to x_n we get

(2.4)
$$\int_{R_1} |\varphi e^{-itH_0} u(\tilde{x}, x_n)|^2 dx_n \leq \text{const. } \tilde{\varphi}(\tilde{x}) ||g||_{L_2(\mathbb{R}^1)}^2 F(\tilde{x}, t) ,$$

where $\tilde{\varphi}(\tilde{x}) = \sup\{|\varphi(\tilde{x}, x_n)|: x_n \in \mathbb{R}^1\}$ and

(2.5)
$$F(\tilde{x},t) = |\int_{\mathbb{R}^{n-1}} e^{i\tilde{x}\cdot\tilde{\xi}-it\cdot\tilde{\xi}|^2} \hat{f}(\tilde{\xi}) d\tilde{\xi}|^2.$$

Consequently, noting that $\tilde{\varphi}(\tilde{x})$ is bounded with compact support in \mathbb{R}^{n-1} , we obtain

(2.6)
$$||\varphi e^{-itH_0}u||^2_{L_2(\mathbb{R}^n)} \leq \operatorname{const.} \int_{\operatorname{supp}(\widetilde{\varphi})} F(\widetilde{x}, t) d\widetilde{x} .$$

By the Riemann-Lebesgue lemma $F(\tilde{x}, t)$ tends to 0 as |t| goes to infinity, and this convergence is uniform in $\tilde{x} \in \operatorname{supp}(\tilde{\varphi})$. Hence we have the right side of (2.6) tending to 0 in view of the bounded convergence theorem. Q. E. D.

§ 3. Proof of the Theorem

We shall consider W_+ alone, for W_- can be handled quite similarly.

Let $\eta(x)$ be a smooth function on \mathbb{R}^n satisfying the following conditions: $0 \leq \eta(x) \leq 1$; $\eta(x) = 1$ in a neighborhood of the boundary of Ω ; supp $(\eta) \subset S_r$ for a sufficiently large r. Put $\zeta(x) = 1 - \eta(x)$. Then $W(t) = \exp(-itH)J \exp(-itH_0)$ can be written

$$(3. 1) W(t) = W_1(t) + W_2(t)$$

with

(3.2)
$$W_1(t) = e^{itH} J \eta e^{-itH_0}, \quad W_2(t) = e^{itH} J \zeta e^{-itH_0}.$$

Since we have

$$(3.3) ||W_1(t)u||_{L_2(\Omega)} \leq ||\eta e^{-itH_0}u||_{L_2(\Omega)} \leq ||\eta e^{-itH_0}u||_{L_2(R^n)},$$

it follows from Lemma 2.1 with $\varphi = \eta$ that for $u \in L_2(\mathbf{R}^n)$

$$(3.4) || W_1(t)u||_{L_2(\Omega)} \to 0 (t \to \infty).$$

In order to show the strong convergence of $W_2(t)$, we first differentiate $W_2(t)u$, $u \in D(H_0)$, obtaining

(3.5)
$$dW_{2}(t)u/dt = ie^{itH}(HJ\zeta - J\zeta H_{0})e^{-itH_{0}}u.$$

Now (3.5) makes sense. Indeed, $\exp(-itH_0)u \in D(H_0)$ and $\zeta(x)$ is smooth and bounded, and hence $\zeta \exp(-itH_0)u(x)$ is twice strongly differentiable. Since in addition $\zeta(x)$ vanishes identically near the boundary of Ω , the application of J to $\zeta \exp(-itH_0)u$ does not affect the differentiability, and thus $J\zeta \exp(-itH_0)u \ni D(H)$. On the other hand, $J\zeta H_0 \exp(-itH_0)u$ is meaningful, for J and ζ are bounded operators. Thus (3.5) holds for $u \in D(H_0)$. Now since

$$(3.6) \qquad (HJ\zeta - J\zeta H_0)v = -2J(\operatorname{grad} \zeta) \cdot (\operatorname{grad} v) - J(\Delta\zeta)v$$

for $v(=\exp(-itH_0)u) \in D(H_0)$, we have on integrating (3.5)

$$(3.7) \qquad W_2(t)u - J\zeta u = -2i \int_0^t e^{isH} J(\operatorname{grad} \zeta) \cdot (\operatorname{grad} e^{-isH_0} u) ds - i \int_0^t e^{isH} J(\Delta \zeta) e^{-isH_0} u ds .$$

If we can show that

(3.8)
$$\int_0^\infty ||(\operatorname{grad} \zeta) \cdot (\operatorname{grad} e^{-itH_0} u)||dt < \infty,$$

(3.9)
$$\int_0^\infty ||(\Delta \zeta) e^{-itH_0} u|| dt < \infty$$

for u in a fundamental set $D \subset D(H_0)$, then the existence of the strong limit W_+ will be concluded in virtue of the uniform boundedness in t of the operator norm of $W_2(t)$, and of (3.4), (3.1).

As D we take all functions $u_a(x)$ for which

416

Wave operators

(3.10)
$$\hat{u}_a(\xi) = (\prod_{i=1}^n \xi_i) \exp\left(-|\xi|^2 - i\xi \cdot a\right), \qquad a \in \mathbb{R}^n.$$

Obviously $D \subset D(H_0)$. That *D* is fundamental follows from a theorem of Wiener [5] in view of the fact that $u_a(x) = u(x-a)$, where u(x) is a constant multiple of $\prod_{i=1}^n x_i \exp(-|x|^2/4)$ which is ± 0 almost everywhere. If we put

(3.11)
$$v(x, t; a) = \exp\left[-|x-a|^2/(4+4it)\right],$$

we have

$$(3.12) \quad e^{-itH_0}u_a(x) = \text{const.} (1+it)^{-3n/2} \prod_{i=1}^n (x_i - a_i)v(x, t; a) ,$$

$$(3.13) \quad (\text{grad } e^{-itH_0}u_a(x))_j = \text{const.} (1+it)^{-3n/2} [\prod_{i\neq j} (x_i - a_i)v(x, t; a) - (2+2it)^{-1}(x_j - a_j)v(x, t; a)] .$$

A straightforward computation shows that

(3.14)
$$|(\Delta\zeta)e^{-itH_0}u_a(x)| \leq \text{const.} |1+it|^{-3(n-1)/2} (\Delta\zeta)^{\sim}(\tilde{x}) |\tilde{x}-\tilde{a}|^{n-1} \times {}^{9)} \times |1+it|^{-3/2} |x_n-a_n| |v(x_n,t;a_n)|,$$

(3.15)
$$|(\operatorname{grad} \zeta) \cdot (\operatorname{grad} e^{-itH_0} u_a)(x)| \leq$$

 $\leq \operatorname{const.} |1+it|^{-3(n-1)/2} (\operatorname{grad} \zeta)^{-}(\tilde{x})|\tilde{x}-\tilde{a}|^{n-2} \times$
 $\times |1+it|^{-3/2} (1+|1+it|^{-1}|\tilde{x}-\tilde{a}|)(|\tilde{x}-\tilde{a}|+$
 $+ |x_n-a_n|)|v(x_n,t;a_n)|.$

Noting the inequality

(3.16)
$$\int_{-\infty}^{\infty} |1+it|^{-2p} |x_n|^{2m} |v(x_n,t;a_n)|^2 dx_n \leq \text{const.}, \quad m \ge 0,$$

where $p \ge m+1/2$ and the constant is independent of t, we obtain (3.8) and (3.9) in view of the facts that $\operatorname{supp}(\Delta \zeta)^{\sim}$) and $\operatorname{supp}((\operatorname{grad} \zeta)^{\sim})$ are bounded in \mathbb{R}^{n-1} , and that we have the factor $|1+it|^{-3(n-1)/2}$ on the right-hand side of both (3.14) and (3.15). This completes the proof of the existence of W_+ .

It remains to verify the isometry of W_+ . Let $\chi_S(x)$ denote the characteristic function of S, and let CS be the complement of S. Then

⁹⁾ For the definition of the \sim operation see just below (2.4).

Teruo Ikebe

$$(3.17) ||W(t)u||_{L_2(\Omega)}^2 = ||Je^{-itH_0}u||_{L_2(\Omega)}^2 = ||\chi_{\Omega}e^{-itH_0}u||_{L_2}^2(\mathbf{R}^n) = ||u||_{L_2}^2(\mathbf{R}^n) - ||\chi_{C\Omega}e^{-itH_0}u||_{L_2}^2(\mathbf{R}^n) .$$

The last term tends to 0 as $t \rightarrow \infty$ by Lemma 2.1, which proves the desired isometry. Q. E. D.

References

- [1] Ikebe, T., Scattering for the Schrödinger operator in an exterior domain, J. Math. Kyoto Univ. 7 (1967), 93-112.
- [2] Kato, T., Scattering theory with two Hilbert spaces, J. Functional Analysis, 1 (1967), 342-369.
- [3] Lax, P. D. and R. S. Phillips, Scattering theory, Academic Press, New York, 1967.
- [4] Shenk II, N. A., Eigenfunction expansions and scattering theory for the wave equation in an exterior domain, Arch. Ratl. Mech. Anal. 21 (1966), 120-150.
- [5] Wiener, N., The Fourier integral, Cambridge, 1933.

418