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Eigenfunction Expansions Associated with
the Schrodinger Operator with

a Complex Potential and the Scattering Theory*

By

Kiyoshi MocmzuKit

Introduction

The present paper is devoted to a detailed description of the

results summarized in the author's preceding note [1]. The purpose

°f [1] was a generalization to the non-selfadjoint case of the eigen-
function expansion and the scattering theory developed by Povzner
[2, 3], Faddeev [4], and Ikebe [5, 6] for the selfadjoint Schrodinger

operator in the 3-dimensional Euclidean space E3.
We shall study the operator L obtained by closure in L2(E3)

of the differential operator defined by

(0.1) -A/+?(*)/ for /GEC0~(£3),

where x = (x19 x29 x3)(=E3, and A denotes the Laplace operator.
Everywhere, unless specifically stated otherwise, the potential q(x)

is assumed to be a complex valued function satisfying the condition

(A) (1 + | x | )cl ̂ q(x] e L2(£3) § > 0 .

Some results concerning the spectrum of the operator L can be
obtained as a consequence of more general theorems concerning the

index theory for closed operators investigated by Gohberg-Krein [7],
Schechter [8], and others. In particular, we can show that the
essential spectrum of L fills the half-axis [0, oo) (Theorem 1.1).
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The distorted plane waves q>±(x, k) = exp {ik-x} + v±(x, k) and the

adjoint waves <p%(x, &) = exp {ik-x} + v%(x, k) for the operator L are

bounded, continuous functions of x^E3 for each fixed k^E3 (&^0)

satisfying the Schrodinger equations

(0. 2) -Aq> + q(x)(p = ^(p
in £3

(0. 2)* - A<p* + q(x)q>* = n<p*

with IL= \k\2. The scattered waves v±(x, K) and v%(x, k) both behave

like Q(\x\~*) at infinity, where the subscripts " + " and " — " denote

the incoming and outgoing waves, respectively.

So far as a real potential is concerned, g>±(x, k) = cp%(xy k) can

be found for each p,= |&|2>0 as unique solutions of the Lippmann-

Schwinger equation

(0.3) *>±fo*)

under a condition13 similar to (A) on q(x) (see Ikebe [5], Eidus

This mainly follows from the fact that the solution of (0. 2) for

^>0 is unique (<p=0) if it is assumed to satisfy the (incoming or

outgoing) Sommerf eld radiation condition at infinity :

(0.4) ^ = 0(|^|-1); l imf
P->OO J\x \=p Q\x\

As for a complex potential, however, this uniqueness theorem

can not always be concluded except for the case of the "small

perturbation" (cf. J. Schwartz [10], Pavlov [11]). Let o-,(L)[«r*(L)]

denote the set of values ^ = 0 and ^>0 for which equation (0.2)

[(0. 2)*] has non- trivial solutions satisfying the (incoming or outgoing)

Sommerfeld radiation condition at infinity. We shall show that

(rs(L) = a-f(L), and is compact in [0, °o) (Theorem 2. 1), and then that

the distorted plane waves q>^_(x, k) and the adjoint waves <p%(x, k)

are uniquely determined for each \k\2^o-s(L) (Theorem 4.1).

We denote by T the set of (possibly infinte) subintervals e = (a, /3)

1) In [5J, q(x) is assumed to be in Lfoc(£3) and to behave like 0( x \ - 2 ~ * ) (£>0) at
infinity. Our assumption (A) is essentially the same.
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of [0, oo ) whose closure does not contain any point of o-s(L). In § 5,

we shall derive that the weak limit

(0. 5) E(e) = w-lim -*- ( {R(\ + fc) -R(\- i€)} d\
*-*^2ni Je

with jR(f) = (L — ̂ I}'1 exists for any e^Y. Although E(e) are not

uniformly bounded in the class F, (0. 5) will define the so-called

"spectral projection" permutable with L for each fixed 0eF. Now
the expansion formula of an arbitrary function f(x)^L2(E3) can be

obtained in the following sense : Let Z±(e) and WJ^e) be defined by

(0. 6) [_Z^(e)g-](k) = (2*)-** \
J

(0.7)

where Ke={k^E3; \k\2^e}. Then Z±(e) can be extended to a con-
tinuous mapping of L2(E3) onto L2(Ke), while W±(e) can be extended

to a continuous mapping of L2(Ke} onto E(e)L2(E3), and we have

(0. 8) E(e) = W±(e)Z±(e) ;

(0.9) E,(e) = Z±(e)W=(e) ,

where EQ(e) = E0^— E0jC6 with JE0>X denoting the resolution of the

identity of the selfad joint operator L0 determined by the expression
— A (Theorem 5.1).

These relations with 0=(0, oo) are already proved by Ikebe [5]

(cf. also Povzner [3]) when q(x) is a real potential. In [5], (0. 9)
was established with the aid of the time- dependent scattering theory.
In our case, however, we can not prove this along Ikebe's line because

the operators Z±(e) and W±(e) in L2(E3) are not in general related to
the timedependent theory. So the proof will be done by use of a

different method (cf. the author [12]).
In §6, we shall discuss the time -dependent scattering theory

restricting L and L0 to the invariant subspaces E(e)L2(E3) and

EQ(e)L2(E3}> respectively. E(e)L2(E3} forms a Banach space with respect
to the L2-norm, and its dual space is given by E(e)*L2(E3), where
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E(e)* is the adjoint operator of E(e). It can be shown that the
operator —%L acting in E(e)L2(E3) is the infinitesimal generator of a

group exp{ — itL}=W=(e)exp{ — itL0}Z±(e) (-oo< / < + oo) of type

zero, and that W±(e) coinside with the wave operators in the time-
dependent formulation (Theorem 6.1). Then the scattering operators
S(e) is given by (Theorem 6. 2)

(0.10) S(e) = Z+(e}W_(e).

The discussion presented in § 6 will be closely related to Kato

[13].

Finally, in §7, we shall restrict ourselves to the case where
q(x) satisfies the condition

(A,) (1+|*| )^*q(x) eEL2(£3), S >0 .

Under this assumption on q(x), the distorted plane waves <p^(x, k)

have the following asymptotic expansions for large \x :

(0.11) ^(*>fe) 1*1 "
where « = */1* , i/ = &/ & , and 0±(n, v; | & [ ) is the so-called scattering
amplitude. We can show that the scattering operator S(e) is repre-

sented in the Fourier space as (Theorem 7.1)

(0.12) [S(e)fY(\k\v)

and then that the potential q(x) is uniquely determined by the
asymptotic behavior for large \k of a given 0 _ ( n , v , \ k [ ) (Theorem

7. 2). This establishes the uniqueness of the solution for the scat-
tering inverse problem. For a given potential, we can obtain, by

(0.12), the scattering matrix Slk] attached to a fixed value \k 2 of

the kinetic energy that is not in the compact set o-5(L). In this
sense, the results obtained in this paper are of a local character.

However, it may be of interest that we can determine the potential
q(x) from the scattering amplitude 0_(«, v, \ k \ ) given only for large

1 * 1 -
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A different method of obtaining the scattering operator in the
above form has been developed by Ikebe [6] for the real potential

case. The chief concern of [6], however, is not in the investigation
of the inverse problem but in the determination of the phase shift.

On the other hand, the inverse problem has been studied by Faddeev
[4], though relation (0.12) is not proved there, when q(x) (real) is
additionally assumed to be a smooth function.

In conclusion, the author wishes to thank Professor T. Ikebe
for his kind advices and discussions.

I. Properties of the Resolvent

§1. Essential spectrum and the resolvent kernel.

We shall consider the Schrodinger operator — A + #(#) with the
complex valued potential function q(x) defined on E39 where x denotes
a point in E3 with its length \x . In this § we are enough to
assume that q(x) is square integrable (q(x)^.L2(E^)).

Let LQ be the self ad joint operator in the Hilbert space £> = L2(
defined by the differential expression —A with the domain

•®i2CE3)-
3) I* is we^ known that L0 has purely the continuous spectrum

[0,oo). The resolvent R0(& - (L0-^I)-\ f $ [0, oo) is an integral
operator with the kernel exp {i\/~^~\x—y\} l^n\x—y , where by \/ £~

is meant the branch of the square root of f with Im %/"£"> 0.° Let
V denote the operator of multiplication by q(x). As is known ([14]),

3)(V)~33)(L^ under the assumption q(x)^U(E^. The adjoint operator
y* is also the multiplicative operator and is given by the complex

conjugate q(x) of q(x).

Lemma 1.1. Let q(x) be in L2(E3). Then the integral operator

2) We denote the inner product and the norm in & by

and H / IN

3) £>2
L2(E3) is the completion of C™(E3) with respect to the norm ||/|| + ||A/|[, where

C^CE'a) consists of all functions which are infinitely differentiable and have compact
supports.

4) For a complex number K, Im K and Re K respectively mean the imaginary and real
parts of re.
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VRQQ;), £<£[0, oo ) is of Hilbert -Schmidt type. Moreover, its operator

norm satisfies the inequality

(1. 1) \\VRQm < const (Im vT)~1/2 .

Proof. We have

JE3J
dxdy

Since the norm of an integral operator does not exceed its Hilbert-

Schmidt norm, we conclude the assertions of the lemma. Q.E.D.

Now we define the Schrddinger operator L by

(1.2) L = L0+y, 5)(L) = ^i<E3).

Then we see that L is a closed operator in £> since the relation

(1.3) L - ?/ = L0 - f 7+ V = {/+ VRQ&} (LQ - £7)

is valid for any ^[0, oo). Moreover, we have the

Lemma 1. 20 (1) L is the closure of the differential operator

— A + q(x) defined initially over functions in C0°°(jE3).

(2) The adjoint operator L* of L is given by

(1. 4) L* = L0+ F* , ^)(L*) = $

Proof. (1) Let /(*)e^(L). Then, since
there exists for any fixed £>0 an /v(^)eC0°°(£3) such that

On the other hand, we have for any

by (1. 1). These inequalities imply that -2)i2(jE3) is the closure of

C0°°(E^) in the sense of the graph norm of — A + q(x).

(2) By virtue of (1. 1), there exists a complex value ££[0, oo)
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such that || P7?0(£)||<1. For an arbitrary fixed such value £, (L-f/)"1

exists and admits the Neumann series expansion

(1. 5) (L-r/r1 = RJ£) 2 [-
n—o

On the other hand, since

we have similarly

Comparing this with (1.5), we find the relation (L — £7)~1* =

(L0+ V*-?/)"1, which implies (1. 4). Q. E. D.

Following the definition given by Schechter [8], we define the

essential spectrum of a closed operator as the complement in the

complex plane of its Fredholm set. Here the Fredholm set of a

closed operator T in a Hilbert space £> is composed of the values

f for which T— £/ has the finite dimensional null space and closed

range with the finite dimensional ortho-complement in £>. Then the

following theorem is a direct consequence of Theorem 3. 1 of

Gohberg-Krein [7] and Lemma 1. 1 given above.

Theorem 1.1. The essential spectrum of L fills the half -axis

[0, oo ), while the spectrum in the complement of [0, oo) consists of

discrete eigenvalues of finite multiplicity. A value £$[0, oo) is an

eigenvalue of L if and only if £ is an eigenvalue of L*.

Remark 1.1. In the case where q(x)^L2(E3) is assumed to be

continuous for large \x\ and behave like ^ ( l^ l " 1 ) at infinity, we can

say more : The residual spectrum of L is empty, i.e. (0, oo) consists

of the continuous spectrum, and £ = 0 is either an eigenvalue or in

the continuous spectrum.

Proof. By a result of Kato [15], we see that both L and L*

have no positive eigenvalues under the above conditions on q(x}.

Since a value in the residual spectrum of L is an eigenvalue of

L*, all positive numbers must be in the continuous spectrum of
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L. Moreover, since f = 0 becomes an eigenvalue of L if and only if
it is an eigenvalue of L*, the rest of the assertion of the remark can
be concluded by the same reasoning. Q. E. D.

The above theorem shows that the resolvent R(£) = (L — f/)'1

can be defined for all £$[0, oo) outside the discrete eigenvalues of
L. From (1. 2) we have the following resolvent equation:

(1. 6) R(£) = #„(£) - #0(?) VK(?) = 3,(f) - R® VR&) .

As we proved in Lemma 1.1, VRQ(£) is an integral operator of
Hilbert-Schmidt type. J?(f) being a bounded operator, R^VRJ®
is also of Hilbert-Schmidt type. Since i?0(f) is known to be an
integral operator of Carleman type, it follows from the third member
of (1.6) that R(£) is of the same type, too. Let us denote by

R(x, y; x/lT) the kernel °f R(£)- Then we have from (i-6)

0.7)

j£?3

for a.e.5) j with a.e. fixed #.
We put J?*(f) = (L*-?/)"1. Then we have, corresponding to

(1. 6) and (1. 7),

a.8) £*(r) = Ra(£)-
(1 9) R*(x v x/F)u.yj AT ( * , > , x / ? ;

j£3 " • ' *7t\z-y\

where R*(x, y\ v/T) is the kernel of #*(£). Since

(i. io) je*(?) = /?(?)*,
it follows that

(1.11) R*(x, y> \/Y) = R(y, *; VT") for a-e- (^^ ̂ ) in E*xE*-

5) "a.e." means "almost every" or "almost everywhere".
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With this identity, we can follow the same line of proof as

Ikebe ([5] ; Theorem 1) to show the following theorem :

Theorem 1.2. (1) R(£) is an integral operator of Carleman

type, and its kernel R(x, y; \/~f~) satisfies the integral equation

r
-

exp

for a.e. (x,y) in E3xE3. Moreover, R(x,y, v/lT) ^s symmetric in x

and y :

(1. 13) R(x, y ; x/T) = R(y> x ; V"H , a.e.

(2) jR(jc, j ; x/lf) 25 absolutely integrable in y for a.e. fixed

(2) fl*(?) Aa5 fAg 5^m^ properties : R*(x, y ; \/y) satisfies (1. 12)

^/^A ^(^) replaced by q(x}, is symmetric in x and y, and is absolutely

integrable in y.

§ 2. Factorization of the potential.

In the following q(x) is assumed to be a complex valued
function satisfying condition (A) :

(A) (1+|*| Y^2q(x} eL2(£3) , S > 0 .

Under this condition, q(x)^L3/2(E3) nL%E3) since we have

(2.1)

We put q(x) = b(x)a(x}> where a(x) is chosen as one of the fol-
lowing two functions :

(2.2) «,(*) = k(*)l'/2, or a2(x) = (l+\x\r+^2q(x).

Let A, B respectively denote the operators of multiplication by

a(x\ b(x). It should be noted that if a(x} = a2(x), then a(x)
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and b(x) = b2(x) = (l + |jic!)"cl+SV2 is a bounded function. Hence, in this

case, 3)(A)ii3)(L0) and 3)(B) = §. On the other hand, if a(x) = al(x),

then b(x) = bl(x) = [q(x}/\q(x)\~]a(x), and in this case 3)(A) =

For we have for each

q(x}\-\f(x}\2dx<\\ |^)|3/2^
LJE3

taking into account that 5)(L0) = 3)l*(E£ cL°°CE3). Thus, for any

choice of a(x), we conclude

(2.3) ^(A)n5)(B)z>^(L0).

Moreover, we see easily

(2.4) ^)=)5j2)(L0), and 3)(B)^A4)(L0)

for each choice of #(#). Hence F is a product V=BA=AB&^ on

Now applying A to (1. 6) from the left, we have

(2. 5)

Lemma 2. 1. For <z value % in the resolvent set of L, if there exists

a bounded operator T(f) satisfying the equation

(2. 6)

Jfera T(?)§ i"5 contained in 3)(B), and

Proof. It is evident from (2. 4) and (2. 6) that the range of

is contained in <2)(fi). Put T=T(?)-AR(?). Then for any /e=$,

Tf^3)(B) and Tf=-ARQ(QBTf. Putting g=R0(£)BTf, we have

g=—l?o(f)'^& i-e-> (^~"?^)fi"=0- Since £ is in the resolvent set of
L, it follows that g=Q, and hence Tf=—Ag = 0 for each /e&.

This implies T= T(f ) - AI2(f ) - 0. Q. E. D.

Let us consider the integral operator QO(K) with the kernel

6) The factorization of V as given above will be essentially required in § 5 to prove
lemmas 5.1 ~5 which play an important role in the following all discussions. A
general theory of perturbation by a product operator has been developed by J.
Schwartz [10], Kato [13] and Kuroda [16], [17].
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(2.7) Q.(*, ;?;«) = *<
— y

Lemma 2. 2.7) (1) For each fixed K in Im/c>0, Q0(/c) is an integral

operator of Hilbert-Schmidt type.

(2) QO(K) is a bounded, and uniformly continuous function of K in

Im*;>0 in the sense of the operator norm.

Proof. If a (x) = | q (x) \ 1/2, then we have, using the Sobolev
inequality,85

• -y\ \x-y\
< const \ | q(x) \3/2 dx \ < + <

If a(x) = (I+\x\)<*+ni*q(x), then we have

u,
up \ \x—
* JE3

xsup
* Js3

These inequalities show that the kernel Q0(x, y\ 0) = a(x) x
(kn\x-y\Ylb(y) is of Hilbert-Schmidt type for each choice of a(x).

Then assertion (1) is obvious since | QQ(x, y; K) \ < \ Q0(x, y,Q)\ for
each K in Im/c>0. Moreover, we see that ||Q0(^)|| is bounded by

I!Q0(0)I|. Next, given any £>0, we choose an R=R(s)>0 such that

JE3J\y\>R/

Then, by use of the inequality

|exp {iie\x-y\}-exp {M\x-y\} \ < \ic-iS\- \x-y\,

we have for a fixed such R

x\<Rj\y\<R

a(x)\*dx\ \b(y)\2dy<
J\y\<RlxKR J\y\<R

7) Similar results are already given in [13J and [17].
8) See Mizohata [18] ; Lemma 7.1.
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since a(x) and b(x) are both locally square integrable. Taking K

and K! so near to each other that the right member is bounded by

£/2, we have finally ||Q0M —CoOOII2<£- This proves the uniform
continuity of QQ(K) in Im/e>0. Q. E. D.

From (1) of the above lemma, we can apply the Fredholm theory

to see that 7+Q0(/c) has a bounded inverse if and only if the

homogeneous equation

(2.8) {/+Qo(«)}^ = 0, ^e£>

has no non-trivial solution ^(4:0). We call a value K (Im^>0) a

singular point of (?„(•) f°r which equation (2.8) has non-trivial

solutions, and denote by 2 the set of all singular points.

We can now state the following results which will be required

below.

Theorem 2.1. (1) 2 forms in Im /c>0 a compact set.

(2) 2 is independent of the choice of a(x): /c=t=0 belongs to 2 if

and only if there exists a non-trivial solution <pK(x) of the equation

(2. 9) %(*) - - k^P*J* f\} q(y)<pK(y)dy ,

^/M'C/Z /5 bounded and satisfies the Sommerfeld radiation condition at

infinity:

(2.10) cpjtx) = 0( 1 x I -1), lim f 9<P«(*)..
P->~ J|,!=p 9 #

Hence, when Im #>0, K belongs to 2 (/" ««rf 0w/y if fju = K2 is a discrete

eigenvalue of L. However, fjL = /c2 with real /e(=2 «5 «of necessarily an

eigenvalue of L (cf. Remark 1.1). We denote by o-s(L) the set of such

values fL. Then this also forms a compact set in [0, oo).9)

(3) {!+QO(K)}~I depends continuously on K except for /ce2, and

is bounded in the complement in Im/e>0 of a neighborhood of 2 in

the sense of operator norm,

(4) For any % in the resolvent set of L, {/+Q0(VT)}~1AR0(f)

has the range contained in 3)(B)y and hence R(£) is represented as

9) In [11], Pavlov investigated the structure of as(L).
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(2. 11)

(5) The set 2* corresponding to the starred operator Q*(K) with
the kernel

is composed of values — K with «e2, and R*(<Z} is represented as

(2. is) j?*(f) = RQ(z)
where A* and £* are the multiplicative operators given by a(x) and
b(x)9 respectively. If we denote by o-*(L) the set of values IL = H? with

real /^2*, then we have

(2. 14) o-*(L) = cr,(L) .

Remark 2. 1. If q(x) is assumed to satisfy in addition to (A)
the following "smallness" condition

(2.15) f ( \q(xY(te\x-y\Y*\q(y)\dxdy<\,
JE3JE3

then 7+00(/c) is invertible in £> for any K in Im * >0, i.e., 2 is empty.

Remark 2.2. If q(x) is assumed to satisfy a stronger condition :

(2.16) q(x}^Llc(E^ q(x} = 0(exp {-S|*|}), S>0, as l^ l -oo ,

then QQ(K) can be continued analytically into the "non-physical sheet"
I m / c > — 8/2, preserving the complete continuity (cf. Ladyzenskaja
[19] or Kiyama [20]). Therefore we see that no limit point of 2
exists in Im/c>Q, i.e., 2 forms a finite set. Consequently, in this
case the total multiplicity of the root subspace corresponding to the
discrete eigenvalues of L is finite.

Remark 2. 3. Let q(x) satisfy in addition to (A) the following
" dissipativity " condition:

(2.17) ?2(*)^Im [<?(*)] <0,

and let 4i(x) = Re[_q(x)~] satisfy the "smallness" condition (2.15).
Then 2 lies in {K ; Re^<0 and Im *>(
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Proof. We denote by Fx and A the multiplicative operators
given by q^x) and a(x) = (— q2(x)}l/2, respectively, i.e., V=V1 — iA2.

Let K = iJL + ir be in 2. Then (2.9) has a non-trivial solution satis-
fying (2.10). First assume r>0. Then (2.9) can be written as

<pK(x) + lR0(/c
2) F<?K] (x) = 0 (<pK e §). Multiplying by q(x)<pK(x) both sides

and integrating over E3, we get

This implies that the imaginary part of the left side also equals

zero :

Here £0 >x is the resolution of the identity of the selfadjoint
operator L0. This equality shows that a(x)(pK(x) = Q if A&>0. Hence
(pK+R0(fc

2)V1^K=Q if fj,>0 and r>0. However, since L1=LQ-\-V1 is

selfadjoint, this implies that cpK(x) = Q. Next, if r = 0, i.e., K = IL, then

non-trivial solutions of (2. 9) are no longer in £>. However, we see
from (2. 10) that a(x)<p*(x) is in £>. Hence we can follow a way

similar to that given above to get

\ f i \

which also implies a(jr)^K(jt:) = 0 if /z>0. On the other hand, by
Remark 2. 1, we see that the operator function Q0(x) corresponding
to L1 = L0-\-V1 has no singular point. Hence we get <pK(x) = Q, and

the proof of Remark 2. 3 is completed. Q. E. D.

§3. Proof of Theorem 2.1.

Lemma 3.1. Suppose that 0<a<3, a + /3>3, and /S=t=3. Then

we have

(3.1)
E3

7 = min (a, a + /3 — 3) .

Proof. It is evident that the integral is bounded in x^E3. So
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we have only to show (3.1) in the case where \x\>l. If
putting y/\x\=z9 we have

\x-y\-(l+\y\)-'dy =
E3 JE3 \X\

z\-*dz

If /3>3, taking account of the inequality

(3.2) \x-y\

we get

( Ix-yl-
J E

< const (1+ |*|)-*( {\x-y -(1+ \
JE3

< const (1 + 1*1)"*.

These prove inequality (3. 1). Q. E. D.

If we denote by Q$"(x,y,ie) the kernel of QQ(K)* (« = 1, 2, — ),
then it is represented as follows :

(3. 3) G<»>(*, y ; K ) = a(x)PF(Xj y ; K)b(y) ,

where P$\x, y ; K) = (^TC \x— j/D'^xp {ix x — y \ } , and

(3. 4) /><«>(* ,
4:7f\X — Z\

Lemma 3. 2. L^ Sx 6^ an arbitrary constant such that 0 < S'

<min(l, S). Then we have

(3 5) I W*'^'*)! <const!|^|!1+8{(l+ ^D^ + a + ̂ D-^^l^-^r1^},
^^^

^fe "const" /5 independent of K and

(3.6) lk iUa

Proof. Since P^(x, y ; /c) is symmetric in x and y, we have

only to show the first inequality. Without loss of generality, we can
assume 8<1. By use of the Schwarz inequality, it follows that
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OE\x

We use (3. 2) to obtain

z-y

< const (1+ |^|)-1-8{|jc-«|-2+ \x-z\~1+8(l + I*!)-1-8} \z-y\-2

^consta+l*!)-1-8!*-*!-2 z-y\~2

-f const (1+ |*|)-2{|*-*|-1+8(1 + |z|)-28 + (l + I*!)-1-8} \z-y\ ~2

It is not difficult to see that \ \x — z\ ~ 2 \ z — y \ ~2dz < const x—y\~l.
J^s

On the other hand, since S<1, we have

Summarizing these inequalities, we finally get the inequality

(3.7)

< const (1+ |* I)"1"8 x-y ~l + const (1+ x\)"2 ,

which proves the first inequality of (3. 5). Q. E. D.

Using estimates (3. 5), we can prove the following two lemmas.

Lemma 3. 3. For any /(#)e§ we have

(3.8) |[Oo(«)4/](*) I <const |fl(*)|(l+ | ^ l ) - ? l i / i l ,

where 7 = 1/2 when a(x) = al(x}, and 0<7<min(l /2, d/2) when

a(x) = a2(x). Hence Q0(«;)4/e.2)(fi). Moreover, if a positive integer n

is taken sufficiently large, then we have

(3.9) |[QoWy]Wl^const|^)|(H-|^mi/||

for any choice of a(x). The "const" in the above inequalities is

independent of K.

Proof. P™(x, y ; K) being estimated by (3. 5), we can make use

of the Fubini theorem to represent (3.4) for n = 4= as follows:

, z ; *q2)Pz, y ; *)
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Let us estimate this integral with respect to x. By virtue of (3. 5),
we have

+ const ( l-f |^ |)-C H 8 /^ \x-z -1/2 q ( z ) \ { ( l + \ z \

By use of the Schwarz inequality, we see that the first integral in the
right member is bounded in y. The second integral is estimated as

J£3

<const(l+U!)-1/2,
/y- y ~ 1/2 1 sj(y\ I /"I I I ^ I \ — (1 + S0/2 fy *, I — 1/2 /-/«•* ^ I ( i rv^/1V-*- I I ̂  I / ^ — y \ (*%

]1/4T /• ~|
I I \ 9 11 i -2^1 i_ I 9 I N~ 1 -S /x/~\ I z—y I (±+ \ z I; «z
LJs3 J

<const (1+ | x \ Y l / 2 ,

with the aid of Lemma 3.1. Thus we get

\P<?(x,y ; *OI <const (1+ I^D'^const (1+ lJc | )~ c 2 " s / ) / 2

<const (1+ l ^ l ) " 1 .

This inequality is also valid with (1+ l ^ l ) " 1 replaced by (1+ Ijl)"1 .
So we have

\P<?(x,y,K) <const(l+ ^ I ) " Y (1+ |^ | )~ l r 7

for an arbitrary constant 7 such that 0<7<1. If we choose 7 as
given in the lemma, then both a(x)(l+ \x\Yy and &(#)(!+ \x\Yl^y

are in L2(E3) for each choice of a(x). Hence we have from (3. 3)

<const a(x) (l+\x\

<constkW ( 1 + \ x \ Y y \ \ f \ \ .

This proves the first half of the lemma. Inequality (3. 9) is proved
by iteration with the aid of the Schwarz inequality and Lemma 3.1.

Q. E. D.
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Lemma 3. 4. QQ(K)Z vanishes as \K\ -»oo, i.e., given any £>0 there

exists a constant #0(£)>0 such that

(3.10) !lQ0(*)2i:<£, if *\ >«,(£).

Proof. We choose qQ (x) e CQ (E3) , and put q(x) = q (x) — q0 (x) .

Obviously §(#) satisfies condition (A). Since C^(E^ is dense in £>,

we can choose qQ(x)^C%(E2) such that ||§||1+s becomes as small as

we wish. We write

W*, y ; *) = P^U, y ; «) +Pi)(^, j ; «)

It is known by a Lemma of Faddeev [4] that103

where the "const" depends only on the choice of q0(x). Using this

we have

(3.11) ( ( a ( x ) P f i ( x , y ' , K ) b ( y ) \ 2 d x d y < ( l + \ K \ Y 2 .
JEBJE3

On the other hand, choosing y (y<l/2) as given in Lemma 3.3,

we have

= I a(x) 1 2 1 P f t ( x , yi^^l Pft(x, y\K)\ *-» \ b(y)

^^

by (3. 5). Taking into account that a(x)(l + | x | )"Y, b(x)(l + \ x | )'1+>y

L2(EB) and \a(x) \-\x-y -1\b(y)\^L2(E3xE3)J we then have

(3.12)

with the "const" independent of K. (3.11) and (3.12) imply ine-

quality (3. 10).

10) See also Ladyzenskaja [19].
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We can now prove Theorem 2. 1. Q. E. D.

Proof of Theorem 2. 1. (1) By virtue of (3. 10), the bounded
inverse of /+Q0(/c) can be constructed as

(3. 13) {I+QM} -1 = {I-QM} {I+QM2} -1 = {/-Q0(«)} S Q&r

for each |«|>/c0(l). Hence 2 forms a bounded set contained in the
disk (ic ; | K | < K 0(1)} . The closedness of 2 follows from the fact that
QQ(K) is a completely continuous operator which depends continuously
on K (cf. Povzner [2] ; II, Theorem 4).

(2) Put tyK(x) = a(x)g>K(x) for any non-trivial bounded solution
<pK(x) of equation (2. 9) satisfying (2. 10). Then i^fr) 3= 0, and e£> by
(2. 10). Multiplying both sides of (2. 9) by a(x), we get ^JrK= -Q0(«0^e?

which shows /e<=2.
Conversely, let ^=f=0 be in 2, and i/rK(#)e£> be a non-trivial

solution of equation (2.8). Then, since

we have from Lemma 3. 3

(3.14) |^(*

Put

(3.15) ^W

Then we have ^ll(x) = a(x)q)ll(x)9 and hence q>K(x)^Q. With the aid
of Lemma 3. 1, it follows from (3. 14) and (3. 15) that

<const(l+

i.e., q>K(x) is bounded and behaves like 0( x ~l) at infinity. To
proceed with the proof, we use the following lemma due to £Tidus
([9] ; Lemma 4).

Lemma 3. 5. Let f(x) be a function such that

(3.16) (1+ x\
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Then the function g(x)={ exp ^ x~y^f(y)dy satisfies the ine-
JEZ 47f\x—y\

quality

(3.17) (
Ji.

'dS<constp-\ where <y = min(l,25/(2 + 8)).
d x\

Now we have from (3.14)

(1+ K\Y3+^/2b(x)^K(x) <const(l+\x\Y1^/2\q(x) eL2(£3).

Hence, from (3.15) and the above lemma, <pK(x) is shown to satisfy
the radiation condition (2.10). Substituting ^li(x) = a(x}<pli(x) in (3.15),

we conclude that <pK(x) is a non-trivial solution of (2. 9), (2.10).
Finally, in the case Im/c>0, every bounded solution of (2.9)

belongs to *D(L0), and hence we can rewrite (2.9) as (pK = Ro(^2)V(pK.

This implies that x2 is an eigenvalue of L if and only if (29) has

a non-trivial bounded solution. Consequently #^2 (Im #>0) if and

only if /c2 is an eigenvalue of L.
(3) Since QO(K) depends continuously on /c, and 2 is closed, given

any /c<£2 and 0<£<1, there exists a constant S = S(/c, £)>0 such that

For each such K'', {/M-GoOO}'1 exists and admits the Neumann series
expansion:

-1 g C (QM -

Thus we have

-% if

This implies that {/+<?„(*)} -1 is a continuous function of K except
for /ce2. The boundedness of {I+QM}'1 in the complement in
Im/c>0 of a neighborhood of 2 follows from (3. 13) and the continuity

of {7+QoW}"1.
(4) Let f = /c2 (Ln/c>0) be in the resolvent set of L, and put

(3.18) T(«)

Then we have



Ei gen function expansions 439

It is proved in Lemma 3. 3 that the range of Q0(/c)4 is included in

9)(B). On the other hand, since also ARQ(£)$c:£)(B) by (2.4), we

have

Thus we see that T(f) has the range included in 3)(B), and then

gives a solution of equation (2. 6). Consequently we have from

Lemma 2. 1 T(?) = AR(f). Substituting (3. 18) in the second member

of (2. 5), we have finally (2. 11).

(5) We have only to prove the assertion that /ceS if and only if

, which is obvious since we have for any

Q. E. D.

II. Eigenfunetion Expansions

§ 4. Distorted plane waves.

Let us consider the conjugate Fourier transform r(x, k ; K) of the

resolvent kernel R(x, y, K) with defining equation

R(x, y ; K) exp {i

for each x and Imic>0 («$2), noting that J?(jc, «; ic)^L\E^ nL2(E3)

(see Theorem 1. 2). Since

( f exp > {fa|*-jM} exp {afe }rf = exp
J^3 47T ̂ — *

V*' *-7 \ A I ^"<\f I*"" _TJ "V

J^3 47r ^—j | | f e | —/«

and exp { i K \ x — y \ } \x—y\~lq(y)^L\E^ as function of y, we get from

(1.12)

11) &•# denotes the scalar product of k and x.
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(4.3) r ( x 9 k i K ) = (2*9 \k\2-K2

x q(y)r(y, k ; x)

where we have used the Fubini theorem to interchange the inte-
gration order in the last integral.

Now we fix the factorization q(x) = b(x)a(x) by choosing a(x) =

a2(x) = (l+\x\Y^/2q(x)^L\E^ Then it follows from Lemma 1.1

that AR(t) = {I+QM}-*ARQ(£), £ = K\ is an integral operator of
Hilbert-Schmidt type. So the Parseval equality shows that
a2(x)r(x, k; x)^L2(E3xE3} for each Im/c>0 0$2). Putting

(4. 4) +(x, k;*c) = (27r)3/2( | k \2-K2)a2(x)r(x, k\ «) ,

we have ^(-, k\ ^)eL2(jE3), and from (4.3)

(4. 5) ^(-, * ; *) = ^0(-, *)-Go(^(-, * ; *) ;
i/r0(jt:, k) = a2(x) exp {^-JK:} .

As discussed in §2, this equation has a unique solution in § for
each k and Im/c>0 (#$Z). Thus we can extend the definition of
-\l?(x, k ; K) to the case where Im/c = 0 (/c$2) by the solution of (4. 5).

Lemma 4. 1. ^(- , k ; K) is an ^-valued bounded, continuous func-
tion of k^E3 and /^ep2 j where p? is the complement in Im/c>Q of

a neighborhood of 2.

Proof* Since we have |!^0(Q> & ) ! l < l l < z 2 i ! and

\az(xy\2dx+\k-k'\2\ \a2(x)\*\x\2dx ,
Ji*Kie

it follows that i /r0(- ,&) is an &- valued bounded and uniformly
continuous function of k. Hence the lemma is proved by (3) of
Theorem 2.1. Q. E. D.

We put

(4. 6) q>(x, k ; K) = exp {ik-x} Jrv(xJ k ; K) ;

(4.7) v(x,k ;*) =

Then we have the
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Lemma 4. 2. (1) v(x, k ; K) is bounded, continuous in x<^E3,

and K^p-z, where ps is as given in Lemma 4. 1. Moreover, we have

(4.8) \v(x, &;*)|<const(l+ x\)~8//\ 0<S'<min (2, S) ,

where the "const" depends only on the choice of p^.

(2) cp(x, k\ K) is a unique bounded solution of the integral equation

exp(4.9) 9>(*,*;«)

Proof. (1) Noting &2(*) = (1-H # | ) - c l f S ) / 2 , we have

*(*,*;*) I r^)-1^!*^^

Hence we get (4.8) by Lemma 3.1. By Lemma 4.1 and the inequality

f I exp {IK \x-yl} -exp { tV | *•-.? | } 1 2
 6 (^ 1 2rf

J ^ s - 2

lyKR Jly\>R

we see that v(x, k\ K) is uniformly continuous in k, /c. The conti-

nuity in x follows from the inequality

w x-y\}_exp{iie\x'-y\}
\x—y\

<\*\*\x-xf\*
JE3
\ x~y\-2(l
JE3

x-y\~2 x'-y\-2(l+\y\)-1-*dy
JE3

in virtue of (3. 7).

(2) Multiplying (4. 6) by a2(x), we see from (4. 5) that

a2(x)<p(x, k ; K) = ^r(x9 k ; K). Substituting this in (4.7), we find that

<p(x, k\ K) is a solution of (4. 9). Conversely, let <p be a bounded

solution of (4.9). Then, since fy = a2(x)$ satisfies (4.5), and the

solution of (4.5) is unique if ^$S, we find that ^ = ̂ ry and hence

that & = <p. Q. E. D.

Now from (4. 3), (4. 4) and (4. 6) it follows that

(4. 10) r(x, k ; i c ) = (27r)-3/2(|&|2-/.2)-V(^ k ; K ) , if
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Similarly, we can construct the function <p*(x, k ; /c) = exp {ik-x} +

v*(x,km,K), Im/c>0 ( — /c$2; cf. (5) of Theorem 2.1) as a unique

bounded solution of (4. 9) with q(x) replaced by q(x). Then we have

also the following representation of r*(x> k ; K) :

(4. 11) r*(x, * ; A:) = (27r)-3/2( | k 1 2-*T V(*, * ; «) ,

if Im

where r*(jtr, & ; x) is the conjugate Fourier transform of R*(x, y ; K) :

(4. 12) r*U, * ; «) = (27r)-3/2 ( J?*(^, j ; *) exp
JE3

Finally we put

(4.13) <p±(x,k)

(4. 14) <p*(x, k) = exp {ik-x} +v*(x, k) = <p*(x, k ;

Then we arrive at the following

Theorem 4. 1.12) cp^x.k) and <p_(x, k) are the so-called distorted

plane waves y having the forms (plane wave) + (incoming wave) and

(plane wave) + (outgoing wave), respectively, and satisfying the
Lippmann-Schwinger equation

(4.15) <p±(*,&) = exp {*£•*}

is, satisfying the Schrodinger

(4.16) -&<p± + q(x}<P± = \k\2<P±

in the distribution sense. <p^(x, k) and <p*(x, k} are the corresponding

adjoint waves satisfying (4. 15) and (4. 16) with q(x) replaced by q(x).

Remark 4. 1. It should be noted that under our assumption (A)

on q(x\ the incoming or outgoing wave

(4. 17) »±(*f k)=- - - ' - b 2 ( y ) ^ ( y , k)dy

does not always satisfy the Sommerf eld radiation condition (2. 10)

12) Cf. Ikebe [5] ; Theorem 3.
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for K= =F \k\. The radiation condition is satisfied if we assume the

stronger condition (A^ :

S>0.

§ 5. Expansion theorem.

Let us consider the bi-linear form Ee(f, g} in § given by

(5. 1) E.(f, g) = lim -L ( ({R(\ + i€)-R(\-i£)}f, g)d\ (f, g
s-> + o £nl J e

for a subinterval £ = (a, /5) of (— °°, °°). We denote by r+ the class
of (possibly infinite) subintervals e=(ay/3) of (— °o, oo) such that

the closure of {%/X + fO ; xee} does not contain any point of 2, and
by r_ the class of e such that the closure of {\/X — *0 ; Xe0} does

not contain any point of 2, where v / x±/0=±v / X if X>0, and
= f N / _ _ X if X<0. Note that if we choose a sufficiently large,
then both (a, oo) and (—00, —a) belong with any of their subinter-
vals to r + nF_ since 2 forms a bounded set in Im/c>0 (see (1) of
Theorem 2. 1). Our first aim in this § is to show that (5. 1) defines
for each 0^r+nr_ a bounded bi-linear form in §.

We begin with proving the following lemma due essentially to
Kato [13].

Lemma 5. 1. Let a(x) = a^x) = q(x) \ l/2. Then we have the follow-
ing inequalities : for /e£>

(5.2) {\\ARQ(\^i£)f\\2^\\ARQ(\-i8)f\\2}d\<CA\\f\\
J —00

(5.3)+ f ||̂ ^(X + /£)/!|2Jx<CAJ!/||2, if e = (a,
J e

(5. 3)_ \ \\AR(\-iG)f\\*d\<CA,e\\f\\
2 , tf e = (a,

J e

where CA and CA}6 are positive constants independent of £>0 suf-
ficiently small. Moreover, there exist the strong limits as £-> + 0 of
ARQ(\±iG)f and AR(\±i£)f respectively in L2 (— oo, oo ; §) and
L2(e ; §), ^er±, /or any f^.^. If we denote the limits by ARQ(\±iQ)f
and AR(\ ± iO)/, then they also satisfy (5. 2) a^rf (5. 3)± with the same
constants.
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Proof. The assertions for AR0(\±i£)f are already proved by
Kato under a more general assumption on q(x) (it is sufficient to
assume q(x)^U/2(E^9 see [13] ; Theorems 5.1, 6.1, and Remark 6. 5).
For AR(\±i6)f, we have in virtue of (2.11)

(5. 4) AR(\ ± ie} = {/+ Q(v\ ±if)} ~1ARQ(\ ±if), Im Vx ±is>0.

For a fixed e = (a,fi)^F±9 there exists a small £0>0 such that the

closure of N* = {K = \ /X±f£; Xe(a, /3), £e(0, £0)} does not intersect

with 2. So, by (3) of Theorem 2.1, {/+Q0(v
/X^£)}"1 is bounded,

continuous in (X, £) e (a, /3) x (0, £0), and converges as £-> + 0 to

{/+QoO\/X±iO)}~1 in the sense of the uniform topology of operators,

where >/X±70= ± VX if X>0, and = iV71"^ if X<0. Thus AR(\±if)/
satisfies (5.3)± with C^. = CA. sup ||{/+00(\/Xdb^)}-1il2, and

Xeco5^),seco,s0)

converges as £^ + 0 to AR(X±iO)/ in U(e; §). Q.E.D.
Using this lemma, we can prove the

Lemma 5.2.13) For each e = (a,/3} in T+nr_ (5.1) defines a

bounded bilinear form in £. Hence, by the Riez theorem, there exists
a bounded operator E(e) satisfying

(5.5) (E(e)f, g) = li

In particular

(5.6) E(e) = 0 if e = (a, £)c(- oo, 0).

Proof. It follows from the resolvent equation (1. 6) that

l?(XH-if)-J2(X-if)
- R0(\ + if) - #0(X - if) - i?0(X + if) VR(\ + if) + RQ(\ - is} VR(\ - if).

Substituting this in (5.1) and noting the relation

(5.1} lim -M ({#0(X + if) - ^0(X - if)} /, g)d\ = (EQ(e)f, g),
S->-^0^7jr^ Je

where EQ(e) = E0^ — EQia, we have for /, g in §

13) Cf. J. Schwartz [10]. He obtained results in which q(_x)^Ll^L°° was assumed
together with the existence of an eeF+ni1-.
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(5.8) EJ(f,g) = (EJie)f,g)-\\m±\ (AR(\ + i£)f, 8*^ + 16)* g)d\
*+i<>27i:i Je

-iG)f, B*RQ(\-i£)*g)d\ .

We have factored V as BA choosing a(x) = a1(x). Then, since

\\B*R0(\±iG)*g\\ = \\AR0(\=Fi£)g\\, we can use the above lemma to see
that the limits in the right member of (5.8) exist and are estimated as

lim -A_ f (AR(\ ±i£)/, B*RQ(\ ±i£)*g) d\

Hence we conclude that Ee(f, g) is a bounded bi-linear form in £>.
(5. 6) is evident from (5. 8) if we note that both U0(f) and U(f) are

analytic in a neighborhood of e^r+ nr_ when ea(— oo? 0). Q.E.D.
We put r = r + n r _ , where

(5.9) r+ = •

Then 0er if and only if its closure does not contain any point of
o-5(L). We shall show that E(e), e^T constitutes the so-called " spectral
projection" of L, and that an arbitrary function in E(e)& is expanded
in terms of the distorted plane waves and the adjoint waves.

The following lemma can be proved by the same reasoning as
in the proof of the above lemma.

Lemma 5.3. There exist bounded operators X=(e) (e^T+) and

Y±(e') (^er±) satisfying the following relations for /, g in §.

(5. 10) (X±(e)f, g)

= lim -M
*->+°27ri J*

(5. 11) (Y±(e')f, g}

= lim -M ( {^0(^ + *£) - Rofr - *'£)} VR(\ ± «£)/,
*-n°27rl Je'

We define the bounded operators W±(e)(e^T-) and Z±(e')(e'<=r±)

by

(5. 12) W±(e) = Ea(e) - X±(e) , Z±(e'} = E0(e') - Y±(e') ,

and define the transforms f± and /J of / in C^(E3) by
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(5.13) f±(k) = (27r)-3

(5. 14) *(*) = (27r)-3/2 j*fck)f(x)dx , ±
J^3

where <p±(x,K) and <p*(#, fe) are defined by (4.13) and (4.14),

respectively.

Lemma 5. 4. (1) Lef ^e denote the domain in E3 such that

Ke={k<^E3
m, \k\z<=e}. Then we have

\ \f±(k}\*dk<Ce\\f\\
2

(5.15)
\f*±(k)\2dk<CA\f\\2

Hence, we can extend the maps f-*f± and /->/* £0 continuous maps

of § fwfo L2(Jfe) and L2CKy),14) respectively, taking the integrals (5. 13)
<2^rf (5. 14) in the sense of the limit in the mean.

(2) W±(e) and Z±(e'} are represented as

(5. 16) lW±(e)f](x) = (2nr12 \K <P±(x, k)f(K)dk ,
JKe

for a.e.

(5. 17) [

denotes the Fourier transform of

(5. 18) /(*) - (27r)--3^2 ( f(x) exp {-ik-x}dx .
JE3

Proof. Since W±(e) and Z^(ef) are both bounded operators, and
Co(E3) is dense in £>, (5. 15), (5. 16) and (5. 17) are immediate if we
show the following relations for /, g in CJT (Z?3) :

(5. 19) (W±(e)f, g) = \ f(k)Uk)dk , (Z±(eT)f, g) =
J Kc

Moreover, we have only to show (5. 19) in the case when e and ef are
finite. For, if e = (a, oo), e' = (a\ oo), then we can choose ^ = (0?, /3J,
^-(a',/3J such that ^,-00 and W±(eJ^W±(e), Z±(^)->Z±(O in

14) We shall prove later in Theorem 5.1 that these are onto maps.
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the weak topology of operators.
First note that for each ec(0, oo) EQ(e) can be represented as

(5. 20) [E0(*)/](*) = ^r^ exp ( i k - x } ( K ) d k
JKe

(Fourier inversion formula).

Applying the Parseval equality to (5.10), we have for

(5.21) (X±(e)f,g)

= lim -M
27rz J*

Here we choose /, g from Co (£3). Then, by the Fubini theorem, it

follows that

R(y, x ;

= (27tY"/2 1 g(y)dy \ R(y, x ', V^ ie)b2(x)a2(x) exp (ik • x] dx .
JjEs JEZ

Noting the relation

(5. 22) R(£)B = RQ(

we have from (4. 5), (4. 6) and (4. 7)

(5. 23) [ V*R(\ =f i6)*gY(Q

Substitute this in (5. 21). Then we can once again use the Fubini

theorem and obtain for /, g in Co (E3)

(X±(e)f, g)

= l imf
£ - > - r o j

j£) = (2*r3/2 f
•>
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By Lemma 4. 2 we see that ^(k ; \/X =F if) is bounded, continuous in

e, and £>0 sufficiently small, and tends as

to g±(&). Hence the bounded convergence theorem shows that

(5. 24) (X±(e)f, g) = \K f(k)g(k)dk- j^ /

where we have used the well known relation

if
0) if

in which /(A,, £) is a continuous functions of Xee and £e [0, £0]

By virtue of (5. 20) and (5. 24), we get the first relation of (5.19)

for each finite e^T+ and /, g^Co(E3). The second relation can be

proved quite in the same way. Q. E. D.

We can now prove the

Lemma 5.5. // e is in r = r + n r _ , then both W±(e) and Z±(e)

can be defined by (5.12), and we have

(5.25) E(e)=W±(e)Z±(e),

(5.26) E,(e) = Z±(e)W±(e).

Proof, The resolvent equation

R(\ +1 £) - R(\ - i£) = 2iSR(\ =F i£)R(\ ± i£} = 2i£R(\ qF i£)R* (\ =f i£) *

implies that

R(x9 y ; V\ - i

= 2ie R(x, z ; \/\=pi£)R*(y, 2 ;
JE3

Making use of the Parseval equality, and taking (4. 10) and (4. 11)

into account, we obtain

R(x, y ; \/\ + i£)-R(x, y ;

, k ; \/X =p i£) (p*(y, k ; \/X

Substitute this in (5. 5). Then we have for /, g in C%(E3)
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g) =

<p*(x,k',

JE3

By the same reasoning as in the proof of Lemma 5. 4, we find for

each finite e in F the following relation :

(5. 27) (£(e)/, ^r) = ft(k)}dk , f,
JKe

It is already proved in Lemma 5.4 that both /| and g= are in

L\Ke) for any g in r. So, we can extend (5.27) to infinite e.

Since Co(E3) is dense in £>, (5. 27) proves with expression (5. 16) and
(5. 17) the first relation (5. 25).

Next we proceed to derive (5. 26). It follows from (5. 12) that

Z±(e)W±(e) = EQ(e)-Y±(e)E0(e)-B0(e)X±(e)+Y±(e}X±(e} .

So, we have only to show the relation

(5. 28) Y±(e)X±(e) = Y±(e)EQ(e)^E«(e)X±(e) .

For the sake of simplicity, we put

vs (x, k) = <p(x, k; \ / | f c | 2 + «'£) — exp {ik*x} ,

v?(x, k) = cp*(x, k', V\k\2 + i£) — exp {ik-x} ,

h, (x, K) = q(x)<p(x, k ; \/\k

h*(x, k} = q(x)<p*(x, k ; V\

Then these functions are all in L2(E3} as functions of x for each

\k\2^e and | £ | 4 = 0 sufficiently small. It follows from (4.9) that

(5.29) vs = -R0(\k\2 + i£)hs, vf = -

We put

V.(x,k)/(k)dk,

T?(X) =
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for /, g in Co(Ke). Then, as £-*^Q, we have, taking Lemma 4.2
and (5. 24) into account,

(5.30) r,(x)^-lX=(e)f](x), T*(x)^-lY±(e)*g](x), a.e.

By the Fubini theorem

\ Ts(#)T*s/(#)d#
JE3

)dkf v,(x, K)v*'(x, k'}dx
JE3

= (2^\ f(k}dk\ J&)dk'(R0(\k * + i€)hs, R0(\k'\z

J Ke J Ke

Using the resolvent equation R^R^^^-^iRoffi-Ro®}, we

have

by (5.29). Here we can use the Fubini theorem to exchange the

order of the integration. Then

where we have, taking (4. 2) into account,

v _ f <P*(x, V ; Vur*+fete(feQrffe,
\k'\2-\k

f Pt(*, fe)/(

J j f . A ' 1 - A - *

since /, ^ are in C;r(/Q. Noting (5. 29) and exchanging the inte-
gration order, we finally get

Te(x)r*'(x)dx

ht(x,
E3
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\\
I J

E3

JKe

We make £-^q=0 and £'^±0. Then

fe) ^v±(x, k} = <p±(x, &)-exp {ik-x}

^ *0 ->v$(x> W = <P%(X, feO

Thus we obtain, using the Lebesgue theorem,

lX±(e)f-](x)lY±(e)*g-](x)dx = [.X±(e)f-](x)g(x)dx

in virtue of (5. 24) and (5. 30). This implies (5. 28) if we note that

{/;/eC?(/JT.)} is dense in EQ(e)§ = {/; fs=L2(K.)}. Q.E.D.
It remains for us to add a few more facts in order to prove

the following expansion theorem.

Theorem 5. 1.15) (1) (spectral projection} For each e in T, the

bounded operator E(e) defined in Lemma 5. 2 gives the ''spectral

projection" (not necessary orthogonal] of L:

(5.31) E(e)2 = E(e), E(e)LdLE(e) .

(2) (similarity between L0 and L) The following relations hold

for each e in r, and % in the resolvent set of L.

(5. 32) R(QW±(e) = W±(e}RQ® , R&)Z±(e) = Z±(e)R(Q .

Hence the parts of L0 and L respectively in E0(e)tQ and E(e)lQ are

similar to each other :

(5. 33) LE(e) c W±(e)LQE0(e) W±(e)-\ W±(e)~l = Z±(e) .

Moreover, we have

(5. 34) 3)(L) n E(e)§ = E(e)$(L) .

15) Cf. Ikebe [5] ; Theorem 5 and Povzner [3] ; Theorem 1.
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(3) (generalized Fourier inversion formula) The transform

(5.35) /£(*) = (27r)-3/2( j*fck)f(x)dx
JE3

gives a bounded map of E(e)$Q one-to-one onto L2(Ke) for each e in

F. We have the following inversion formula :

(5. 36) [£(*)/] (x) = (2nY^ \ <P±(x, k)ft(K)dk .
J Ke

(4) (diagonal representation of L) f(x)^E(e)£)(L) if and only
if \k\2f*(k}(=L2(Ke). We have the following representation of L:

(5. 37) [_LE(e)f](x) = (2*)-"* ( * | *<p*(x, k)f*(k)dk .
J Ke

Proof. (1) Since l?(f) is permutable with L, the second relation
of (5. 31) is immediate from (5. 5). On the other hand, we have in
virtue of Lemma 5. 5

E(ef = W±(e)Z±(e)W±(e}Z±(e} = W±(e)E0(e)Z±(e) ,

where (5.17) and (5.20) show that EQ(e)Z±(e) = Z±(e). Hence we

have the first equality of (5. 31).
(2) For /, g in C0~(£3), it follows from (5. 10) and (5. 12) that

(R(£)E,(e)f, g}-m}W±(e}f, g) = (X±(e)f,

= lim-M
s^+o27T2 Je

Ke K\ —

where we have made use of the Parseval equality, relation (5. 24)
and the resolvent equation (1. 6). Thus we have

(R(£)W±(e)f, g) = (W±(e)R,®f, g)

proving the first equality of (5. 32). Applying Z±(e) to the first
equality from the both sides and noting the relation Z±(e) = E0(e)Z±(e)
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= Z±(e)E(e\ we get the second equality. (5.33) is immediate from

(5.32). Finally, since £)(L) = 3)(L0), (5.32) implies that W±(e)f and
Z±(e)f are both in 3)(L) if f^3)(L). Hence, by (5. 25) we see that
E(e)fs=3)(L) if /GE<2)(L). This proves (5. 34).

(3) This statement is already proved implicitly in Lemma 5. 5.

For (5. 25) and (5. 26) show that W±(e) maps E0(e)& one-to-one onto
E(e)$, while Z±(e) maps E(e)§ one-to-one onto EQ(e)tQ. Thus, if we

note that the Fourier transformation gives a unitary map of E0(e)&

onto L2(Ke), /* is nothing but [Z±(e)/]A(&) and (5. 36) follows from

(5.16) and (5. 25).
(4) For e = (a,fi)^r we put ex = (a, X), a<X</3, and Ea^

= E(ex). Obviosly Ea^ = E(e). Let f(x) be in E(e)3)(L\ Then we
have from (5. 33) that for any g in §

(5. 38) (Lf, g) = (LE(e)f, g) = (W±(e)LaE0(e)Z±(e)f, g)

Z±(e)f, W±(e)*g) = \d(Ea,,f, g).

Thus we have (5.35) taking (5.36) into account. The domain

characterization of L is immediate from representation (5. 37) of L,

Q.E.D.

Remark 5.1. We may replace E(e), <p±(x, k) and qpjjc, k) by
E*(e), <p±(x, k) and <p*(x, k), respectively, in the above statements in
order to get similar results for L*, where E*(e) is defined by

(5. 39) (E*(e)f, g} = lim -L ( ({#*(X + i£) -R*(\- i€)} /, g)d\
s-> + o ZniJe

for each e in F. It is easy to verify that

(5. 40) E*(e) = E(e)* .

Remark 5. 2. If q(x) is assumed to satisfy in addition to (A)

the smallness condition (2.15), then the spectral projection E(e) can

be constructed for any subinterval of ( — o o ? oo). Put Ex = E(e^,

where ex = (— °°,X). Then the following relations hold.

(5.41) £« = /, L =
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Proof. We showed in Remark 2. 1 that under condition (2. 15),
2 is empty, that is, (— oo, oo)er+nr_. Hence by (5. 3)± we have

f
J — D

for each / in £>. This and (5. 2) imply that AR(£)f and ARQ(£)f
both belong to the Hardy class M2(£l± ; €>),16) where n±= {£ ; Im
for each / in £>. Since EQ((— <>°, oo)) = /? we have from (5.8)

(5. 42) (£,/, g) = (/, g) --. (AR(X + iO)/, B*R0(\-iO)g)d\
2mJ-°°

~ - iO)/,

AR(\±iO)f and 5*7?0(X=FfO)^ are boundary functions of the class

M2(£l± ; §) and M2(£l^ ; £), respectively. Hence, both the second and
the third terms in the right member of (5. 42) are zero, and the

first relation of (5. 41) is proved. The second relation is obvious
from (5. 38). Q. E. D.

III. Scattering Theory

§ 6. Wave operators.

In this § we shall develop the time dependent scattering theory

restricting L0 and L to the invariant subspaces E0(e)& and E(e)&9

respectively, where e may be any interval in F.

We set $0(e) = EQ(e)§ and $(e) = E(e)& Then &0(*) is a Hibert
space with respect to the L2-norm, and &(e) is a Banach space with

the dual space $*(e) = E*(e)$, where E*(e) = E(e)*. Put

(6. 1) L0(*) - L0EQ(e) , L(e) = LE(e) .

Then L0(e) is a selfadjoint operator in iQ0(e) with the domain
E0(e)3)(L0) and generates the unitary group exp { — itLQ(e)}

= exp { — itLQ}E0(e) (— oo<^<oo), while L(e) is a closed operator in

$(e) with the domain E(e)3)(L) = E(e)3)(L^. Note that L(e) has

16) See Kato [13] ; Remark 1. 4.
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purely the continuous spectrum which fills the closure of e. Let us
consider the operator U±(t; e) defined in £>(<?) by

(6. 2) U±(t ; e) = W±(e) {-itL0}Z±(e), -<*><t<<*> .

It is obvious that {U±(t; e)} forms a strongly continuous group of
type zero.

Moreover, we have the

Lemma 6.1. —iL(e) is the infinitesimal generator of the group
(U±(t; e)} :

(6. 3) exp (-itL(e)} = U} (t; e) = U_(t \ e ) , - oo <t<oo .

Proof. We have only to show that R(£ ; e) = (L(e) - £ 7) -1 = R(£)E(e)
is the Laplace transform of U±(t; e). For example, we assume
Imf>0. Then for each /e£>(0) and g^&, we have, using the
Parseval equality

= i \ exp {i£t} dt \ exp { — it \ k
Jo JKe

= f l \z±

e)/> g) = (R(®E(e)f, g)

by (5. 25) and (5. 32). This implies that

(6. 4) R(£ ; e) = i Pexp {i&} U±(t; e)rff if Im
Jo

Similarly we have

(6. 5) R(Z \e)= - i J° exp {iff} U±(t \ e)dt if Im f < 0 .

Thus, (6. 3) is proved. Q. E. D.

Remark 6.1. We put L*(e) = L*E*(e). Then L*(e) is a closed

operator in $*(e) with domain E*(e)3)(L*)=E(e)*3)(L)9 and

(6. 6) L*(e) = L(e)* .
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Thus, it follows that — *L*(e) is the infinitesimal generator of the

group

(6. 8) exp {-itL*(e)} = (exp-{#£(*)})* , - °° <t< °° .

Lemma 6. 2. Pwf 0(*) - ^(^) =\q(x)\1/2. Tfen AR(? ; e)f=A(L(e)

-f/)-1/ and AR*(£;e)g=A(L*(e)~£irig both belong to the Hardy
class M\£l± ; &) for each /e&(0

(6.8)

(6.9)

with CA>e>0 independent of

Proof. Given any e = (a, /3)^T and/e©(0), AR(f ; e)f=AR(£)f
(v7<r^2) and is an £>-valued analytic function of f outside (a, /3),

and ||AR(f ;e)/i|<constl|/|| uniformly in Re f$(a-S, /3 + S) for a

fixed S>0. We choose 8>0 small and N>0 large such that

(a-S, /3 + S), (~oo, -JV) and (AT, oo) all belong to the class r+nr_ .

Then we have

-I \\AR(\±i£ ; e)f\\2d\<CA e \ \ f \ \ 2 , for £>0,
JN

by Lemma 5.1. Thus, we get (6. 8). (6. 9) can be proved by the

same reasoning. Q. E. D.

Using this lemma, we can now prove the

Lemma 6- 3. Put a(x)=a1(x). Then we have for arbitrary /, g

in §

(6.10) (W ± (e ) f , g) = (E0(e)f, E*(e)g)

(AR0(\±iQ)E0(e)f, B*R*(\±iO ; e)E*(e)g}d\ ,

(6.11) (Z±(e)f, g} = (E(e)f, E0(e)g)

1 f °° (BR(\ ± iO ; e)E(e)f, A*R0(\ ± i

Proof. Since both ,4J?0(£)E0(e)/ and 5*^*(r ; e)E*(e)g are in the

Hardy class c^2(^± ; §) for each /, g in §, it follows from (5.10) that
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, E*(e)g)

, B*R*(\±iO ; e)E*(e)g')d\

(AR0(\±iQ)E0(e)f, B*R*(\±iQ ; e)E*(e)g)d\ .
3

With the relation W±(e)=E(e)W±(e}EQ(e) and (5.12), this proves
(6.10). (6.11) can be proved by the same reasoning. Q. E. D.

The above representations of W±(e) and Z±(e) enable us to
follow the same way as Kato [13] to obtain the following theorem.

Theorem 6.1. W±(e) and Z±(e) satisfy the following relations:

(6.12) W±(e) = s-lim exp {itL(e)}E(e} exp {-itLQ(e)} ,

(6.13) Z±(e) = s-lim exp {itL0(e)}E0(e) exp {-itL(e)} .

Hence, W±(e) are the wave operators for the pair L0(e), L(e) in the
time dependent formulation, and Z±(e) are the inverse wave operators.

Proof, (see [13] ; Theorem 3. 9) We sketch a proof for W^.(e).
Replace in (6.10) / and g respectively by exp { — isLQ(e)}f (/e£0(e))
and exp {-isL*(e}}E*(e}g(g^&). Then we have, using (6.7) and
the Parseval equality,

', g) = (exp {isL(e)}E(e){-isL0(e)}f, g)

(A exp {-itL0(e)}f, B* exp {-itL*(e)}E*(e)g)dt.

Thus, we obtain

I (TF+(*)/-exp {isL(e)}E(e) exp {-isLQ(e)} f, g)

< °° \\A exp {-itLQ(e}}f\\2dt~ I|B* exp {-itL*(e)}E*(e)g\

Since \\E*(e)g\\<const \\g\\, this proves that exp {isL(e)}E(e) exp
{ — isL0(e)} strongly converges as 5->+oo to W^e). Q. E. D.

Remark 6.2. For each f^$QQ(e\ exp { — itL(e)}f gives a solu-
tion of the initial value problem
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(6.14) i^-u(t) = Lu(t), u(Q)=f (-
at

It should be, however, noted that solutions in § of (6. 14) are not

always unique. If we assume on q(x) in addition to (A) the condi-

tion that

(6.15) Im [#(#)] is bound in

then —iL is known to be the infinitesimal generator in £> of the

group exp{ — itL}. Hence, in this case exp { — #L(e)}/=exp { — itL}f

is a unique solution of (6. 14). On the other hand, if q(x) is assumed

to satisfy in addition to (A) the "smallness condition" (2. 15), then

L with such a q(x) also becomes the infinitesimal generator in £>

of the group exp { — itL} = W± exp { — itL0}Z±, where W± = W±((Q, oo))

and Z± = Z±((0, oo)), since we proved in Remark 5. 2 that E((— oo, oo))

=E((Q, oo))=/. So, the above condition (6.15) is not necessary to

verify that L is the infinitesimal generator of a strongly continuous

group.

Now we see from Lemma 6. 1 that the initial value problem

(6. 16) i -|-«(0 = L(e)u(t) , «(0) - /€=©(*)
or

has a unique solution «(f) = exp { — fYL(^)}/in §(e). From the above

theorem, it follows that the solution satisfies the following asymptotic

conditions :

(6. 17) lim ||«(0-exp {-itLQ(e)}f±\\ = 0 ,
/->±oo

where

(6.18) f± = Z±

The scattering operator S(e) acting in $0(e) can be defined by

(6. 19) S(e) = Z+(e}W_(e) = W+(e)^W.(e) :

Theorem 6. 2. S(e) is permutable with L0(e), i.e.,

(6.20) S(0)L0(e)cL0(e)S(0),

and is a one-to-one mapping of &Q(e) onto itself with the inverse
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S(e)~1 = Z_(e)W+(e). Moreover, f+ and /_ defined by (6.18) are
related to each other by the equality

(6. 21) /+ = S(e)f_ .

Proof. The proof of this theorem is immediate from (5. 25)
and (5. 26). Q. E. D.

Remark 6. 3. If q(x) satisfy the conditions given in Remark

2. 3 : Im [#(#)] <0 and Re [#(#)] is a small perturbation in the sense

of Remark 2. 1, then both Z+ = Z+((0, oo)) and W_ = W_((Q, <*>)) exist,

and the solution u(f) for £>0 of the initial value problem

(6. 22) i—u(t) = Lu(f) , «(0) =
dt

is unique and satisfies the following asymptotic condition :

(6. 23) lim ||«(f)-exp {-itL0}Sf\\ = 0 , S = Z+W_ .
t->°°

Proof. We proved in Remark 2. 3 that with our condition on
q(x) the set 2 is contained in {K ; Re /e<0, Im /c>0}, i.e., (0, oo)^r+.

Hence W_ and Z+ both exist. Moreover, the "dissipativity condition"

ImC^(jc)]<0 shows that —iL is the infinitesimal generator of the

semi group exp { — itL} (t>G). Hence, the solution for t>Q of (6. 22)
is unique and is given by

u(t) = exp {-itL}u(Q) = exp {-itL} W.f .

Applying exp {itL0} to this from the left, and noting relation (6. 13),

we have

exp {itL,} u(f) - Z+ W4 -> 0 (as t -> oo )

which proves (6. 23) since exp {itLQ} forms a unitary group. Q. E. D.

§ 7. Uniqueness of solutions for the scattering1 inverse problem.

In this § we require the following stronger assumption on q(x) :

(A,) (1+ \x\T^/2q(x)^L\E^ , 5>0 .

With this assumption on q(x\ we can proceed along the same line
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of proof as given by Povzner ([2] ; II, Lemma 1) or Ikebe ([5] ;
Lemma 4. 2) to derive that the distorted plane waves <p±(x, k),
=f | k \ $ 2, constructed in § 5 have the following asymptotic expan-
sions for large \x\ : 17)

(7. 1) <p±(x, k) = exp {ik-x}

(7.2) 0 ± (w , i> ; |*|) = -- <p±(j, feli/) exp
4/r JE3

where n = x/ \x\, v = k/ \k and 7 = 8/2(2 + 8).

The purpose of this § is to represent the scattering operator
S(e) given by (6. 19) explicitly in terms of the scattering amplitude
0_(n, v ; &), and then to derive that the potential function q(x) is
uniquely determined from a given function 9_(n, v,k) if it is assumed
to satisfy assumption (AJ.

We begin with showing the symmetricity in n and v of
0±(n, v\\k\). It follows from (4.15) that

T^ = exp {,-*.,}- gT
J^3 4?r x— y\

On the other hand, we see from (2) of Lemma 4. 2 that this equa-
tion has a unique solution <p*(x, k). Hence we have

(7.3) v$(x,k) =<p±(x, -k).

Note that each g%(x, k) also has the asymptotic form (7.1) with
0±(n,v, \ k \ ) replaced by

(7.4) 0$(n,v\ \ k \ ) = 6*(n, -v\ \ k \ ) .

Moreover, we have the following

Lemma 7.1. 0±(n>v\\k\) satisfy the equalities
(7.5) 0+(n, v\ \ k \ ) =9+(v,n; k \ ) ,

17) In [5J q(x) is assumed to be in Lfoc(£3) and behave like 0( \x\)~3-^ (5>0) at
infinity in order to obtain this expansion with r = d/2. In our case, however, the
use of the Schwarz inequality makes f as given above.
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(7.6) 6_(n,v\ |*|) =e^(-v, -n\ \ k \ ) .

Proof. Put kf=\k\n. Then we have from (4.15) and (7.2)

+(n, v ; \k ) = - — I <P+0>,
47T J^s

, exp
47T

X q(z)<p+(z,

Since q(z)^L\E3) by assumption (Aj), we can exchange the order
of the integrations to obtain

exp {i*^}^)^^,*7)^ = 9,(v,n\ \ k \ )

noting |*'| = | f e | . This proves (7.5). We have similarly equality
(7. 5) for 0$(n, v,k). Then it follows from (7. 4) that

which proves (7. 6). Q. E. D.
We can now prove the following theorem :

Theorem 7. 1.18) For each e^T and /e§0(e), the scattering
operator S(e) is given the following representation in the Fourier
space :

(7.7) [S(e)fY(\k\v)=A\k\v) + ±\ \k 0_(-n, -v; \ k \ ) f ( \ k \ r i ) d n
l n l = i

v) + Af \k\G*(-n,v;\k\)f(\k\ri)dn,

Proof. Since W_(e) = E(e) W_(e) = W+(e)S(e) by (5. 25) and (6. 19),
we have, taking (5. 16) into account,

(7. 8) \_W+(e){S(e)-I}f-}(x) = l{W_(e)-W+(e)}f\(x)

= (2*)-3'2 j^ {«P_(J<:, *)-9>+U,

It follows from (4. 13) and (4. 17) that

18) Cf. Ikebe [6]; Theorem 1.
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-(x,k)-<p+(x, K)

r
J 4:7t\x—y\

\
J x—y

4:7t\x—y\

k\.\x-y
x-y\

where ty±(x9 k)=a2(x)<p±(x, k)^L2(Ez) as a function of x, and

(7. 9) [{/+Qo(zF \k\}}ty±~](x, *) = a2(x) exp {ffe-jc} .

Put W=\k\v, v\=l, and note the relation

(7.10) ( exp{ik'-x}dv
J lv |= i

= _ ?— {exp { / j f e | « | j c } —exp { — i | f e | - \x }} .

Then

[ — i \k\vy}dy
O7T J I v I =1

exp

where we put k=\k\n. On the other hand, it follows from (7. 9)

and (7. 10) that

exp

= ^ f gg,{i|ft -k-J> l-q^bil^jLJ^li^ (

Jfi3 47r |^— j;

, *) exp {-i\k\vy}dy



Eigenfunclion expansions 463

Since k'\ = \k\ and /+Q0( — \ k \ ) is invertible in § except for

— \k\ e2, this shows that

Summing up we have now

0_(v, n ; |*|)fexp
=i L2,71

Substitute this in (7. 8). Then

= (27T)-3/2

\k\3d\k\( f(\k\ri)dn{ (9_(i;,
J i « i - i J i v i = i

- ( v , n \ \ k \ ) f ( \ k \ n ) d n , k' = \k\v .
ZTT

This yields the representation (7. 7) in virtue of (7. 4) and (7. 6)

since the transform I <p+(x, k)f(k)dk gives a one-to-one mapping of

U(Ke) onto $(e). ** Q.E.D.

Remark 7. 1.19) If q(x) is assumed to satisfy the stronger con-

dition (2. 17) in Remark 2. 2, then the scattering operator can be

continued analytically into Im*;>— 8/2 and it is in this region a

meromorphic function. The poles in Im K > 0 correspond to the

discrete eigenvalues of L with £ = /<?.

Proof. As we noted in Remark 2. 2, QO(K) can be continued

analytically into Im K> — 8/2 preserving the complete continuity in §.

Let QO(K) denote the extended operator. Put a(x) = \ q(x) 1/2. Since

19) Cf. Lax-Phillips [21]. They developed a different method to get, among other
things, a result concerning the analytic continuation of the scattering matrix under
the assumption that q(x) (real) is smooth and has a compact support (see Theorem
5.2).
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I a(x) I < C exp { — (8/2) j x \ } for large | x , we see that a(x) exp {idv • x} ,

| z / | =1, is in § whenever Im/c'>— S/2. Thus

(7. 11) ^(#, ̂  ; *0 = a(x) exp {itc'v-x} — {QM^\(x, dv ; ic)

has a unique solution ijr(-, /^^ ; /e)e£> which depends analytically on

/e' in Im/c'> — S/2 and meromorphically on K in Im/c< —S/2. We put

9-(ny v ; K) = ^— \ b(y)^r(y, KV ; K) exp { — iicn*y}dy ,

(7.12) ^ ^ " |»|=1.
^+(», i/ ; ^) = _— I 6(j)^(j, ^ ; -K) exp {f/ew-j;}^ ,

47T J^3

The right members make sense for each K in Im/c>— S/2 except

at the poles of {/H-QoW}"1 because b(x) exp {iim-x} e$ for such a *.

It is obvious that fy(y, \k\v\ \k\)=^_(y,k) and fy(y, \k\v\ — |*l) =

^+(y,k) with v=k/\k\. Thus, &±(n,v,K) defined by (7.12) gives

an analytic continuation into Im K> — S/2 of 0±(n? v ; &|) which re-

presents the scattering operator. Q. E. D.

Next, let us prove that the potential q(x) is uniquely determined

by the asymptotic behavior for large \k\ of a given 9±(n, v ; | f e | ) .

We choose a so large that the interval (a, oo) is in F. It is

obvious with assumption (AJ that (9±(^, z/ ; \ k \ ) is bounded and con-

tinuous in n, v and |&!2<=[a, oo). In order to obtain an asymptotic

representation for \k\-*oo of the function 0±(n,v, k\}, we rewrite

it as follows :

(7.13) e±(n,j>;\k\)= - q(y] exp {i\k\ (±n + v)-y} dy

+ 1 f

x q(z)<p±(z, kjdz exp {± i \ k p

taking (4.15) into account. For given and £>0? we choose qQ(x)^

CoCE3) such that ||# — #0||1+s<£, where | | - | l i + « is defined by (3.6) and

put q(x)=qQ(x) + q(x). As is shown by Faddeev [4], we have

———L^- ^qQ(z)<p±(z, k)dz = 0(\kI"1) (uniformly in y) .
4?r! y—z
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On the other hand, we have

sup I

Q -Il/2
|j--£r2(l4- z\yi~8dz\ ||§|!1+s<const-£

E3 J

since <p±(x, k) is bounded in x^E3 and j&|2e[a, oo) (see Lemma 4. 2).

Thus, we have, noting that q(

(7.14) 0± (»,!/
47T

as |*| ->oo ,

uniformly in n and z>.

For an arbitrary vector m^E3 we can choose \k\, n and z> so
that m=\k\(n±v). We let k\ ->°o changing w and v and preserving

the relation m= k\(n±v). Then the limit of the right hand side
of (7. 14) exists and

(7. 15) lim 0±(n, v\ \ k \ ) = -— f ^(^) exp {±im-y}dy .
|*lC»n:V)=w f I f t l ^ o o 4^ J^

Hence, we get the following uniqueness theorem for the scatter-
ing inverse problem, which slightly generalizes a result of Faddeev [4].

Theorem 7. 2. // the potential q(x) is assumed to satisfy con-

dition (AJ, then it is uniquely determined by (7. 15) from the scattering

amplitude 0±(n,v\\k\) given for large \ k \ 2 of the kinetic energy.
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