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On Type Classification of Factors Constructed
as Infinite Tensor Products

By

Osamu TAKENOUCHI*

Let Hv (z/ = l,2, • • • ) be Hilbert spaces, to each of which is assigned
a reference vector #„ with ||0J| = 1. Then an infinite tensor product
(incomplete infinite direct product of von Neumann [4]) H = n®

V

(Hv, ev) is formed. Suppose further that a von Neumann algebra
Mv be given on each Hv. Each operator T in Mv is extended over
all of H, which will be denoted as T. All these operators T together
form a von Neumann algebra on H, which we write as Mv. The
von Neumann algebra M on H generated by these Mv's (z/ = l, 2, • • • )
is what we call as the infinite tensor product of Mv.

Suppose now that each Mv given is a factor of type I. Then,
Hv can be decomposed as a direct product of two Hilbert spaces
HV1, HV 2 : HV = HV1®HV2, and Mv is thereby identified with B(R^)®IV2,
where B(HV1) is the total operator algebra on HV1 and JV2 is a von
Neumann algebra consisting of all scalar multiples of the identity
operator on HV2. With respect to this direct product decomposition,
0V can be expressed as

(1) ev = 2xvy
1/2^

where

(2) Xvy >0 for all j, and

(3) iKi/s form a normalized orthogonal system in Hv

(4) ^K2/s form a normalized orthogonal system in Hv
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The expression may exist in many ways, but the set of Xv/s including

the multiplicity of each Xvy remains fixed in all these expressions.

So we may ask whether the type of the von Neumann algebra M,

which is in this case a factor, can be determined explicitly in terms

of these Xv/s. The following theorem constitutes an answer to this

problem.

Theorem. As to the type of factor of M,

Type I occurs if and only if

(5 ) 2( l -Xj<oo;
V=l

Type IIj occurs if and only if njs are all finite and n^>l for

infinitely many n^y and

(6) 22((-)1/2-x

where «v = dimHvl, and Xv/s are considered to be 0 for j\

Type III occurs if and only if

(7) 22 ^vy ^vft min c} = oo

for some, and hence for all c>0.

Type I condition is first given by Araki [1], and Bures [2].

A simple proof is given in Moore [3]. Type H condition is given

partly by Bures [2], and in a slightly restricted form by Moore [3].

(See below the end of Section 1.) Type III condition was only

treated under a subsidiary condition that the Xvi's are bounded below

by a positive constant. (Bures [2], Moore [3]) So our contribu-

tion is that we have removed this restriction. Note that, under the

subsidiary condition mentioned above, our condition is reduced to

that of Moore [3].

Our result is thus a refinement of that of Moore, and we follow

his method to a great extent in the proof of "if" part. The proof

of "only if" part is independent of his.

For the simplicity of writing, 2> n denote the summation and
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product over i/ = l, 2, • • • . 2> S mean the summations over y, fe = l,
y A

• • • , mv when mv<oo, and over j, fe = l, 2, ••• when mv=oo. In some
places, we use I(z/) to mean the set {1, • • - , m^} for mv<°° and
{1,2, •••} for mv=oo.

1. First we prepare some properties which will be needed.

Lemma 1. Let H°i be the closed subspace of HV1 spanned by
t^Ki/ \ ./el(z>)}, EV1 be the projection operator in Hv on the closed
subspace H,° = H^®^ • £Vi^Mv.

Let the extention of Evl to H be £V1, and E=UE^. £eM,
V

EH = n®(Hv°, O, and WE. the Part of ^ in ^H, is the infinite
V

tensor product of (M)E^.

Suppose that the type of factor of (M)E is already settled.
(Observe that the determination of the type of factor of (M)E is
rather easy due to the fact that the length of the expression (1) and
dim HJj are equal, or, in other words, {^V1J; j^I(v)} is a complete
normalized orthogonal system in H^, and this fact makes strict the
relation between the infinite tensor product and the measure theoretic
construction. (See the first few passages in Section 2.))

According to that the type of (M)E is I, II, or III, we know the
type of M is I, II, or III.

When (M)E is a finite factor, M is a finite factor if and only
if all «./s are finite, and

Proof. The last assertion only is to be proved.
It is clear that, if one of n*Js is oo? M is an infinite factor. So

we suppose that all the nv's are finite, and 2] (1 — — ' - ]= °°- This
v \ n^l

implies that n^=oo. Therefore, there exist disjoint finite subsets

Ak of positive integers such that n ^^2 for each k ( = 1, 2, •••).

Then, n ®HV1 contains a projection Fkl such that Fk=Fkl®Ik2^ H

fv, dim range (FM) = n mv, Ffc n ®EV1 = 0. Consider projections
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Gk (k=l,2, — ) in H defined by Gk=Fk n £V1. Then, E, G19 G2> -v^Ak
are mutually orthogonal projections in M which are mutually equiva-

lent with respect to M. So M cannot be finite.

Suppose now 2 (! — — )< oo. M is in any way semi-finite, and
v=i \ «v/

we consider a dimension funcsion d on M. As (M)s is finite, £ is
a finite projection, so that 0<d(ZJ)<oo. Normalize d in such a way

that d(E) = Tl— . Now by the construction of infinite tensor product
v nv

v,eJ, we have I=^E^.^ where (fv) = (£1,£2, •••) is a sequence
v C*v)

consisting of O's and a finite number of 1's, and E^ = n®E^ with

E^W = E^, EVU = I,1 — E^1. These E^'s are all finite projections with

d(E^) = d(E)u(n^-m^=( n "*)( n (l-^)\ Thus, summed
v \ mv I \v:ev=o W v / \ v : e v ~ i \ «„/ /

up all together, d(/) = l, and M is finite.

Lemma 2. For each z/ ( = 1,2, • • • ) > consider a subset T(^) of I(z>)
such that

The i/'s such as M(p) = I(v) amount only finite, and we may leave

them out of consideration. So, let

Define for y

Then

Therefore, M is also not affected by this change of reference

vectors, and moreover, convergence conditions (5), (6), (7) are affected

neither.

Proof. The condition that two sets of reference vectors {ev ; v =
1,2, •••} and {#,/ ; z/ = l, 2, •••} determine the same infinite tensor

product is the convergence of XI (1 — (0V, gv')). (von Neumann
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In our case, this certainly holds as

2 (!-(*„, O) = 2 (1- 2 Xv/'X/")

= 2 2

For the proof of the latter part, we remark first that, from (8),

(9) 2 Xv, ̂  — for larSe " •
yejcv) 2

So, we restrict ourselves to those z/s which satisfy (9).
Ad (5). In this case, Xd is to be considered as the largest

member among XCy C/eJ(z/)).

When 2(1 —^vi)<°°» limXw = l. And by (9), lej(i/) for large

v. For such v, Xd = Xvl/ 2 V/^XV1, and 2 (l~~^Ci)<°°-

Suppose now that 2 (1 — Mi)< °°- Let j\ be the smallest integer
v

in J(v). Then, \'V1 = \VJJ 2 Xv f c .

As
-1 ^' i vi ^ _i_ 9^ v^ ^ ^2
JL 'V'Vl ' /i /^Vfe ' *-*\ ' ' ^^k)

=-

- ( 2 , CT -v / 'Sp A N2\ / ^1 -v

^> 1 -v > 1 -\
= ± ^J\ === ^ ^Vl >

2(1 —^vi)<0 0 , the condition (8) being taken into consideration.
V

Ad (6). ^v's must be considered as finite for all v ( = 1,2, • • • ) .
Now, setting Xjy = 0 for j$](v),

\ l /2 \ 2 \V 2 / J ^ / V I V / 2 \2\V2

2 (xi,I/2-

( / ^x V2

y y f ^yj _
Vy4A(2 XJV»

2\l/2

+ (22 x,,.)I/2
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— f v1 v ^j n — c v "\ w— I Z-i Zj ~^=T—— \-L \ 2-i ^Mk)
\ v yejtv) > ; \, , feejcv)

= (2d-( 2 xJ1/2)2)I/2+(X! 2
v feejcv) v yei'oo

2

= (2(1+ 2 ^-2( 2 xj"*))1/2+(2 2
v feejcv) ftejoo v yel'o

^ (22(i-( 2 xJ1/2))V2+(2 2 Xvy)"2.

And, because 2 2 Xv*=2(l- 2 ?O and 2(1- ( 2 Xjv*) con-
v Aei'OO v ASJCV) v Aejcv)

verge at the same time, the last member in the above sequence
«V / / 1 \ 1/2 \

of expressions is finite. Therefore, if one of 22(1 — ) ~~ V/1/2 Y
nv It 1 \l/2 y V ^=1 \ \»V/ /

and 22(( — ) ~"M//2) is convergent, so is the other.
v j = i \ \ W v / /

Ad (7). Under (9), we have

^j^vk ^ ^vj^vk ^ 4Xv y\v A for

Therefore,

4- , C

2 ^ 2 Xvymin[|^-:

^_j XvyX-t

f xx 2 1I X v / X v f e m i n < -^—1 , c\
rev) I x£*, J

2
v yeix(v)

And,

2 2 X j y X ^ m i n -
v y,&ei'cv)

2

Thus, by taking (8) into account, the condition on xvy and that of
Xjy are equivalent.
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Here we add a comment concerning the type IIX condition of

our Theorem. Indeed, a direct application of Moore's result and

Lemma 1 in the above will establish that M is of type IIj if and

only if infinitely many m^s are >1 and following two conditions

are satisfied:
mv If 1 \v2 \2

(10) S X ( ( — ) ~ x -1/2 / < °°
v j=i \\rnj VJ i

(ID ?(1-^)<~-
As we have,

« «V / / 1 \ 1/2 \ 2\ 1/2 / Wv / / 1 \ 1/2 \ 2\ :

y y u —V -x - i /2i -fy vn^V -\ - i /2i i/ i X i \ \ j /V ̂  j II I x i ^[ j I \ I /V V / I /
2 \V2 \2

1 N1/2 / 1 \V2 \2

— -

conditions (6) and (10) are equivalent when (11) holds.

And (11) will surely hold when (6) is valid, because

^S S i =
v J = MV + I ^v

In this case, infinitely many mv
?s are >1, for we have limmv/n^ = l

V->oo

from the convergence of ^Kl — m^/n^) and infinitely many n*Js are
v

supposed >1.

2. As Bures has stated, the type classification problem of M is
reduced to the following form.
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Suppose that Hv is a space containing mv points &>V] , o>V2, • • • , OH*^-

(We here give an exposition valid when mv is finite. By adding a

minor modification, the case where mv=°° is also easily treated.)

Consider a discrete measure ^v on Ov such that ^({ft>v}) = Xvy

(y = l, — , wv), and a group of transformation Gv = fevo, #V1, • • - , £v».v-i}

such that a>vjgvk = c0vu+k), where, of course, y + fe is considered modulo

mv. Let O = nnv, and consider on O the product measure ^ = 11^.
V V

Let G be the restricted direct product ITGV, which acts naturally
V

on O as a measurable transformation group.

Now M is of type III if and only if this measure p is not

equivalent to any G-in variant o— finite measure on O provided with

a natural Borel field of subsets. Indeed, though a precise copy of

his assertion will need the restriction dim HV1 = mv , it is not indis-

pensable owing to Lemma 1. Therefore, the "if" part is proved

when one shows that, in case there exists a G-invariant measure p

on n equivalent to //,, the series in (7) converges.

Let X(<U) = ̂ -(G)\ so that x is a Borel function on O, unique up
dp,

to IJL null sets and >0 almost everywhere. We have p = p v xpv*>

where pv is a measure on £X giving mass 1 to each point and pv*

is a measure on Ov* = nn t ? invariant under Gv* = n7G t. And, since

t j , = ^XiJLv*, A6 v *=n^ t , we see that - = L X ~ . To be precise,
i*v djui djuLv djjb^

if ^eO, w = (wvwv*), then #(w) = #v(wv)#v*(cov*) for almost all pairs

(o>vcov*), where jrrv(o)v) = ̂ L(wv) and ^v*(Wv*)-^4(cov*). Since ^ is
a/zv «/^v^

discrete, this holds for almost all #v* for each ^veOv. We can

repeat this argument to find that, for any positive integer N,
00

p=IIp v Xp^ for some measure p$ on Q,%= n Hv invariant under
V = l ^ V-J^Hi

nxGv. Thus, ji:(a)) = (n^v(o)v))ji:j^(G)^), where G) = (CO I, • • • , co^, co]^).
v>J\r v=i

Now let %?, %/, %^ denote respectively the functions exp (2jtit

log(O), where («) is x, xv, x$. These functions are of absolute

value 1 and

n
V=l
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We view each of these functions as an element of L2(H, //,) by making
them constant in the variables on which they do not depend. Since

/z,(H) = l, these are all unit vectors.

Now denote by PN the orthogonal projection of L2(H) onto L2(O^)
JT

where £1N= nnv and we view L2(£1N) as the subspace of L2(H) of
V = l

all functions which depend only on the coordinates o>v (z/ = l, ••• ,^V)
of the point co^n. It is immediate that

where 1 denotes the function equal to one everywhere. Then,

where ||-|| is the norm in L2(£l). Therefore,

(12) \\PN(^)\\ = 1(^,1)1-1,

and in particular (X$*, 1)4=0 for large N. It follows at once that
(Xv*, 1) = 0 can hold for only a finite number of v. Now let us
choose constants aj = exp (2?rit /3J) such that

We write then

= (n^%vo-(n
V=l V=l

and put

We observe that by our construction, for large N, the argument of
7jv independent of N. If we put

for large N, then

P^(8'XO= I Ttfl n «,%'.
V = l

According to (12), we have lim 1 7^1=1, and we immediately con-
JV^OQ

elude that
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(13) IIa/%^ converges in L2(fl).

But (13) is equivalent to that

2 (1 — <*J (V, 1)) converges ,
V

which in turn is equivalent to that

f1A\ '%n 111 sv tV t\\2 / r^ ot-irl\JL**) 7 . |ji — CLV A,V I) *\ CXD ? ana.
V

2 3> <^v' (^v^> 1) converges .
V

Thus (14) is valid for every real t. Now we explicit in this

relation the functions %/. We have then

(15) 2 2 Xvy I exp (27T«Y (ft/ - log \vy)) -112 < - .

Just up to this point, we followed exactly Moore. As our aim

is to show the convergence of the series in (7), we consider here

the following sum:

(16) ^2 \VJ \vk \ exp (27cit (log xvy - log \vjfc)) -112.

As

| exp (27cit (log Xvy - log Xvjk)) -112

- exp (2nit (J3V* - log XVA) - 2reit (J3V* - log Xvy)) -112

^2( | exp (27«Y (/3V
# - log Xvy)) -112

we immediately see that the expression (16) is dominated by

4 2 Xv> Xv* | exp (2wtf 08V' - log Xvy)) -112

v,y,*

= 4 2 xvy I exp (2xit 09,' - log Xvy)) -112

T » J

which converges by the grace of (15).

Now the tool of which Moore made use to attain the goal can

be applied here. Namely he states that the convergence of

2 2 £v(l — cos ^v) = 2 £v I exP #^v — 112 (the |v's are supposed positive)
V V

for all real t is equivalent to the convergence of 2 fv min {| ??v |
2, c}

V

for a £>0. Applied to our case, the convergence of (16) for every
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real t is equivalent to the convergence of

2 XvyX^min{|logXvy-logXvfe |2 , c} f o r a c>0,
V,;, k

which in turn is equivalent to the convergence of

\c\
J •v&

Thus (7) does not hold, and this completes the proof of "if" part.

3. Now, we proceed to the proof of "only if" part. To do
this, we leave from the measure theoretic version of Section 2, and
we treat the problem in its original form.

We assume that

(17) 2x v yX
»>J'k >

for some, and hence for all c>0,

and we contend that M is a semi-finite factor.
Assume first that there exists an £>0 such that

(18) ^^£ for any i/ = l,2, — , and j,

This condition being imposed, we no more need to take in (17) the
minimum with some c>0, and so

(19)
V, /, k

Now (18) implies that Xvy^£Xv/b for any j,k = l, ~-,m^ Added with
respect to /, l^wv£Xv f e , so m^9s are all finite. Added with respect
to k, wvxvy^£, so that Xv y^>£/W2v for any y = l, • • • ,m v . Using also
the fact that the mean square deviation becomes the least when we
take the mean value as the center, we reform the series in (19).

-v 2

"V^ "\ "\ ^3 1
2-1 ^"uj ^Mk -*-

v'i>k X,fc

v,j
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= 2 ^vy 2
V, y k

V, j k \

1

~" v,; ^J
 k mv

I /1 \ v2

= £2 5] I —) — X 1/2

So, we obtain the convergence of the series standing last, which

implies by the type IIj criterion that (M)E of Lemma 1 is a type

IIj factor. (Or, it may happen that it is a finite type I factor.)

Thus M is a semi-finite factor, and is not of type III.

Our assertion being thus quite easily settled when (18) is satis-

fied, what we must do next is to reduce the general case to this

case. To this end we will make repeated use of Lemma 2.

The last paragraph of Section 2 states that the condition (17)

is equivalent to the validity of

(20) 2 Xvy Xvfe | exp (2nit (log Xvy - log Xj) -112 < oo

for any real number t.

Put now

<Pv ~ 2 ^v& exp (—2nit log Xv^).

Then, using again the fact that the mean square deviation becomes

the least when one takes the mean value as the center, we see that

2 ^vy ̂ vjfe I exp (2n:it (log Xvy — log xvjfe)) — 112

V, j, k

= 2 ^vy 2 ^v* I exp (—2nit log Xvfe) — exp (~2nit log Xvy) 12

^ 2 ^vy 2 ^k I exp ( — 2nit log XVA) — (pv*\2

— 2 ^vy I exp (— 2nit log Xvy) — (pj 12.

By virtue of (20), we have

(21) 2 ^vy I exp (- 2nit log xvy) - ^ |2 < oo ,

and
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(22) S(l-l^l)2

( — 2nit log Xvy) — <pv* |2 < oo „

Define ft/ as a real number satisfying

<pj = \<pj exp(-2*ifft/).

Then (21) and (22) together imply

(23) 2 Xvy | exp (2*if (ft/ - log Xvy)) -112

V,7

= 2 Xvy | exp ( — 2nit log Xvy) —exp ( — 2nit^^)

Fix now a value of t. Later we will take £ = 1/3, but for a
while, we don't specify t. For this value of t, we consider the set
I'(z>) of j satisfying

| exp (2*0 (ft/ - log Xvy)) - 1 1 ^ y -

Then, by virtue of (23),

2 X v y ^ 4 2 2 V, exp(2^Y(^-logXvy))-l|2
ei'cv) v yei'cv)

^ 4 2 Xvy I exp (ariY (/3V' - log Xvy)) - 1 1 2 < - .

S
v yei'

According to Lemma 2, we may thus leave those Xv/s with j^I'(v)
out of consideration, and we henceforth assume that

| exp (2nit (/V - log \vy)) - 1 1<
£

for v = l, 2, •••, and j=l,---,mv.

Under this assumption,

| exp (2nit (log \vy - log \vft)) — 1 1

= | exp (2nit (/3,* - log Xvfc)) - exp (2ait (/3/ - log \VjF)) |

^ | exp (2wiY 08V' - log \ J) - 1 1 + I exp (2wiY (/3V' - log \VjF)) - 1 1

< 1.
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From this, we conclude that for a suitable integer njh

12nt (log Xvy - log Xj - 2njkn l< -5- -
o

We take £ = 1/3 in this consideration, and then

| (log X,y - log xj - 3 njk \< \.
z*

So the xv/s 0" el(i/)) are classed into several groups {Xvy; j^I(v, P)}

(p = l, —, /v) such that

(24) |logXvy — logXVft | < 1 within a group,

(25) |logXvy — logXVA;| > 1 between different groups.

We may consider that I(v, 1), • • - , I(z>, /v) are numbered so that

(26) j^I(v,P), k^I(v,q) and p<q, then y

Now we show that, except for a finite number of z/s, we can

find a p=p» ( = 1, "-,/v) such that

(27) .eg^X^-i.

Indeed, let A be the set of v for which one cannot find such a pv,

For z^eA, we are then able to take a q» ( = 1, -",/v) so that

*v 1 /v 1
P—i /eicv./o 3 />=?v+1 j^IO'iP') 3

?v /v
Writing U I(z/, ^) = Ii(^), U I(z^, p) = l2(v), we have by (2), (25), and

(26) that XVJF/XVA>2 for j^Ifr), k^(v), and, using (17),

S 2
Hfe

,1

= 2(2 xw)(

Therefore, A is a finite set.

2
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Now we many leave the z/s in A out of consideration. And we
assume that (27) is valid for all v ( = 1,2, •••). We claim then

(oo\ v1 n V* ^x "\ — v* v* A <^ooww ' » v-*- — ' * A'vy/ — / i / i A,vy <s. °° .

Indeed, according to (17), (25), (26), (27),

00 > 2 X w X v / f e min< —^ —1 ,1
uxvj fc

V1 V1 ~x ~x
>CJ ^L_J ^V/ ^V^

eicv,^) feeicv,^v) 1,1 AVA

•*2 2 2
icv,*v) P>PV feei(v,/

v P<PV yelcv,/>) feeicv./'v) yei(v,^v) />>/>v &ei(v,/o

= 2(2 xvy)( 2 xvfe)v y$icv,jv) feeicv,^v)

^^-S 2 x v y .
3 v y$icv,^v)

Now that the validity of (28) is thus established, we may let

those Xv/s with j^I(v> A) out of consideration by Lemma 2. But
among xv/s with j<=I(v,pv), we have by (24) that

|logXvy-logXvJ < 1,

or X vy/XV fc is bounded below by a positive constant irrespective of v.

We thus have reduced the general case to the case where (17)

holds, and the proof is complete.

4. We have shown that the condition (17) implies the semi-
finiteness of M. But actually we had more. Indeed, an integral
and precise examination of our proof reveals that a type II factor
constructed as an infinite tensor product of type I factors is neces-

sarily a hyperfinite IIj factor or a tensor product of a hyperfinite
IIj factor with a type I^ factor. (This remark is due to H. Araki.)

5. Finally, we add a few words about the relation with Moore's
type classification of measures.

Moore's classification of the measure p considered in Section 2
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is perfectly in accord with that of the corresponding infinite tensor

product when n^, = mv for every v. Thus the condition (17) assures

the existence of a cr-finite measure p on H which is invariant under

the action of G, and is equivalent to p. To construct explicitly the

measure p, we can apply Moore's notion of restricted direct product
of measures.

To establish that (17) implies the semi-finiteness of M, we had

first to leave a finite number of Hv (z^eA) out of consideration, and

for each remaining index v to limit the set \(y) to a smaller finite

set J(z^). As the measure pv on Hv for z><EA, we take a measure

giving mass 1 to each point. We denote by IV an arbitrary one

point subset of flv. As the measure pv for i/$A, we take a measure

such that pv({covy}) = l/mv' for j^l(v\ where mj denotes the number

of elements in J(z/). Define IV to be the subset of !\ whose points

are covy (j<=](v)). Then form the restricted direct product p of these

measures pv using the sets IV. p will be the measure sought.
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