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§ 1. Introduction

Our concern in this paper will be with the existence and com-
pleteness of wave operators intertwining the negative Laplacian

L0=— A and the second-order elliptic differential operator

(1.1) L = ± (DJ-rbj(x))ajk(x)(Dk + bk(x}) + q(x)
j,k=i

in the three-dimensional Euclidean space R\ where Dj = — id/dXj. In
a suitable sense and under appropriate conditions on the coefficient

functions ajk(x), bj(x)y and q(x\ L0 and L may be regarded as self-
adjoint operators defined in the Hilbert space L2, square integrable

functions on R3. The wave operators W^ are the strong limits for
t-^±oo of exp (itL) exp ( — #L0), and then the scattering operator S

is defined as S = WJ W_ (* denotes the adjoint of an operator). The
wave operator W± maps isometrically into the scattering states for

L, in other words, the complement of the bound states, or more
precisely the subspace of absolute continuity for L, but it does not
necessarily map onto this subspace. If it does, W^ is called complete.

The completeness of W^ implies that S is unitary, which physicists

expect, or sometimes believe, to hold in most problems.

We shall prove that W± exist and are complete when L is
asymptotically, that is, as \x\ tends to infinity, equal to L0. The
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point of the proof is to set up conditions on the coefficients of L

so that abstract criteria expounded in Kato's book [3~] may become

applicable. It should be noted here that in most cases the existence

of the wave operators is proved under an assumption milder than

one for their completeness (see [3] for examples of this situation,

especially, for Schrodinger operators). This is also the case with

our L0 and L. This seems, at present, to be a weak point inherent

with the time-dependent theory of scattering. However, a stationary

approach to scattering theory, in which W± are constructed, roughly

speaking, from the limit of the resolvent R(z) of L for z tending

to real spectral points, has been successful for the Schrodinger

operator — & + q(x) (see, e.g., Ikebe [1], Kuroda [4], and Thoe [5]).

Recently, Kuroda and Thoe's result has been extended to the

Schrodinger operator with external magnetic field by Ushijima [6].

(In [4], [5] and [6] are considered the Schrodinger operators in n

dimensions, while we have restricted ourselves in this paper to the

case w = 3.) Our result, however, differs from [1], [4], [5] and [6]

in that L — L0, the perturbation, is a second-order differential

operator, whereas it is at most a first-order one in the latter works.

In §§ 2 and 3 some fundamental properties of L0 and L will be

mentioned. In §4 will be formulated conditions to guarantee the

existence of the wave operators. Some stronger conditions will be

proposed in £5 to assure their completeness. In the final §6 we

shall try to improve in a certain direction the result of § 5.

§2. The Operator L0 Associated with — A in R3

In this brief section we collect some known properties of the
differential operator {L^]u(x)= — AM(#), %<^R3.

Consider first the operator |~L0]0 defined on CQ=CQ(RS) (infinitely
many times differentiate functions with compact support) by
[_L0~]Qu = [L0']u. [L0]0 is well-defined as a linear operator acting in
the Hilbert space L2 = L2(R

Z), and, moreover, it is densely defined,
symmetric and non-negative definite. It is also known that [L0]0 has
a unique self-ad joint extension which is the closure [L0]cT of [L0]0,
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i.e., [L0]0 is essentially self -ad joint. We set L0 = [L0]o- A useful
characterization of LQ is provided in terms of Fourier transforms :

The Fourier transform of an L2-function u(x) is given by

(2. 1) u($ = (27r)-3/2 U.

where l.i.m. I --dx means that one first integrates over \x\ <R and

then takes the limit in the mean for J?->oo. The Fourier trans-

formation is a unitary operator on L2. We have

(2.2) D(L0) = {utEL2: |

(2.3) (L0*)(£)=lfl2*(?) for

where D(L0) denotes the domain of L0. If z is in the resolvent set
of L0, that is, in our case, if z is in the complement of [0, oo), then
the resolvent

(2.4) R,(z) = R(z;L0) = (L,-z)-1

of L0 is a bounded integral operator

(2. 5) /?0(2) U(x) = - -.u(y) dy ,
47r J \x—y\

\/~z designating the branch of the square root of z with non-negative
imaginary part. Here and in the sequel, an integral with integration
domain unspecified is agreed to be extended over all of R\

§3. The Operator L Associated with 2 ( ̂  + *y) a/*C°* + **) + 2

In this section we shall be concerned with the differential
operator

(3. 1) [L]tt(*) = E (D^bj(x))ajk(x)(Dk+bk(X))u(x) + q(x)u(X) .
J,k^l

We assume that

(C. I) \_&j k(x)~\ ^ a real, positive-definite-matrix-valued smooth func-

tion ; bj(x) are real, smooth functions ; q(x) is locally square

integrable, i.e. q^L2loc.

Thus [L] is an elliptic operator, and the operator [L]0 with D([L]0)
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= CQ is symmetric in L2 and is known to be essentially self -ad joint

under considerably general conditions on the coefficients ajk(x), bj(x)

and q(x) (see, e.g., Ikebe-Kato [2]). However, we are to impose

some stronger restrictions on the coefficients, or, more explicitly, we
are to deal with the case when [L] equals [L0]= —A asymptotically,

which will give us not only the essential self -adjointness of [L]0 but
also the identity of D([L]o) and D(LQ).

Lemma 3. 1. Assume in addition to (C. I) that

(C. II) [ajk(x)~] tends to [_SJk] uniformly as |#|->°o, and Dj-a^x)

are bounded, where SJk denotes Kronecker's delta.

Let

(3. 2)

(3.3) [M]0«(*) = [M>(*) for

Then [M]0 has a unique self -adjoint extension M=pW]o, and, more-

over, D(M) = D(LQ) = H2, which implies in view of the closed graph

theorem that

(3.4) const. \\u\\2 < | |Mw||H-||«li < const. ||tt||2

for u^D(M) with positive constants. Here \\u\\ denotes the L2-norm

of u, H2 is the totality of L2- functions whose distribution derivatives

up to the second order are square integrable, and \\u\\2 is the H2-norm

of u :

(3. 5) ||M||2 = j>||2+ ± \\DjU\\* + ± ilD.D^JI2]1/2 -
y=i y,*=i

Proof. Under conditions (C. I) and (C. II) it is known that [M]0

is essentially self -adjoint (see, e.g., Ikebe-Kato [2]). It is, therefore,
sufficient to show D(M) = H2.

Since a straightforward computation with (C. II) in regard shows

that the second inequality of (3.4) holds for u<^H2 = D(L0), we

have only to prove that D(M)dH2. According to a result of [2],

u^D(M) if and only if u^PI2iloc and [M]^eL2. Let us choose a

smooth function q>(x) such that <£>(#) = ! for x\<R (R>G) and
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cp(x) = 0 for | x \ > R+ 1. Now let u e D(M). Since obviously
it suffices to show (\. — <p)u^H2. For this it is enough to have
D(M(l — cp)} = D(L0(l — <p)). But we have, taking R sufficiently large

and noting (C. II),

(3.6) \\(M(l-<p)n-LQ(l-cp)u\\ < a\\L0(I-<p)u\\+ const, \\u\\

for weD(L0(l — <p)) with #<1, where we have made use of the facts

that ||L0w|| + l !w | | is equivalent with \\u\\2 and that \\DjU\\ is bounded
by c\\L0u\\ + d\ u\ , where c can be chosen arbitrarily small (while d

may have to be large). By a well-known theorem (see Kato [3],

page 190) (3.6) implies D(M(l-<p)) = D(L0(l-<p)) if we note that
M(l — <p) and L0(l — <p) are closed operators. Q. E. D.

Now we further impose restrictions on the coefficients bj and q :

(C. Ill) Djbk are bounded] q(x} = ql(x) + q2(x), where q^L2, and q2 is

essentially bounded

Theorem 3. 2. Assume (C. I), (C. II) and (C. III). Then [L]0 is

essentially self -adjoint, L = [L]o is lower semi-bounded, and D(L) = H2.

Proof. The differential operator [L] can be written as

(3.7) M = [M] + [T]f

where [M] is given by (3. 2) in the preceding lemma, and

(3.8) m = 2±/3/(x)DJ + >Yt(x),
j=\

(3.9) P/(x)=j}aJlt(x)bk(x),

(3. 10) <Y'(X) = ± D, /8/(«) + ± ajk(x) b,(x) bk(x) + q(x) .
j—1 j,k~l

Conditions (C. I) through (C. Ill) imply in view of (3. 9) and (3. 10)

that 0/(x) and jf(x) — q(x) are bounded. As already mentioned in
the proof of Lemma 3. 1, we have

(3.11) \\DjU\ ^a\\L0u\\+b\\u\\ with small enough a>0

for u<=D(LQ). Concerning q(x) it is known ([3], pages 302, 303) that

(3.12) \\qu\\ < a\\LQu\\+b\\u\\ with small enough a>0
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for u^D(L0). These facts together with Lemma 3.1 yield

(3.13) \\\_T]u\\ < a\\Mu\\^-b\\u\\ for u^D(M) = D(LQ}

with #<1, whence follows that [L]0 = [M]0 + [ T]0 has a unique
self -ad joint extension L, and D(L) = D(L0) = H2. That L is lower
semi-bounded follows from (3. 13) and the fact that M is non-negative

definite, which can be easily verified (cf. [3], page 291). Q. E. D.

§ 4. Existence of the Wave Operators

Consider two unitary groups UQ(f) and U(t), t^R\ associated

with L0 and L :

(4. 1) E/o(0 = e-«L* , 17(0 - e-»L .

If the strong limits

(4. 2) W= = W±(Ly L0) = s~ lim U(~-t)UQ(t)t~*±°°

exist, W± are called the wave operators for the pair (L, L0), and

then the scattering operator S for the same pair of self -adjoint
operators is defined to be

(4.3) S = S(L,L0) = W*W_.

A useful criterion for the wave operators to exist is given by
the following

Lemma 4. 1. ([3], page 533) Let LQ and L be self -adjoint oper-

ators in a Hilbert space. Let there exist a fundamental set D of the

subspace of absolute continuity for L0 such that for each u^D, UQ(t)u
eD(L0)nD(L) for £e[0, oo), (L~L0)U0(t)u is continuous in t, and

\\(L — LQ)U0(t)u\\ is integrable over [0, oo). Then W^(L9 L0) exists.

Similarly for W-(L, L0) with [0, CXD) replaced by (°°, 0].

In our case one obtains a second-order differential operator for

L-L0:

(4. 4) [L] - [L0] = [M] + [ V ] - [L0] = [A] + [B] + [C] ,

(4. 5) [A] = ± ajk(x] Dj Dk , ajh(x) = a/k(x) - Sjk ,
=
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(4. 6) [5] = ± j3j(x) Dj, 0j(x) = ± Dkajk(x) + 2 ± ajk(x) bk(x),

(4.7) [C] = 7(x) = ±Dj(ajk(x}bk(x}}+±ajk(x^ ,

where it should be noted that @j(x) and j(x) are different from
those primed given in (3.9) and (3.10). [A], [B] and [C] are well-
defined operators in L2 with domain H2, which will be denoted
hereafter by A, B and C, respectively, and AJrB+C = L — L0 is sym-
metric and relatively bounded by L0 (for the latter terminology see
[3], page 190), as can be seen from the discussion of the preceding
section.

In order to guarantee the existence of the wave operators we
impose besides (C. I) through (C. Ill) the following restriction on
ajh(x\ bj(x) and q(x):

(C. IV) For f(x) = ajk(x\ j3j(x) and *y(x) the following inequality
holds:

Theorem 4. 2. Let (C. I) through (C. IV) be satisfied. Then the
wave operators W^=W±(L,L0) exist and are isometries.

Proof. The isometry follows immediately if one proves the
existence. We shall show that

(4.8) (°°\\PU0(t)u\\dt< -

for u^D with P=A, B and C, where D is a fundamental subset of
L2 to be specified below, so that Lemma 4.1 is applicable to deduce
that W-\ exists. Here one should note that the subspace of absolute
continuity for L0 is all of Lz, or LQ is spectrally absolutely continuous,
which can be easily checked by (2. 3). A similar handling is possible

for W...
Let

(4.9) D= ( u : u ( x ) - exp (-|*-tf |2/2), a^R3} .

D is fundamental, because it is the set of all translations of a



490 Teruo Ikebe and Takao Tayoshi

positive L2-f unction. We have (see [3], page 534)

(4. 10) U,(t) u(x) = (1 + 2i7) - v exp ( - \ x - a \ 2/ (2 + 4if )) , u e L> .

It is proved in [3] that U,(f)u<=Ht = D(A) = D(B) = D(C) and that

(4.11)

Consequently one needs only to show (4.8) for P=A,B.

First take the case P=B. By (4.10) it follows that

(4. 12) DjUQ(t}u(x) = i(l + 2itY"/2(Xj-a^ exp (- *

which enables us to deduce the following estimate :

(4. 13) | BU0(t) u(x) = \ ± /3j(x) DjUQ(t] u(x} \

< const. 1 1 + 2it \ "1-c*/25 x-a\ -

(cf. [3], page 534), where p(x) = max \/3j(x) |, and use has been made
j

of the relation

(4. 14) max \rme~r2^ ; r>0] = (sm)m/2e-m/z (m>0, s>0) .

By virtue of condition (C. IV), which is also satisfied by f(x)=p(x),

it follows that

(4. 15) ||B U0(t)u\\ < const. (l + 4O"cl+*/)/2 , hf = hj2 ,

which yields (4.8) for P=B.

The case P— A may be dealt with quite similarly : If one notes

that

(4. 16) DjDkU0(t}u(x) = -
x

(4. 17) D/U0(t)u(x) =
- (1 + 2ityl/2 (Xj ~ atf exp ( - | x - a \ 2/ (2 + 4tf )) ,

one can obtain an inequality corresponding to (4. 13), which will lead
to (4.8) with P=A. (Note that the contribution of the first term

on the right of (4. 17) to a result of type (4. 15) gives a rate of
decrease in t more than required, as is seen by comparing it with

(4. 10).)
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Thus (4.8) is valid for P=A, B and C, and this completes the

proof of our assertion. Q. E. D.

§ 5. Completeness of the Wave Operators

A consequence of the existence of W± proved in the preceding

section is that the range R(W±) of W± is a reducing subspace for

L which is contained in, but does not in general coincides with, the
subspace Mac of absolute continuity for L. If R(W±)=Mac, W± is

said to be complete, in which case the absolutely continuous part of
L is unitarily equivalent to L0. If both W+ and W- are complete,
then, as is obvious from its definition (4. 3), the scattering operator

S is unitary. A criterion for the completeness of W± which plays
a fundamental role in this section is the following lemma stated in
[3] (page 545) :

Lemma 5. 1. Let L0 and L be self -adjoint operators with positive

lower bound. If L~m — LQ™ is in trace class for some m>0, then W±

exist and are complete. (For the definition of trace class see [3],

page 519.)

It should be remarked here that the above lemma answers not
only the completeness problem but also the existence one. However,
the lemma applied to our actual problem will require conditions
more stringent than those formulated in Theorem 4. 2. This is why

we have discussed the existence of the wave operators separately
in the preceding section.

Lemma 5. 2. Let (C. I)-(C. Ill) be satisfied (the assumption of
Theorem 3. 2). Then for z in the Intersection of the resolvent sets of
LQ and L

(5. 1) RQ(zY-R(*Y = RQ(z)zVRQ(z)F(z} + G(z)RQ(z) VRQ(z)zF(z) ,

where V=L — L0 = A + B+C in the notation of §4, and F(z) and G(z)
are bounded operators.

Proof. Conditions (C. I)-(C. Ill) are just to ascertain by Theorem
3.2 that L is a well-defined self -ad joint operator with D(L) = D(L0},
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so that the second resolvent equation

(5. 2) RQ(z) - R(z) = R0(z) VR(z) = R(z) VR0(z}

holds. By differentiation in z (or by multiplying by RQ(z) and R(z]

and subtracting) one obtains

(5. 3) R0(z)2 - R(z)2 = R0(z}2 VR(z) + R0(z) VR(z}2

where F(z) = (L0-z)R(z) and G(z) = the closure of R(z)(L0-z). It
now suffices to show that F(z) and G(z] are bounded.

R(z) is an everywhere defined bounded operator with range
R(R(z)} = D(L) = D(L0}, so that F(z) is everywhere defined. More-
over, F(z) is closed, since L0 — z is so. It follows by the closed
graph theorem that F(z) is bounded.

For G(z) we have (l?(e)(L0-2))- = (l?(«)(L0-e))** = ((L0-«)*J?(e)*)*
= ((L0-z)R(z))*, where we have used the fact that (HK)* = K*H*
if H is bounded. (L0 — z)R(z) is bounded as shown above, and so

is G(z). Q. E. D.
As (2. 5) shows, RQ(z) is an integral operator whose kernel we

shall denote by RQ(x, y ; z}. Let R^(x, y\z) be the kernel of the
integral operator R,(z)2 :

(5. 4) Rf\x, y ; z) = J R,(x9 s ; z) R0(s, y\z)ds.

Lemma 5. 3. Concerning RQ(x9 y ; 2) a^rf RQ^(x, y ; z) the follow-

ing estimates hold :

(5. 5) RQ(x, y\z)\< const, x-y \ ~l
e-

a\x-^ ,

(5. 6) | R^(x, y\z)\< const. e~
alx-yi ,

(5. 7) | DjRf*>(x, y\z)\< const, log ! x- y \\e-
a^^ ,

(5.8) \DjDjRf\x, y\ z)\ < const. \x-y -le~a^ ,

fe constants ("const." and a) depend only on z, and Dj =
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Proof. Straightforward. It would be enough to remark that
two integral kernels with singularities \x—y\~m and \x—y\~n will

yield the iterated kernel with singularity \x—y\3~m~n if m+n^p3

and log\x — y if m + n = 3 (0<w, w<3), and that because of the

symmetry in x and y of R0(x,y, z) and R0^(x, y; z), which follows

from (2. 5) and (5. 4), the operation DjDj applied to the variable x

may be interpreted as Dj acting on x and Dk on y.

Lemma 5.4. // j(x)^L19 then RQ(z)2CRQ(z} and RQ(z)CRQ(z)2 are

in trace class (see (4. 7)).

Proof. It suffices to prove the assertion for one of the two

expressions, for the other is in the form of adjoint of the first.

Consider, therefore, RQ(z)CR0(z)2. Let C = C'C", where C' and C" are

the operators of multiplication by sgn j(x) \y(x) |1/2 and \<Y(X) 1/2,

respectively (sgn y(jt;) = 7(#)/(y(#) | if j(x)^Q and =0 if y(x) = Q).

Since a trace-class operator is the product of the operators of

Hilbert-Schmidt type, we have only to show that RQ(z)C' and C"RQ(zf

are (to determine operators) of Hilbert-Schmidt type. But this is

obvious from the assumption of the lemma and (5. 5) and (5. 6) of

Lemma 5. 3; for instance,

(5.9) JJ |sgn 7(x) \7(x) \WR,(x, y ; z^dxdy

S
p -2a\x-y\

\<Y(x)\dx\? -dy< oo. Q.E.D.
J x-y\2

Lemma 5.5. // /3j(x)*=L19 then RQ(z)2BR0(z) and R0(z)BRQ(z)2 are

in trace class (see (4. 6)).

Proof. It is enough to check the assertion for R0(z)BjR0(z)2,

where Bj is the differential operator &j(x)Dj with domain H2. Bj

can be decomposed in the form Bj = B/B/f with 5/ = /3y(jO|/8y(*)|1/2

and B"= j3j(x)\1/2Dj. Now one can prove, by using Lemma 5.3

((5.5) and (5.7)) and the assumption that /3j(x)^L19 that R0(z)B'

and B"RQ(z}2 are of Hilbert-Schmidt type, the method employed being

similar to that of the proof of the preceding lemma. Q. E. D.
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Lemma 5.6. // ajk(x)^L^ then RQ(z)2AR,(z] and RQ(z)ARQ(z)2

are in trace class (see (4. 5)).

Proof. Similar to the preceding two proofs. Note that in the

present case use has to be made of (5. 8) of Lemma 5. 3.

Now we can prove the completeness of the wave operators.

Let us assume in addition to (C. I)-(C. Ill) that

(C. V) ajk(x)y fij(x) and y(x), as prescribed in (4. 5) through (4. 7),

are integrable.

Conditions (C. I) through (C. Ill) ensure by Theorem 3.2 that if

r is sufficiently large, then L + r is positive definite with domain

D(L0), while LQ + r is positive definite as is obvious from (2. 3). We

have

(5.10) (L + r)-2-(L0 + r)"2 = R(-r)2-R0(-r)\

which is seen to belong to trace class in virtue of Lemmas 5. 2,

5. 4, 5. 5 and 5. 6. This shows that the conditions of Lemma 5.1

are satisfied with m = 2 and with L and L0 replaced by L + r and

L0 + r, respectively. Thus W±(L + r, L0+r), which is obviously equal

to W±(L, L0), exists and is complete. We have thus proved the

following

Theorem 5. 7. Assume that (C. I), (C. II), (C. Ill) and (C. V) hold.

Then the wave operators W± exist and are complete, and the scatter-

ing operator S is unitary.

§ 6. An Extension of Theorem 5. 7

It is known (see Ikebe [1] and Kuroda [4]) that if q(x) behaves

asymptotically like x ~2~ s , and if L = ( —A-f #)o, then W±(L, L0) exist

and are complete, though the assumption on q(x) is not precisely

stated (see (C. VI) below). Note that the rate of decrease 0(\x\ ~2~s)

for q(x) is in a sense milder than the requirement that q^Lly

because the latter claims that q(x) vanish like \x\~z~* at oo if it

decreases to some negative power of x\. In this section we shall
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combine the above result of [1] with that of §5 to the effect that
we can in a certain respect weaken (C. V) concerning j(x).

Let ajk(x\ @j(x) and j ( x ) be as given by (4.5), (4.6) and (4.7).
In addition to (C. I), (C. II) and (C. Ill) let us assume that

(C. VI) ajk(x)9 Pj(x) and Im y(x) satisfy (C. V), i.e., they are inte-
grable. Re j ( x ) is locally Holder continuous except possibly at a
finite number of singularities, is in L2y and has the asymptotic
order O(\x\-2'*}, £>0.

Let L be as before, and let L' = ( — A + Re y(*))o. Then according
to [1] there exist the complete wave operators W±(U, L0), and
D(L') = D(LQ) = D(L). In order to prove the existence of the com-
plete wave operators W±(L, L0), it is sufficient, in view of the chain
rule for wave operators ([3], page 532), to show that W±(L, U)
exist and are complete. Here, the definition of the wave operators
has to be modified, however. Namely, we define

(6. 1) W±(L, LO = 5- lim U(-t}U'(t}Pr ,
t-+±°°

if the strong limits exist, where U(f) is the unitary group associated
with L', and P' is the orthogonal projection onto the subspace of
absolute continuity for L '. Now our criterion, Lemma 5. 1, on the
existence of complete wave operators is still applicable to "general-
ized" wave operators defined by (6. 1). Therefore, we shall examine
whether or not the conditions of Lemma 5. 1 are satisfied by L' and
L, or what comes to the same thing, as remarked in §5, by U + r
and L + r.

If we take r sufficiently large, U + r is positive definite, since
U is at any rate a special case of L formulated in Theorem 3. 2.
Thus the first condition of Lemma 5. 1 is satisfied.

Next, we check if (L' + r)~2 — (L + r)~2 is in trace class. Since
D(L') = D(L), V' = L-L' is well-defined and symmetric on D(L) = H2,
and

(6.2) V' = A + B+C' with C'u(x) = lmj(x)u(x] for

We note that C' enjoys the same properties as C in the preceding
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section. On the other hand, it has been established in [1] that

R(z; L'), the resolvent of Z/, is an integral operator (of Carleman

type) with kernel R(x, y ] z ) , and the properties of K(x, y; z),

investigated there, allow us to obtain the estimates (5. 5) through

(5. 8) of Lemma 5. 3 for R'(x, y ; z) just as for RQ(x, y ; z). This

enables us to have Lemma 5.4, 5.5 and 5.6 valid with R0(z) and C

replaced by R(z; L'} and C'. Putting these together, since Lemma

5. 2 obviously holds good if R(z; L'} and V take the place of R0(z)

and V, we see that (U + r)~2 — (L + r)~2 is in trace class.

Thus the conditions of Lemma 5.1 are satisfied for the pair

(L' + r, L + r). Consequently, we have

Theorem 6.1. Let (C. I), (C. II), (C. Ill) and (C. VI) be satisfied.

Then the wave operators W±(L, L0) exist and are complete.
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