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Note on the Spectrum of Some Schrodinger
Operators*

By
Teruo

§ 0. Introduction

Recently S. T. Kuroda has developed a new stationary method

of perturbation of continuous spectra using the technique of factori-
zation of the perturbation term ([2], [3]). The object of this note is

to show that his theory can be applied to ^-dimensional Schrodinger

operators which have first order differentiations with variable co-

efficients. Namely we consider the differential operator :

where bj and q are real valued functions. The case of «>3 will

ba treated in this note. This problem has been already treated by

Kuroda ([4]) in the case of bj(x) = Q. In this case our work agrees

with his result.

The author expresses his hearty thanks to Professor S. T. Kuroda

and Professor T. Ikebe who kindly read the draft of this note and

gave him valuable advices.

§ 1. Statement of the Results

Let H0 be the self -ad joint realization of —A in L2(Rn), where

domain ^)(H0) = ̂ )^(Rn^, We consider the following conditions:
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(I) For some constants a, pl and p2 satisfying

a>—y 2n>p±>n and 2n>p2>max(2, ^~

it holds that

x I }a bj(x] eLp^(Rn} (1 < j < n),

where bj(x) are continuously differentiate functions and

(II) For some p3 with n>p3>2, it holds that

(1+

Theorem. (a) Under assumption (I),

7%0 restriction L on S, the totality of rapidly decreasing func-
tions, has a unique self adjoint extension H19 with S)(/Z1) = ^iz(|?n).

The absolutely continuous part of Hl is unitarily equivalent to H0.

(b) Assuming further (II), we have :

The singular spectrum of Hj_ consists of non zero eigenvalues of

finite multiplicity and possibly zero. Negative eigenvalues have not

a finite limiting point. Zero is the only possible finite limiting point

for positive eigenvalues if they exist.

Now we resume results of Kuroda. Let H j ( j = Q,V) be self-

ad joint in a separable Hilbert space £>, Rj(z) = (Hj — z)~l be its re-
solvent for nonreal z. Let a- (fly) be its spectrum. Let ©/,flc(§yfj) be
the subspace of absolute continuity (of singularity) with respect to
fly. These concepts have been defined in Chapt. X of [1], Then

£>y ac and &y f j are closed linear subspaces of £>, are orthogonal

complements to each other and reduce fly. If ©ytac = ©, fly is said

to be absolutely continuous. fly flc(fly s) be the restriction of fly to

&j,ac(&j.s)> The set cr(HJ>ac)(o-(HJ>s)') is the absolutely continuous (the
singular) spectrum of fly and is denoted by crflc(fly)(o-5(fly)). We
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denote by 33 the space of all bounded linear operators from £> into

§ having the uniform operator topology. For any linear operator T

its domain (or range) is represented as ®(T) (or 5R(T)).

Consider the following conditions on Hj.

(K. 2) There exist linear operators A and B such that : (a) A

lies in 33, and is invertible with the range being dense in •§, (b)

-^^{(RQ(z}A) for any nonreal z, (c) (Hl-H0)u = ABu for we©(

(K.3) S(z)=A*{R0(z)-RQ(z)}A lies in 93, limS(X + f€) = S(X)
8*0

exists in 33, and this convengence is locally uniform in X of the real axis.

(K. 4) Q(z)=BRt(z)A is in 33, and completely continuous for

nonreal z.

(K. 5) limQ(X±/£) = Q(X±£0) exists in 35 for any real X, and54,0
Q(z) is a ^-valued continuous function on either the upper or the lower

half -plane, including the corresponding edge of the real axis.
f 1 1 1/2

(K. 6) The operator \^—.S(k) \ is Holder continuous with Holder
\L7tl )

exponent 0>l/2 on a closed interval I of real axis, and Q(z) is also

Holder continuous with exponent 9 on V or 7~, where

I+={z: Reze/, Imz^O} and I~={z: Rez^I, Im^<0}.

We can deduce the following theorem as a corollary of Kuroda's

theory ([2], [3]). The outline of the proof will be sketched in §3.

Theorem K. Under conditions (K. 1) to (K. 5) we have :

1° HO is absolutely continuous.

2° aac(H^ = o-(H^, and o-s(H^) is a closed null set.

3° There exist wave operators W±eS3 such that'. WfW± = l,

W±Wt = PlJHlW±=W±H0 and W± = $-limeitH^-itH* where
f->ic°°

1 is the identity operator, and where Pl is the projection to

&.ac.

Assuming further (K. 6), we obtain :

4° o-s(//1) n / consists of at most a countable number of eigen-

values of finite multiplicity which have no accumulation point

interior to I.
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§2. Proof of the Theorem

First we write

L= -

where a(x)t30(x) = q\x) = jbj(x} + bj(x}* + q(x) and «(*)

-2ibj(x) (!<;<»). Define (4O (*) = «(*)•/(*), (BJ)(x) = (3

(Bjf)(x)=/3j(x)—f(x) (Kj<») then we have formally H^
n VXj

for B^^Bj.
j=l

From now on we will take «(#) = (!+ I *!)"", then the operator

^4 belongs to S3 and satisfies conditions (a) of (K. 2). Operators J3y

with domains {/(jr)|/(^)eL2, (Bjf}(x)^L2} have closed extensions,

which are also denoted by Bj. For the proof of the first part of

(a), we have only to show that ®CfiT0) is contained in ®(AB) and
that for any £>0 there exists C5>0 such that for any u^^(H^)

\\ABu\\ <8\\H0u\\-rC,\\u\\

(Chapt. V of [1]).

Assume that D(B^i)D(Hfj) for ^ with 0</^y<l, then we have
for u<=D(H0) and k>l

\\BjU\\ =

By the closed graph theorem, BjRQ( — '}.Yj is bounded. Noticing that
for

we have the estimate that there exists Cs>0

for £>0 and u^^(HQ). Since ^L is bounded, we will obtain the

desired statements if ®(5y)iD®(#(/Y).
Now we will show the validity of this inclusion for

Since p,>n (condition I), we can choose /^7- such that A>s
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</*,•<!. If ue.D(H^i), the Fourier transform of u(x), «(£) satisfies
(l + \%\2Yiu(?)^L\Rn). Since p,>n, we have |/1 + f |y>eL*i(#")-

As ^w=£/l + |£lT'Xl + !£iy^, Zf&eLg(R*) for -L=-L+1 There-
? A ^

fore ^-weL«' with -^=1—1= 11 As /3,eL^ and -^ + ̂ =4:.
Qxj q' q 2 A ^' ^ ?' 2

we have BjU = @~u<EiU(R").
3 <yi

Next we treat the case j = Q. Since p2>-~-, we can choose ^0
Zj

satisfying A>- and 0<Mo<l. Then (1+

As « = (l+|f 2)-Ml+ f|2)^o^, u^Lq(Rn] f o r — = 4- + 4-- Therefore
1 1 1 1 ^ ^ 2

u<=Lq'(Rn) with A^i-J^^^-A. And finally we have BQu = /3Qu
Q Q £ p2

^L2(Rn), Thus the first part of (a) has been proved.

Now we start to check conditions (K.I) to (K. 5). For r>0

we define

Rn(r, z) = c+fzW-^-WHS,^ (v/Tr)
with

cn = iz-wv-i^-wv ; im ^y > o

and the z>-th Hankel function of first kind Hf\£). Then it holds
that for a nonreal or negative number z,

(#„-*)->/(*) = ( MRn(\x-y\,z)f(y)dy.
jRn

The following asymptotic representations are well known:

(H.I) flv
cl5(f)=-7r-12-vr(i/)r1' + 0(rv) as If |-^0 with I

(H.2) Jffv
cl)(f) = v/^(7T?)-cw^c^c2v+1DC*/4M

as |?|->oo with Im£X).

Taking ^(?)eC°° such that <^(?) = 1 for |?| <1 and ^>(f) = 0 for |f | >2,
we have

, M

Let IT be the complex plane which has a cut along the positive real
axis from 0 to oo, including both edges of the cut. Then Sw

cAO(r, z)
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can be regarded to be continuous in (r, z)e(0, °o) x (II— {0}). From
(H. 1) and (H. 2) it holds that :

Sa
m(r, ^) | < const, Sn

m(r, 2) = 0 for | \fzr > 2 ,

and that :

Sn'*\r, 2) | < const | z \ <"-«/», S^(r, z) = 0 for [ ^~zr I < 1 .

By the identity i (rv-Hi.w(?)) = -rv#v+i(?), we deduce that for

r= (2 */)'",

cK+2 r

n.F(x,z)

where SHJ*\xi z)=-cJcHl2-^-Sn^(r, z) (k = l, 2, l<j<n) .

These functions satisfy the estimates of the same type as Sn\2^
k\

Define n^= {z : N~l^\z\^N, Im^>0} for N>I, and similarly n^
for Imz<0. Noticing that SK

cl)(r, z) = rn~2$(\/~zr)Rn(ry z) and that

S^(r, z) = r^\\-$^r)}Rn(r, z\ using the identity ^H

= S'VjHv-icl:>(S')> we have the following estimates:

oz
, and -

for z^Hpf where CN is some constant depending only on N. There-
fore we have

and c'Nr

for z^n^ and
Letting Sn^(x, z} = Sn^(\x\, z), we define integral kernels

)^) (*=i, 2,

where X0 f l = « —2, X - />1 = « —1 (Kj<«) and X> f Z =

and integral operators:
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(0/*W) (*) = \R» Q/K (x, y ; *)/GO dy .

Formally we have Q(z) = BR0(z)A= 2 2 Q/*(s). We need :
y=o *=i

Lemma. For a given X satisfying n>\>0, assume that there

exist p, q such that — , — <-7S- ««rf — - + — = 1 — — . Consider an
p q 2 P q n

integral operator : (Kxf}(x)=\ ^(*M*> y^(y"> f ( y } d y , where <y(x,y)
JRH ,x y\

is continuous and bounded on R2n—{x=y}.

If a(x)^Lp(Rn} and /3(x)^Lq(Rn\ then K^ is a bounded operator

in L2(Rn) satisfying

a X1//'
Rn \u(x)\pdxj

Moreover if we assume further that a(x)^.Lp/(Rn) and /3(jt)e

Lg'(K") where p' and q' satisfy -1-A<_1<JL^ -! +—<!-—,
2 n p' 2 p' q' n

then Kx is completely continuous (due to Kuroda, see lemma 5. 3 of

.

Proof, Sobolev's inequality shows that I I 8^x"^y\
I jRnJRn \x-y\x

)!i^||Q||/||p for JP>l,Q>l,-l + -|->landX = »(2— p

([6]). Let A. = -L+A. and -L = -L + J^. Substituting the above
r Zi p v Z q

inequility for g=/3v and f=au where u, v^L2(Rn), we have readily

the first part of the lemma.

Let XN(x) be the characteristic function of DN= {x\ \x\ <A^}.

Define (K^ .
J 12W I -^ JV I

By our assumption on p' and #7, Kondrasev's Theorem ([7]) asserts

that an integral kernel, 7 _ |X> determins a completely continuous

integral operator from LP/(DN) to LQ/(DN) for ^V<oo with -^-, = —,
1 1 1 14-^- and -^=-^- — -^. Since we can regard a-%^ as a bounded
^ (J Z q

operator from L\Rn) to LP/(DN) and ^-X^ as that from LQ'(DN} to
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L2(Rn), we have that K^N-N:> is completely continuous from L\Rn}
to (L\Rn). But from the first part of the lemma, we have

\\Ki- KJ»-™\\ < \\K

< C(P,
-> 0 (as N tends to oo) .

Therefore Kx is completely continuous. Thus the lemma has been

proved.

In the above lemma, if we take «(#) = (!+ \ x \ ) ~ a where a>--9

and @(x)<=Lq where q satisfies -L-A<JL< * for -1— A>o and
£ Yl q £ £ 1fl

-^<1-A for A--A<o, then a(x)^Lp for any p with 4-<-^-

Since we can choose p and pf appropriately, the above lemma asserts
that Kx is completely continuous in Lz(Rn). More precisely, if /3(x)

where q^ satisfy that :

for \l = n — 1, q^>n ,

for X2 = ^ — 2, if ^ = 3, then 6>^2>2,

if n>3, then ft>-J-f^

for X3 = i

then /jC^. are completely continuous. Therefore 0/*)(^) are complete-
ly continuous if /SoGaOeEL^nL^ and if /5y(^)eL^nL?2 (l<y<«).
These being assumed in condition (I), we will obtain (K. 4) if the
operator Q(z), treated above, coincides with BRQ(z)A. We will show
this fact. From Sobolev's inequality it holds that if /eL2, then

^RH(\x-y\,z)a(y)f(y)dy€LL* for *>^>\-

This implies that ®(B}^3t(R0(z)A) ((b) of (K. 2)) and that our
integral operator Q(z) is equal to .B^oC^)^-

Naturally we can define Q(\±iO) for X>0 as the integral opera-

tor with the kernel ]>] Qfh\x, y ; X±fO) = lim 1] QP\x> y ; \±i€) for
j,fc s^o j ,k

Also Q (0) can be defined by putting Rn (r, 0} = (n-2)-1
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~n. We denote by QCN\z) the operator which is obtained

by the replacing /3j(x) by XN(x)@j(x) and a(x) by XN(x)a(x) in Q(z).
As in the proof of the lemma, we can show limQCN\z) = Q(z) in 33

N-*™

uniformly in z belonging to a bounded set of either the upper or
the lower half -plane including the real axis. The asymptotic formula

(H.I) asserts that if Ime t , Im£2>0 (or <0) and if \zl\, \z2\ and

r <JV, we have Rn(r, z^) — Rn(r, z2) = ±I% uniformly as \z1 — zz\ tends

to zero. This assures that QCN\z) is a 33-valued continuous function

on ImzX) (or Im£<0). Therefore Q(z) is a 33-valued continuous

function, which implies (K. 5).

As for (K. 3), we must consider integral operators A^(z] with

kernels: A<*>(x, y ; g) = > (k = l, 2). Since

behave similarly to Q0
cfe)(^), we omit to describe the check of this

condition.

Finally we will show that (K. 6) holds under conditions (I) and

(II). Let / be a closed interval on the real axis which does not
r\

contain zero. Since -— SHtf-\x, z) is bounded in z ell^, Qf\z)
o z

(0 <./<«) is Lipschitz continuous on I±. Next we notice that for

< const | zl — zz 1
9

since j-SnJ^ <CN\r\. Putting 0 = ~- + 8 and X4 = -—-!-£ (£>0),

the integral kernel of Q/2) fo) — Q/2) (z2) is estimated by const

l*i-*2 cl/2)+g/9j^ay for z19 z2tEll^. By the lemma if /8/eLff* with1 - 1 * A » ^ i A ^ J . / ^ - t V ^ f _ /

< — < —, the above kernel defines a bounded opera tore 33,
n #4 Z

Since we can choose £ arbitrarily small, condition (II) asserts that

Qj™(z) is Holder continuous on n^ with the exponent greater than 1/2.
f 1 11/2

The Holder continuity of {?r-^S(X) has been shown by Kuroda

incase n = 3 ([2]). He used the spherical coordinate representation
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of S(X). His method is also valid for n>3 if we take the ^-dimen-
sional spherical harmonics instead of the 3-dimensional.

Since limQ(X) = Q(0) holds, applying Theorem 1 of [5] to our
X<0

case, we know that negative eigenvalues do not accumulate at zero.
Another conclusions of our theorem follow from the result of
Kuroda.

§ 3, Remarks

1. Outline of the proof of Theorem K.

By (K. 1) we have the second resolvent equation:

Since A is bounded ((a) of (K. 2)), it holds that

Rtf)A = R,(z)A-R1(z) (H1-H^)R.(z)A .

Noticing that ®(fl)n®3SR(^,(«)>l) ((b) of (K. 2)), we have

(H1-H.)R0(z)A = ABRJ&A ((c) of (K. 2))
= AQ(z) ((K. 3)) .

Therefore the following identity is obtained.

(3.1) Rl(z}A(l + Q(z}} = RQ(z}A.

Define G0(z) = 14- Q(z) for Im z ̂  0 . If u e § satisfies that
M = Q then v = RQ(z) Au satisfies HjV = zv. Since Im z =t= 0,

self-adjointness of H^ implies that v = Q. Hence u = Q. Moreover
Q(z) is completely continuous ((K. 4)). Therefore there exists a
bounded inverse of (l + Q(z)). We write G1(z) = (l-\-Q(z))~1 for
Im2=j=(X Then we have from (3.1) identities

(R,

Let Sj(z)=A*{Rj(z)-Rj(e)}A for ; = 0, 1 and Imz^O. We have
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= (z-z)(Rk(z)AGj(z))*Rk(z)AGJ(z) (by (3.2))

This relation is rewritten as

(3.3) Sj(z) = Gj

where (/, *) = (0, 1) or (1, 0).

On the other hand it is well known that for a and j3 with

TT-.27T2

From this identity we obtain that for

(3. 4) f d(E;(\)Au, Av) d\ = — lim
Joi 27T/ 8^°

For j = 0 condition (K. 3) assures that

, Av) = -
27T/ ^

By the continuity of S(X), we can conclude that for any measurable

set co of the real line

2nl

(the integration can be performed in the operator topology). This

identity implies that 5R(A) is contained in §0f<IC. But Sft(A) is dense

in § and &Q>ac is closed. We know &Qiac = &. This means conclusion
1° of Theorem K.

By (K. 5) there exists

G0(X±i"0) = limG0(X±«£) =54,0

Since GQ(z) — I = Q(z) is completely continuous for Imz^O ((K. 4)),

G0(X±iO) —1 is also completely continuous. And G^^^Go^)'1 for

Im ^=^0. Therefore lemma 6.2 of [3] (or lemma 5.2 of [2]) assures

that there exists a bounded inverse of G0(X±z"0), G1(X±/0), for almost

every X of the real axis. We denote by e the subset of the real

line which consists of points X such that G0(X±/0) can not be
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invertible. Since G0(X±zO) is continuous in X of the real axis, the
complement of e, ef is open. Moreover G^z) is continuous on e'+ and
ef~ respectively, where e/+(e'~~)= {z : Re 2^0', Ime>0 (Im z<0)}.
Therefore we have for

G,(\ ± * 0) = Km GX(X ± i€) in S3 .B + O

Define S1(\±iO)=±Gl(\±iQ)*S(\)G1(\±iQ) for Xe[E0. By (3.3) it is
obtained that for

S,(\ ± * 0) - lim Sj(X ± ff) in
54,0

If (a, /8)ne = 0, the equality (3.4) implies that for &, v^$>

i, Av) = \ (Sl(\±iG)u9 v)d\ .
2ni J*

From this identity we conclude that for any closed set o> such that
0)00^0, it holds that

S1(\±iO)d\.i

Using this relation we can conclude that aac(H^ = o-(H^, and that
crs(H1)c^. This means conclusion 2 of Theorem K. We can also
deduce conclusion 3° of Theorem K as in the proof of Theorems 5.1
to 5.4 of [3] (or Theorem 4.1 of [2]). Finally conclusion 4° of
Theorem K follows from Theorem 7.1 of [3] (Professor Kuroda
kindly informed the author that the condition of Holder continuity
of Q(z) was missing in [3]).

2. Eigenfunction expansions.
Under conditions (K. 1) to (K. 5), we have more concrete know-

ledge concerning the spectral representation of Hlac by Kuroda's
criterion. Consider the following integral equation:

= *«- (
J

x
j-i Qy, Qyf

xRn(\x-y\: \^
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If g|2$cr4(//i), we can find the unique (x, Immeasurable solution of

^(x,® with \Rn(l+\x\YM\<pf(x,®\2dX<°°. Define (F±/)(f) =

(2n;)-v/*>( J(x)<p*(x,g)dx for / with (1+ l^|)YeL2(^K). Kuroda's
J 1?

abstract theorem (shown in [2]) asserts that F can be extended to an
isometric operator from £>1>flc onto L2(Rn), satisfying (F±P1£1(X)/)(f)

= Xx(%)(F±Plf}(%) where Xx(£) is the characteristic function of
{£ I i£!2<A,}. Moreover if it holds that (1+ \x\)aHJ^L2 for /e£,

then we have for \Z\*G*,(HJ,[£(^+bj^

% ^(x, f ) in the sense of distribution. Some additional information
of regularity of ^(x, £) will be obtained under appropriate condi-
tions on bj and q.

3. After this work was completed, the author heard the work of
Ikebe-Tayoshi ([8]) from Professor Ikebe. They treated a 3-dimen-

3 02 3 O

sional Schrodinger operator : L= — A + 2 ajjk(x) = — =— + 2 /3fe- — + 7-
j,k=i ' uXjUXfe k=i @%k

They have established the unitary equivalence of L and —A chiefly
using the condition of ajk, ft and j^U(R3). Their method is based
on the fact that if Rl

2(z) — RQ
z(z) is an operator of the trace class,

then the part (a) of our Theorem follows from Kato's criterion
(Chapt. X of [1]).
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