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The HoIomorpMc Equivalence Problem for
a Class of Reinhardt Domains
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Isao NARUKI

Introduction

The holomorphic equivalence problem for domains in Cn is very
difficult and up to now one who has studied this problem has been
forced to take one of the following two viewpoints to it. The older
one taken by many of complex analysts discussed mainly certain

special kinds of domains in C2 in order to obtain rather complete

solutions by case-by-case arguments. See for example [11], [9],
[4], [5], [12]. But without any essential modifications such methods

seem to cause difficulties when one tries to generalize them to the

case n>2. The other, rather new viewpoint which was initiated by
E. Cartan has only aimed at the investigation of bounded homo-

geneous domains in Cn and in this case the main tool is Lie group
theory, of course. See [3], [2], [8], [6], [7], [10].

But very little was done yet concerning the application of Lie
group theory to the equivalence problem for inhomogeneous domains

(even for Reinhardt domains). So this paper attempts, from the
group-theoretic point of view, to investigate the equivalence problem

for a special kind of Reinhardt domains in Cn, as was considered
by Thullen [12] when n = 2. The most difficult part of this problem

will be solved by Theorem A, which holds for general Reinhardt

domains and is also interesting in its own right. Holomorphic auto-
morphism groups of such domains are also explicitly determined.

See Theorem B. Unfortunately such simple domains are not ad-
equate to solve the equivalence problem for general Reinhardt
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domains except for the two dimensional case, as will be seen from

Theorem Bbis-. Nevertheless the author hopes that the method of

this paper would be a first step toward the general equivalence

problem for Reinhardt domains.

The author wishes to express his sincere thanks to Professor

M. Ise for suggesting this problem, and also to N. Tanaka for many

valuable advices.

Anouncement of Results

Let D be a bounded domain15 in Cn and A(D) be the group of

its holomorphic automorphisms. The identity component of A(D) is

denoted by A°(D). (Recall that A(D) is always a Lie transformation

group of D with respect to the compact open topology.) A bounded

domain D is called a Reinhardt domain if it is always mapped onto

itself by any of the following transformations:

T(f, -,Zn}z = (e^z^-,e^zn}

where, f1, • • • , f" are real numbers. The group of such transforma-
tions is denoted by T and the restriction of T to a Reinhardt

domain is also denoted by the same letter as far as confusion may

not occur. Note that T has the origin as its unique fixed point and

that T operates freely on D* for a Reinhardt domain D where we
set D* = [*ejD; 2^0, • • • , 2n=t=0]. These facts suggest us the import-

ance of the orbit OD of A°(D} passing through the origin and the

importance of the mutual relation of OD and D*. In fact we have

the following theorem which clarifies these matters.

Theorem A. Let D be a bounded Reinhardt domain in Cn and

assume that OD-D* = (Q), then OD = (Q).

When n=2, this is due to Thullen [2]. His proof has some
ambiguous points. Nevertheless the proof of this paper was sug-
gested by his, and will be carried essentially along the same line,
though it requires Cartan-Malcev-Iwasawa's theorem in the theory
of Lie groups.

1) Domains considered in this paper contain the origin unless otherwise stated.
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We shall now talk of the purpose of this paper. Let D^ be the

Reinhardt domain in Cn defined by ^ |2y|*j<l, a = (a19 ••- ,«„) tfy>0.;=i
Problem. Determine A(D(X) ! When are D^ , Dj mutually holo-

morphically equivalent ?
Theorem A gives us a partial answer to this. In fact, one sees

easily by Theorem A that A\Da} = T when «y=t=2 (l<j<ri), and that
DO,, Daf are mutually equivalent if and only if a = a' provided that

ay=|=2, a/ =1=2 for \<j<n. Theorem A and this last fact will be
proved in Section 1.

For the case aj = 2 for some j, the infinitesimal group 21 (A,)
of A°(Da) can be determined heuristically by fairly elementary argu-
ment. Although this is mere digression we include this in Section 2.

Section 2 also includes some results on the structure of $i(Da) which

will be important in Section 3.

In Section 3 we justify the result conjectured in Section 2 by
the induction on the number of independent variables. In summary
we obtain

Theorem B. Under previous notations §1(1̂ ) consists of all vecter
fields of the following form :

n \ r5 n / n / n

y- 2 c*z*k-/- + 2 (0+ 2 cikzh-( 2 ck
k = r + l J QZj j = r + l\ A = r + l J \A = r n

where cly • • • , cr ar^ r^<^/, cr+1, • • - , cw <3:r̂  complex, (cjk) is anti-Hermi-

tiany «! =t= 2, • • • , ar =t= 2, a^ = • • • = an = 2. Moreover D^ , D,,/ <^r^ mutually

equivalent if and only if a = af provided that a!>a2> ••• >aw , a/>

We also indicate here that the method presented in Section 2-3

is applicable to the equivalence problem for a more wider class of

domains as defined below. For a = (a19 ••• , as) and /=(*i, • • - , O
(where ay>0 (l<y<s), ip (l<p<s): positive integers) we define

the domain as follows :

a,/: 2(2 |^IT*<1^=1 j=l

where (^u, • • - , ̂ , z12, • • • , ̂ 22, — , ^, — , ^-5S) is the coordinate of
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Cn(n=Ylip). Without loss of generality we may assume that

«!=*=!, • • • , a,-!^!. Then we have the following theorem

Theorem Bbis-. 3l(DatI) consists of vector fields of the following

form:

(i) Re (g a-1 2 (2 *5.**,-(2 ckzks}zjp}^-
•

/ * h h Q
fii\ Op I v< /v-1 V1 V /•» ̂  °\ll) Ivc I 7 i OCp / i 7 , CjkZkp

f/" as=j=l where Cp=(c]k) are anti-Hermitian matrices.

D*,r> A/,/' are mutually equivalent if and only if a = af, I=T

provided that a^---^^, «/>•••>a/.
The proof of this is quite similar to that of Theorem B, and

causes mere inessential complications, therefore shall be omitted.

Section 1

As stated before we shall prove Theorem A in this Section.
Most of the notations introduced before shall be preserved here.
Before proceeding we shall introduce some notations. Let R" denote

[fo, • • • , xn): xf>Q, xz>0, - • - , xn>0~] and let R$ be [_(x19 • • • , xn):

^i>0, x2>0, • • • , xn>0~]. Define a mapping of Cn onto R+ by setting :

When K is a subset of J?+, K denotes U [_(x19 • • • , xn) : xl<yl, • • • ,

Proposition 1.1. L^ K be a arcwise- connected subset of R+

such that K—R+ = (0). Then every function which is holomorphic on

a neibourhood of n~l(K] has the unique holomorphic extension to a
neibourhood of 7t~l(K).

The usual proof of this depends on deformation of a cycle to
which Cauchy integral formula is applied and is fairly standard,
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shall be therefore neglected.
Now let D be a bounded Reinhardt domain such that OD — D*

= (0), which we fix in the whole Section. For brevity we set G=A°(D)
and also set S* = SnD* for every subset S of D. As usual OD

is naturally identified with the left coset space G/I where / is the
isotropy subgroup of G at the origin which is automatically compact.
Under this identification H/I is a complete inverse image of TT when
H is a Lie subgroup of G containing /. T acts freely on (if//)* and
under this action (H/I)* is a (trivial) principal fiber bundle over
n((H/I)*) with structure group T. Further n((H/I)*) is C°° mani-
fold of R+ (which is not necessarily a topological subspace).

Assertion 1,1. // (H/I)* is non-empty, then ?r((H/I)*) is a
\-dimensional submanifold of R+.

Proof. Define a holomorphic function / setting f(z) = z19 and
let h^H. Then it follows from OD-D* = (Q) that the intersection
of OJ and the analytic surface f«h~l = Q contains only one point h^o
(o; the origin). In particular it holds

(*) ff//n [*e=Z?: f-h-\z) =01 = (h-o).

Now let K be n(H/I) and notice that K satisfies the hypothesis of

Proposition 1.1. Draw a curve / from o in K such that lf}R+ is
non-empty and set S = 7t~1(i)r\H/I. Then we conclude S = TT~I(/).
For, suppose in contrary h-o<=S — 7r~l(l) where h is an element of H.
Then it follows from (#) that I//-A"1 is holomorphic on n~l(l), and
hence 1/f-tr1 can be holomorphically extendable to a neibourhood

of n~\l\ but this contradicts to /•h~1(h*o)=Q> where h-o^n~l(l).

Thus S = 7r~l(l), which implies dim 7t((H//)*) = ! since n(S) contains

an open subset of n((HfI)*). Assertion 1. is proved.
It follows in particular that 7r(O*,) is 1-dimensional. If we take

a maximal compact subgroup containing / as H, Assertion 1 shows

that 7t((H/I)*) a closed and open submanifold of n(0$). Since both
Og and (H/I)* are complete inverse image of TT, it follows either
that / is a maximal compact subgroup of G, or that G is compact.
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But the latter case must be excluded unless G = I. For suppose that

G is compact, and that OJ=l=$, then Tr(O^) is 1-dimensional and

K(OD) U (0) is compact. Let i/r be a diffeomorphism of R onto 7r(O£).

Set / = iK[fe/2: £<<?])• Then, since 7r(Og)U(0) is compact, / con-

tains -^([f e/Z : f >#]) for sufficiently large <z. Quite similarly to the
proof of Assertion 1, we deduce that / must necessarily contain

Tjr([t: t>a])9 and this is a contradiction. Thus, at any rate, we have

Assertion 1. 2. I is a maximal compact subgroup of G.

Now theorem A can be easily proved as follows. Suppose that

(G//)*4:0, it has the same homotopy type as n-dimensional sphere

since G/I is diffeomorphic to an Euclidean space by Cartan-Malcev-

Iwasawa theorem. While (G//)* is a principal fiber bundle with
fiber T over 7t(0$) which is diffeomorphic to R, and the homotopy

type of (G//)* must be same as T. Contradiction! Thus G = I9

which completes the proof of Theorem A.

Corollary A. A°(DC6) = T and D*, Da' are holomorphically equi-

valent if and only if a —a! provided that al>-">anj #/>•••>#,/,

*y=t=2, a/4= 2 (l<j<n).

In order to prove this, we need the following Lemma.

Lemma 1. 2. Let D, D/ be bounded circular domains in Cn. Then

any holomorphic isomorphism of D onto D' which leaves the origin

fixed is linear.

This is due to Behnke and H. Cartan (See [1] Satz 64). Now

we return to the proof of Corollary A. Recall that £>«, is defined

by the inequality Sl*yr><l. Firstly note that the former half of

this Corollary implies the latter half. For, if A°(Da) = T, every

element of A(Da) also fixes the origin since A°(Da) is a normal sub-

group of A(Da). Thus the origin is intrinsically characterized as

the unique fixed point of A(Da). Therefore every holomorphic iso-

morphism of Da onto Da' must necessarily maps the origin into

itself, and hence it must be linear by Lemma 1. 2. Similarly the

analytic planes Zj = Q (!</<«) are only 2n-2 dimensional orbits of
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A(Da), so one of these must be mapped into another of these by

holomorphic isomorphisms of Da onto D^. Thus these isomorphisms

are almost trivial ones, and the second half of Corollary A follows

immediately.

To show AQ(Da) = T, we proceed by the induction on the number

of independent variables. Actually this follows immediately from

the result of Thullen [2] when n = 2.

Now assume that n>2, and that A(Da)3=I(Da). (Hereafter we
denote the isotropy subgroup of A(D) at the origin by /CD).) It

follows from Theorem A that ODc6 contains a point z°^0 with z/ = 0

for some j. Let / be an element of A(Da) which sends z° to the

origin, and set T/£) = T(0, —, ' %*, —, 0). Then the 1-parameter

subgroup /• TyCf)-/"1 leaves the origin fixed, hence this is a subgroup

of T. (For, the result of the next section shows that /(A*) has T

as its identity component.) Therefore /-T^)-/"1 coincides with

Tk(±%) for some &,2) hence/ maps the plane zy = 0 to the plane zk = Q.

But our inductive hypothesis applied to these planes asserts that /

necessarily maps the origin into itself, which contradicts to 2°=t=0.

Thus A°(Da) = T and the proof completes.

Section 2

What is aimed at in this Section is to obtain a conjecture on

how the situation will be when the restriction #,-=)= 2 is dropped.

The case we are really concerned about is the following. Suppose

that a19 • • • , an are all positive even integers. In this case QDa is a

smooth hypersurface in Cn. So we can consider the differentiability

up to the boundary of Da, i.e. we can define C°°(D^, Diff (Da) as

usual. Set

A(DJ = [/eDiff(A.):

and let Sl(Da) denote the infinitesimal group of A(Da). (Here the

infinitesimal group of A(Da) means the Lie algebra of generators

2) Note that a 1-parameter subgroup of T leaving an analytic surface fixed must be
T/?(±<f) for some k.
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of all 1-parameter subgroups of A(Da), of course.) Clearly A(Da)
consists of all vecter fields of the following form

Re ( 2 fj(z)^] such that Re ( 2 ajzj \ Zj \ *r*fj(z)} I = 0
\J = 1 VZ > \ . /=l ' I9Z3oJ

where fJ(z)^C00(Da) are holomorphic in Drt.
/ n 8 \

The last condition means that Re ( 2 //*) «~~ ) is tangent to
\ y=i OZ j/

QDa. Let us now determine A(D») by solving the above boundary
value problem. In order to proceed we require some Lemmas.

Lemma 2.1. Suppose that elements /ifc), ••-,/„(*) of ^(D^) are
holomorphic in Da, and assume that

,(z) =/2(^) = - ^/w(e) = 0.

Proof. Set X= 2 //*) ^- - Then the hypothesis of Lemma 2. 1

implies that both X, X are tangent to QDa. In other word
X^ = 0 where we put i/r=2 «> ̂ -1- Further [X, X]=0 since

y
are holomorphic. Therefore

and hence

23 ay|ey|-r'|/Xe) 2
 9z?a = <8Sf^|XA-X> 9Z,a = 0.

This proves/y(*)=0 (.;' = 1,2, ••- ,«) .

Lemma 2.2. // c^ = • • • = an = 2, §1(1̂ ) consists of vecter fields of
the following form:

Re (2 (0+2 cjkzk~ (2 M*y)\ ; & & O

where c19 ••-,€„ are complex numbers, C = (cjk) is an anti-Hermitian
matrix.

This Lemma is an immediate consequence from the well known
fact that pseudo-conformal automorphisms of hypersphere in Cn are
projective transformations considering Cn as imbedded naturally in
P(Cn), but we prefer to give a direct proof.
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Proof. Suppose that elements f^(z)9 ••-,/*(£) of C°°(DJ
holomorphic in D^ and that they satisfy the boundary condition;

(**)i Re (2 Zjfj(z]

For a Cw-(0) and £\< \a\-\ we set

= 2 a/

Then (**}t may be written as below :

Adding to this the obvious identity Re (£F(a, G)-ZF(a, 0)) = 0, we
obtain

Re (?(F(0, ?)-F(0, 0))4-?F(«, 0)) |?|^ |ari = 0 .

Substituting f by -L^j— this, we have

(**).

Observe that the terms in the largest parenthesis are regular in the
disk f < a\~\ Thus we have

where C(«) is certain real function of ^.
s\T?

So ^- («, 0) = /C(fl) « ~2, whence (cjk) must be anti-Hermitian if

we set *y* = |̂ (0).

Setting f = 1 in (**)3 for a such that \a\ <1, we have

2 «y/y(«) = S «y(^y + S Cjkak- (2 ^^) «,')
j ; * *

where we set c=

Finally applying — to the both sides of this, we obtain the desired
Ouj

result.
Now we are ready to determine 3l(Drt)-

Proposition 2.3. // ay = 0 (mod. 2) ^wcf f/ ^=^2, • • - , ar=h2,
ar !! = ••• =ccn = 2 (Q<r<ri), $l(Da) consists of all vector fields of the
following form :
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Re(£—(icj- £ ckzk}zj-j- + £ (Cj+ £ cjkzk-( £ ckzJzj)-£-
V y = l « y *='-! JQZj J^r^ k=r-i k=r + 1 QZ .

where c19 • • • , cr are real, cr+19 • • • , cn are complex, C = (cjk) is anti-

Hermitian.

Proof. If r = 0, this is just Lemma 2.2. So we prove by the
induction on r. Assume r>0. For brevity we set z' = (z2, • • - , zn)
in this proof. (So for example f(zlyz

f) means f(z) (z = (zlyz
f}^)

Supppose that f19 • • - , fn^C°°(D^ are holomorphic in Da and that they
satisfy

Re(2ay^|V%/y(e)) ^-^^ = 0

where i>(e7) = 1— XI 2/1*' '- Adding to this the obvious identity

Re(a1|e1i^-2(e1/1(0,e/)-^1/1(0,O)=0, and using l^r^^CO, we
obtain as before

Re (arfte1)*19

Notice that the terms in the largest parenthesis are regular in zl in
the disk \zl\

a>^<^(z'). Hence we have

(**)4 L
Zl /

r1 *,/,(*)) = ,'C(*0

where C(^7) is a real function of 2'. Differentiating this twice with
respect to z19 we have

Or, equivalently

where we have put f1(z)=^ZlJ z^~f^ z'\ Notice that the left
%i

hand side is holomorphic in z = (z19 • • • , zn) while the right hand side
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is not holomorphic unless it vanishes identically. Hence

dz,2 dz* dz,2

Thus we may set

where //, // (l<j<w), /\2 are defined on •*lr(z')>Q and are holo-
morphic in •$•(%') >0. Substituting these into (**)4, we obtain

(**). a^Cz')/! V) + arfWrWi f?W +2 a, | zy j "r 2//(^) = 0

(**). a&WKW +H a,

Concentrating our attention on the domain Da° : ̂ (z')>Q, it follows

from (##)5 that

gayl^l^-^y/yV) 9^ = 0

to which Lemma 2. 1 can be applied, and hence we conclude

which together with (>^*)5 implies that fl
2(z')=fl°(z')=Q. Similarly,

it follows from (##)6

to which our inductive hypothesis may be applied, and we have

/,V) = ̂ (iCj- ±ckzk)Zi (.7=2,3, -,r)

n n

Substituting these into (**)6, we finally have
n

Jt\.e \ot\j \ \z j ~ L.I / 3 CfeZfej == u

so that

fW- 2(ic- ^c z}J i v6 / \lLi Z—k ^k^k)

for some real number cl.

Thus the Proposition 2. 3. is proved.
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Remark. The set of all vector fields as are written in the
Proposition 2. 3 constitutes an infinitesimal transformation group of

Dn which we shall also denote by 2l(A»)> even if al9 • • - , an are any

positive real numbers. Actually every element of 31 (A«) is complete
in Da. To see this one may only note that

\^-^(z^) = Q (mod. I*, *i-TH*0) Xz; = Q (mod.2y) O' = l,-,r)

for JfeSl(Aj)- We denote the Lie transformation group which has

31 (A») as its infinitesimal group by A(Da).
The rest of this Section we devote to investigate the structure

of 31 (A»), especially as a transformation group of Z^, and from

now on we allow ctl9 ••-, an to take any real numbers. To avoid
inessential complications we only deal with the case where ct1=|=2,
a2="- = an=2. Set

Su(»-l, 1) = [Ae^(», C) : Sp(A) = 0, A?+/A - 0]

where Sp means the trace, -1
1

' I/I
Clearly an element of §u(»—1, 1) can be written as follows:

{-Sp(Q

A =

where C = (cjk) is an anti-Hermitian matrix. Now define for this A

an element X(A) of 31 (A») by setting

X(A) = K

Then the mapping ^4->Jf(^4) is a Lie algebra isomorphism onto a

simple ideal of 21 (A,), which shall be denoted by 21* (A,), and 21 (A,)
is isomorphic to /2 + §n(w — 1, 1) (the direct sum of Lie algebras).

We shall now investigate orbits of 21(5 )̂ (i.e. maximal integral
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submanifold of SKA*)) and those of &*(A*)- At first note that each
element of 2l(A») is tangent to Da' = [z^Da: ^ = 0], and that the
restriction of 2l(A») to Da' is transitive. Thus Da' is an orbit of
2l(A»)- And it is also an orbit of 21*(A,). Direct inspection shows

that dim3l,(A.) = 2»-l if z^D«-D«', where 3l,(A,) =
While a straightforward computation shows that

Xlog (1-2 *y "'•) - Xlog \z, -i for
/>!

From these it follows that the submanifold Ma in Da defined by
|2x *i = *(l-SI*yr>) (0<fl<l) are orbits of §1(5.). Let ^ be the

/>!

projection of D^ onto IV which sends fo, • • • , zn) to (0, £2, • • • , £„).

Clearly //, maps orbits of 2KA») onto ZV and the intersection of each
orbit of 31(5 )̂ and i^~l(K) is compact when K is a compact subset
of D#. Therefore p also maps each orbit of 31*(Da) onto D^. For,
let N be an orbit of 21* (A,) and suppose that z'^DJ belongs to

Qij,(N). Then /A"1^7) ndN is non-empty since jm\Ma is proper as was
seen above. Now choose zQ^]UL~l(z/)f}dN and consider a sufficiently
small neighbourhood of z° whose intersection with each orbit of
31* (A») is mapped by ^ to an open set of Da' containing z'. The
existence of such a neighbourhood contradicts to zQ^dN. Thus we
have proved that //, | N is the covering mapping when N is naturally
topologized. While DJ is simply-connected, /z, | N is a diffeomorphism.

Quite similar treatment is applicable also to the case where
0^4=2, • • - , ar4=2, ar+1 =• • •=«„ = 2. In this case 2l(A») is isomorphic
to ^7+§it(^-r, 1), the mapping X: %n(n-r, l)->2l(Dflt) should be
defined as follows:

(cjk+SjkSp(C)) zk- (S ckzk) zj)-
j = , +1 £ = ' + '

'-Sp(C) cr+1-c
where A =

j=r + i k^r + i

(~SP(C)

c^

f
\ ° n

cr+1-cn 1

C = (cjk)
t
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The image of X is denoted again by 21* (Da). In summary we have
the following proposition.

Proposition 2.4. Suppose that 0^4=2, • • • , ar^2, ar +! = ••• = an = 2.

Then submani folds of D^, of dimension <2n — r defined by \zj\
(*i =

flfU-S \zk *0 (0<0,<1, j = l, 2, — , r) are the orbits of 21 (A.) and p
k>r _

maps each orbit of 21* (A») diffeomorphically onto Da. Here p is the

projection which sends (z19 • • • , zry zr^19 • • • , zn) to (0, • • - , 0, zr+1, • • • , ^w)

and ZV = [(0, -, 0, ^+1, -, ^eDJ.

Next proposition is important in the next section.

Proposition 2. 5. For #<zc/z element f of A(Da} there exists one

and only one element f of A(DC6
/) such that v>-f=f-v. Conversely,

for each element g of A(Da') there corresponds one and only one g of

A*(Da) such that ^g=g^.

Proof. The former half of this follows immediately from the
fact that

(mod. A,..., A)
\ 9* 99V

for JteSKD.).

The latter half follows from Proposition 2. 4 as follows. At first

observe that the mapping /->/ projects A(Da) onto A(Dt/) and that

this mapping restricted to A*(Da) is a covering onto A(Da). But it
must be one to one since each orbit of A* (Da) is diffeomorphically

mapped onto Da by //,. Explicitly g should be defined as follows :

where Nz is the orbit of A*(D^ passing through z.

Remark. The identity component of I(Da) has been completely
determined by the above consideration. For, this group consists of
only linear elements by Lemma 1.2, and elements of its infinitesimal
group are defined in the whole Cn and satisfy the same boundary
condition as in the case ay = 0 (mod. 2). Thus I(Da)c^A(Da), and
we have
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where U(n—r) denotes the unitary group for the last n — r variables
n

with respect to 2 I f / ! 2 -

If » = 2, ^(DJ-^A*) by Thullen [2]. So we would expect
that A°(Da)=A(Da). Fortunately this is true, which we shall show

in the next section.

Section 3

This section we shall devote to the proof of Theorem B. In
order to express the dependence on n (the number of independent

variables) of the statement of the Theorem B, we shall denote this

by Sn, and we proceed by the induction on n. As was noted at

the end of the Section 2, it suffices to show that S K _j implies Sn.

Primarily we shall prove that A°(Da)=A(Da). As before rearranging

the indices if necessary, we assume that 0^=1=2, • • • , ar^2, ar+1='~
= an = 2. If r = n, there is nothing to prove by Corollary A, there-

fore we assume that r<n.

Assertion 3.1. Any \-parameter subgroup of I(Da) which has

an analytic surface as its fixed point set is either Tj(^) for some

j (!<;<r), or f~lTr+l($f for some f^U(n-r). Further T/±£)
(l<j<r) is never conjugate to Tr+1(£) by any element of A(Da).

The first statement of this assertion is almost evident if one

note that for any 1-parameter subgroup gt of I(Da) there exists
f^U(n — r) such that f g t f ~ l is contained in T since T is a maxi-

mal torus of the compact group I(Da). The second statement also
immediately follows from the fact that [z^Da: Zj = Q~] (the fixed
point set of Ty(£) must not be holomorphically equivalent to (jze

Dc6:zr+l = Q~] (the fixed point set of Tr+1(f)) by the assumption of
induction.

To show A°(Da)=A(Da)9 it suffices to prove that ODc6 coincides

with ZV = [(0, • • • , 0, 2r+1, • • - , zn)eAJ since isotropy subgroups of
A(Da) and of A°(Da) coincide. Suppose, conversely, that z°=g-o^D^

for some g^A°(Da). By Proposition 2.5 we may assume zj+1=»-

=zn° = 0 since A°(Da') operates transitively on Da'. Then the 1-
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parametersubgroup g~lTr^(£)g leaves the origin fixed and hence

belongs to /(£>.). So g-1Tr+l&g=fTr+1(±$f~l for some /e U(n-r)

by Assertion 3.1. Therefore, if we replace g by gf, we may assume

g~1Tr+1(%)g=Tr+1(±%) and we still have z°=g>o. Thus g maps

Da° = [mz^Da: zr+1 = ff] onto itself and hence g\Da?^A(D€?). But

A(Da°) = A0(Da°) by our assumption of induction.

Hence the orbit of A(Da°) passing through the origin must coin-

cide with [_z^Da°: zl='~=zr = Q~] since A°(Da
Q) is a normal subgroup

of A(Da°) and since [_z^Da°: z1="' = zr = QT\ is the unique minimal

orbit of A°(Da°) by Proposition 2.5. Thus z° must be 0, which

contradicts to 2?$Da'. This proves that A°(Da)=A(Da).

Now we shall prove the second half of Sn. Suppose that Da, Da/

are mutually equivalent. Since A°(Da) = A°(Da)9 the minimal orbit

of A(Da) is unique. Then every holomorphic isomorphism of Da onto

Daf maps the unique minimal orbit of A(Da) onto that of A(Da').

Each of these orbits contains the origin, so that there exists a

holomorphic isomorphism which sends the origin into itself. Such

an isomorphism is linear by Lemma 1. 2. Thus a = a'. Theorem B

is completely proved.
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