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The Degenerate Case of Boundary Value
Problems Associated with Weakly

Nonlinear Differential Systems

By
Minoru URABE

§0. Introduction

The present paper is concerned with the boundary value problem

of the form:

(o. i) - -=AW*+/xo+e*a x, o,

(0.2)
« = 0

where x, /(O and X ( f , x , e ) are vectors, -4(0 is a matrix, e is a small
parameter, L, (z = 0, 1, 2,--, JV) are given constant square matrices, / is
a given constant vector, and

As shown in [1], boundary condition (0.2) is of much generality.
Let 0(0 be the fundamental matrix of the linear homogeneous

system

(0.3)

satisfying the initial condition 0(0) =£ (E is the unit matrix). The
case where the matrix

(0.4) G
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is non-singular was discussed already in [1]. Hence the case where

matrix G is singular will be discussed in the present paper.

First the boundary value problem with boundary condition (0. 2)

will be solved for the linear differential system

(0.5) -3^ = 4(0*+/(0

with the same A(t} as in (0.1).

Next by the use of the above result and an existence theorem of

a solution of the equation in Banach spaces established by the author

in [2], an existence theorem will be proved for the original boundary

value problem (0.1) —(0.2). The theorem obtained will be illustrated

with an example.

Lastly the theorem obtained will be applied to the boundary value

problem associated with the equation of the form

(0-6) -3p=*a*)+«0af,o.
The existence theorem obtained in the present paper is based not

on the common implicit function theorem but on the existence theorem

established by the author in [2]. Hence, in our existence theorem, is

given an explicit bound of a small parameter within which the ex-

istence of a solution is guaranteed.

§1. Boundary Value Problems Associated with
Linear Differential Systems

1.1. Lemma concerning linear algebraic equations. We shall

state a lemma concerning linear algebraic equations necessary for prov-

ing our theorem concerning boundary value problems associated with

linear differential systems.

Lemma. Given a system of linear algebraic equations

(1.1) Ax = b,

where A is an nxn matrix and x and b are both n-dimensional
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vectors. Suppose that the rank of A is n — m
Then linear algebraic system (1.1) possesses a solution if and

only if

(1.2) J6 = 0,

where A is an mxn matrix whose row vectors are linearly inde-

pendent vectors d«. («=1,2, • • • , m) satisfying

(1.3) d«A = Q.

In case (1. 2) holds, any solution of (1.1) can be given by

(1.4) x = OlKaCa + Sb,
a = l

where K^ (0=1, 2, • • - , m) are arbitrary constants, ca («=1,2, ••-, m)
m linearly independent column vectors satisfying

a ^ Ar —0. DJ -<l^a — v,

and S is an n x n matrix independent of b such that

(1.6) ASp = p

for any column vector p satisfying

(1.7) Ap = Q.

The first conclusion of the lemma is well known, but, for the con-

venience of proving the second conclusion, the complete proof of the
lemma will be given below.

Proof. Without loss of generality, we may suppose that matrix
A is of the form

1—./T.21 -O-22 —*

where An is an (n — m)x(n~m) matrix such that

(1.9)

Then, since the rank of A is n — m, there is an mx(n — m) matrix
such that
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(1.10)

Now put A= [Ji, J2], where A is an mx(n—m) matrix and J2 is an
mxm matrix. Then from (1.8) and (1.3), we see that

Since Azi=—AQAn from the first of (1.10), we then have

which, by (1. 9), implies

(1.11)

Then we readily see that

(1.12)

In fact, if det J2 = 0, then there is a non-trivial m-dimensional row vector

q satisfying qA2 = Q- Then by (1.11) we have qAi = Q and hence qA = Q,
which contradicts the assumption on the row vectors of J.

Now let us rewrite the given linear system (1.1) as follows:

(1.13) p4n A
A A

i-^±2l S* :;]•
that is,

^ 1(

If (1.14) possesses a solution col(#i, jr2), then from (1.10) it must
be that

(1.15) J0 £i + £2 = 0,

which, by (1.11) and (1.12), is equivalent to the equality

(1.16) Albl + A2bz = Q.

This proves the necessity of condition (1. 2).

Now suppose (1.16) holds. Then we have (1.15), consequently



The degenerate case of boundary value problems 549

by (1.10) and (1.15), we have

which shows that (1.14) is equivalent to the single equation

/'I "I H\ A nr I A Y })

By (1.9), the above equation possesses always a solution of the form

(1.18)

where r is an arbitrary m-dimensional column vector. This proves the

sufficiency of the condition (1. 2).

From (1.18), it is seen that if we put

a i Q^V C r/d"1 A~l A -i
. L\)) O — yin /In ^T-12 I ,

LO E J

then

(1.20) ASrb

Lr.

for an arbitrary m-dimensional vector r. Hence, if r = — /!„ bi, that is,

=Q, then we have

which proves the existence of a matrix 5 specified in the lemma.

Since Sb is a particular solution of the given system (1.1) under con-

dition (1.2), the general solution of (1.1) can be given by (1.4).

This completes the proof. Q. E. D.

If we put

(1.21) T!" f"iL_ w21 ^22"^

corresponding to the partioning (1. 8) of A, then by (1. 6) and (1.15)

the condition for the matrix S can be written as follows:



550 Minoru Urabe

i SI2-i-r pi -| = r pi
S21 522J L-Jo/J L-Jo

where pi is an arbitrary (n—m) -dimensional column vector. By (1. 10),
the above condition is equivalent to the condition

Since pi is arbitrary, the above condition is equivalent to the condition

where E is the (n — m)x(n—m) unit matrix. Since J o ^ — A2iAii by
the first of (1. 10), we readily see that the above condition can be
written as follows:
(1. 22) [Au9 An] -rSu

This is the sole condition necessary and sufficient for the matrix

S. Evidently matrix S of the form (1.19) satisfies (1.22), but matrix
5 of the form r^i1 0~| also satisfies (1. 22). It is thus clear that the

Lo oj
matrix S specified in the lemma is not unique.

1.2. Theorem concerning boundary value problems associated with
linear differential systems,,

Theorem 1. Let

(1,23) _ -

be a given n-dimensional linear differential system where A(t} is
an nxn matrix continuous on the interval I[Q,1] and f(f) is an
?i- dimensional vector continuous on L

Let @(t) be the fundamental matrix of the corresponding homo-
geneous system

satisfying the initial condition ®(&) = E, and suppose that the rank
of the matrix
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(1.25) G=SZ/0(*I.)

is n—m (l<^M<3z) for

and given square matrices Z,, (f=0,1,2, • • • , N}.
Then the given system (1.23) possesses a solution satisfying

the boundary condition

(1. 26)

(1. 27) J/~
»=o

where A is an mxn matrix whose row vectors are linearly inde-

pendent vectors da («=1, 2, • • - , m) satisfying

(1.28) JaG=0.

/^ azs£ (1. 27) /5 v^/iW /or given I and f(f), any solution of

(1. 23) satisfying boundary condition (1. 26) can be given by

(1.29)

^a (a=l, 2, • • • , m) (2r^ arbitrary constants, 0«(0 (<a=l, 2, ••• , m)
linearly independent solutions of (1. 24) satisfying the

boundary condition

(1.30)

5 fs (2: matrix independent of f(f) and I such that

(1.31) GSp = p

for any n-dimensional vector p satisfying

(1.32) Ap=Q,

and H(t, 5) is the piece-wise continuous matrix such that, for
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rflCOt^-SSL^Cf,)]*^) */
(1.33) H(t,s) = \

^-(D(t')SJ]Li0(ti~)-a>-1(s) if s^t.
i = k

Proof. Any solution of (1. 23) can be written as

(1. 34) *

where c is a constant vector. The solution (1. 34) satisfies boundary

condition (1. 26) if and only if

S Li 0(*f.) ' C + S Z,,- 0(*,0 T V1 (S)/(S) rfs - /,
y=o 1=0 Jo

that is,

(1. 35) Gc = /-Sii0(O?V1(5)/(5)rf5.
i = 0 Jo

Now by assumption the rank of G is n — m. Therefore by the lemma

in 1. 1 the constant vector c satisfying (1. 35) exists if and only if

(1. 27) holds. This proves the first conclusion of the theorem.

When (1. 27) holds, by the lemma of 1.1 the constant vector c

satisfying (1. 35) can be given by

(1.36) c = SjCa
a=l

where /ca G*=l, 2,---, m) are arbitrary constants, ca (a.= \,2,-~,m) are

m linearly independent column vectors satisfying

(1.37) Gca=Q,

and S is an nxn matrix independent of the right member of (1.35)

such that (1. 31) holds for any vector p satisfying (1. 32). Put

(1. 38) 0(0*a=*a(0 («=1, 2, -, m),

then evidently $a(0 («=1, 2, •••, m) are linearly independent and satisfy

(1.24). Moreover by (1.25) and (1.37), it holds that

(1.39) S£i*a(O = SA0(*i)-*«
»=0 1=0

= Gca=0.
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Now substitute (1.36) into (1.34), then making use of (1.38) and

(1.33), we have successively

(1.40)

= S «a 0cx (0 + * (0 S/ +
cc = l

This completes the proof. Q. E. D.

As was mentioned before, the matrix S specified in Theorem 1 is

not unique, but after it has been chosen once in any way, it will be

fixed throughout the succeeding discussions. Hence we may suppose

that H(t, 5) is a definite matrix and it depends only on matrices

-4(0 and L, (i = 0, 1, 2, • • - , #).

Remark. For an arbitrary ^-dimensional continuous vector function

/(O, Put

(i • 41)
By (1.40), the above equality means that

(i. 42) «(o= -

Hence it is clear that

(1.43)
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From (1. 42) we have also

(1. 44)

If

4 S £i 0 (if i) \ V1 (s)/(s) rfs = AV
f=0 JO

for some ^-dimensional vector /', then we have

and hence

GS [s £,0 (*,) T V1 (5)/(s) rfs - /'I
L*'=o Jo J

Then from (1. 44) we have

(1.45)

Now M(?) defined by (1.41) is continuous as seen from (1.42),
therefore formula (1. 41) defines a linear mapping in the space of con-
tinuous vector functions defined on /. Since the matrix H(t, 5) is de-
pendent only on matrices ^4(0 and L£ (i = 1,2, •-, JV), the mapping
defined by (1. 41) will be called hereafter the H-mapping correspond-

ing to matrices A(f) and Lf (i = Q, 1, 2, --,N).

§2. An Existence Theorem of a Solution

of the Equation in Banach Spaces

We shall state a theorem necessary for proving our theorem con-
cerning the given boundary value problem (0.1)~~(0. 2).

Theorem 2. Let F(#) be a function mapping an open set D

of a Banach space B± into another Banach space B2 which may co-
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incide with J5i. Suppose that the Frechet derivative /(*) of F(#)
is continuous on D and the equation

(2.1) F(*) = 0

possesses an approximate solution x = x^D, for which there are an

additive operator J mapping B± into B2, a positive number 3, and

a non-negative number k<l such that

(2. 2) / possesses an inverse linear operator J"1,

(2. 3) D*={x\ \\x-x\\<d, x^B,} c A

(2.4) \\JM-J\\<k/M on D8,

(2.5) Mr/(l-k)<8.

Here r(J^O) and M(>>0) are numbers such that

(2.6)

(2.7)
Then the given equation (2. 1) possesses one and only one solu-

tion x = x in D5 and moreover, for x = x, /"^OO exists and

(2.8) \\x-x\\^Mr/(l-k}.

This theorem has been already proved in [2] except the conclusion
on the existence of /~1(#). Hence only the outline of the proof will
be given here.

Proof. Putting X = XQ, consider the Newton iterative process

(2.9) xn+, = xn-T""F(x^ (« = 0,1,2, • • • ) •

Then making use of the equality

(2. 10)

o

by the induction we have

(2.11) ^xn+,-

(2.12) \\x^-
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The above inequalities show that the sequence {XH} is a funda-

mental sequence in DsdBi. Hence we have

(2.13) £

and moreover, by (2. 12),

(2.14) U

We can see easily that x is a solution of equation (2. 1). Thus we

see the existence of a solution of (2. 1) in D5 and the validity of in-

equality (2.8). The uniqueness of a solution in D8 can be proved

easily if we use an equality similar to (2. 10).

Finally let us prove the existence of /^O?). Write /(*) in the

following form:

(2.15) /(*)=/+ [/00-/]

where e is the identical operator. In (2.15), by (2.4) and (2.7)

I!/11

Hence by the well-known theorem we see that the operator
x\

— /] possesses an inverse. From this readily follows the existence of

This completes the proof. Q. E. D.

As stated in [2] , conditions (2. 3) — (2. 5) are related with the

accuracy of the given approximate solution x = x, in other words, they

prescribe the accuracy of the approximate solution which allows one to

assure the existence of an exact solution and the related conclusions

of the theorem.

§3. Boundary Value Problems Associated with Weakly
Nonlinear Differential Systems

In what follows, we shall denote by the symbol |[ • • • |[ the Euclidean

norm of vectors and the corresponding norm of matrices. For continuous

vector functions defined on the interval 7[0, 1], we shall use the uniform
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norm and dnct3 it by the symbol | • • • ! [ „ . Namely let /(£) be an arbi-

trary vector function continuous on I, then |[/(0ll« will mean sup|[/(£)||,
/e/

where ||/(0ll is the Euclidean norm of vector /(O-

In the present paragraph, our concern is about the boundary value
problem cf the following form:

(3-D

(3.2)
2 = 0

where x,f(t} and X(t,x,e) are ^-dimensional vectors, A(f) isannxn

matrix, e is a parameter, L{ (& = 0, 1,2, • • • , TV) are given nxn matrices,
/ is a given ^-dimensional vector, and

0= tQ<^ti<^t2<^''m<^.tN-l<^.tN= 1.

3.1. Setting of the problem and assumptions. In (3.1) we as-
sume that

A(f) and f(f) are continuous on I,

l,e for

lte for

where EO is a positive number, W(t, x, e) is the Jacobian matrix of
X(t, x, e) with respect to x, and J2 is the domain of the ta-space inter-
cepted by two hyperplanes £ = 0 and t = l such that every section of &
by an arbitrary hyperplane t = r (0<Ir<Il) is a non-empty open set of

the *-space.

We assume further that the rank of the matrix

(3.3) G=SL^(O
*=0

is n — m (l<^m<£n), where <D(t} is the fundamental matrix of the

linear homogeneous system

(3.4)

satisfying the initial condition ®(ff) = E.
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By the latter assumption, as stated in Theorem 1, there are m

linearly independent solutions 0a(0 («=!, 2, • • - , *w) of (3.4) satisfying

the boundary condition

(3.5) S£,X*,)=0
i = 0

and m linearly independent row vectors rfa G*=l, 2, • • • , w) satisfying

(3.6) daG=0.

For these 0«(0 and da, by the normalization we may suppose without

loss of generality that

(3.8) SKI!2=i.
a = l

Now by Theorem 1 our boundary value problem (3. 1) — (3. 2) pos-

sesses a solution for e = 0 if and only if

(3. 9) Al-

where A is the matrix whose row vectors are da («=1,2, •••, m). Then,

when (3. 9) is valid for /(£) and /, under what condition does our

boundary value problem (3.1) — (3. 2) possess a solution for small

Suppose that for small | e | >0, our boundary value problem (3. 1)

— (3.2) has possessed a solution x = x(t} such that (Jt,x(f)}^Q. Then

by Theorem 1 we have

(3.10)
a=l

+ [H(t, S) {/(S) +SX[S, X
Jo

(3.11) 4l

where iea (a=l,2, ~-,ni) are arbitrary constants, 5 is the matrix speci-

fied as in Theorem 1 corresponding to matrix G, and H(t, s) is the
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matrix of the H-mapping corresponding to matrices -4(0 and L{ (i
= 0, 1, 2, • • - , TV). Since e^O, condition (3.11) is equivalent, by (3.9),

to the condition

(3.12)

If we substitute (3. 10) into (3. 12), then we have

(3. 13)

which, as e->0, tends to the equality

(3. 14) JSL^aO^V'W^U ij
i = 0 Jo L a = l

' ~ = 0.

Thus we see that £/ /A^r^ rfo wo^ exist xa (a=l,2, —,m) satisfying
(3. 14), then our boundary value problem (3. 1) — (3. 2) cannot possess
a solution for small |e|>0.

The problem is thus to examine whether or not our boundary

value problem (3.1)^(3.2) possesses a solution for small |s|>0

when (3. 9) is valid and in addition there exist /ca=«£ (a=l, 2, ••- , m)
satisfying (3. 14).

Our setting of the problem thus includes the assumptions that
(3. 9) is valid for given vectors f(f) and I, and that there exist

Ka=t& (ct=\,2,-~,m) satisfying (3.14) such that the graph of the

function

(3.15) ^ = ̂ o(0

lies in domain Q for

3. 2. Various relating constants. Our theorem concerning boundary

value problem (3. 1)~~(3. 2) necessitates to introduce various constants.
Hence the definitions of these constants will be given in advance in
the present section.
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1° Constant £0>0. Constant dQ is a positive number such that

(3.16) £„={(*,*) , *e 7}

for #0(0 given by (3.15). The existence of such positive number d0

follows from the definition of domain £.

2° Constants 7fz->0 (i = 0,1, 2, 3, 4). Constants 7T0, K* and 7T2

are positive numbers such that

(3.17)

for any (^,^)ej20 and any e satisfying je!<l£o. Constants Ks and
are the positive numbers such that

for any (£, tf'X (£, tf")e,0o and any e', e" satisfying |e'

The existence of these positive constants is evident from the continuity

or the smoothness of the related functions and the compactness of the

domain of definition.

3° Constant HQ>0. HQ is a number not small than the uniform

norm of the 77-mapping corresponding to matrices ^4(0 and L; (i = Q,
1,2, • • • , N), that is, a number such that

(3.19)

for any vector function -^(0 continuous on /, where H(t, s) is the

matrix of the 77-mapping corresponding to -4(0 and Z,z (z = 0,1, 2, •••,

JV). Number HQ is always positive, because otherwise HQ = 0 and hence

(3. 20)

for any ^(O^C[7], which is a contradiction since (3.20) implies

i/r(0 = 0 by Remark in 1.2.

4° Positive constants L, V and W. Constant L is the number

such that
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(3.21) £\\L,\\ = L.
*=0

If L=Q, then L, = Q (i = Q, 1, 2, • • • , TV) and in such a case boundary

condition (3. 2) loses its proper meaning. Hence we may suppose

naturally that L>0.

Constants V and W are the numbers such that

(3. 22) sup||0(0 1 = F, supKfl-'CO ij = W.

Since $(0 is non-singular for any t^l, it is evident that V,

5° Constant K>0. Corsider the equation

(3.23) S*a0a(0=f(0,
a = ]

then j?f is a positive number such that

(3.24) U\<K\\v\n,

where K is an m-dimensional vector whose components are Ka (« = 1,2,

• • - , m).

Number K can be obtained in a following way.

First, according to the definition of functions 0«(0 (« = 1, 2, • • • , m),

rewrite (3. 23) in the following form :

(3.25)
a = l

where ^a (a=l, 2, • • • , m) are m linearly independent vectors satisfying

Next, take n — m linearly independent vectors cv (» = m + l, m + 2, ~-,ri)

so that clyC2,-'9cm,cm+i,'-,cn may be all linearly independent. Then,

if we denote by C the matrix whose column vectors are ct (/=!, 2, • • • ,

n), we can write (3.25) as follows:

from which readily follows

Hence we have
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Thus we may take K so that

(3.26) ^T=Wr-|[C-1|[.

3. 3. Theorem concerning boundary value problem (3.1) — (3. 2).

Theorem 3. For boundary value problem (3. 1) — (3. 2) , assume
that the appearing functions have the smoothness mentioned in 3. 1
and that the rank of matrix G defined by (3.3) is n — m Q<jn^n).

If (3. 9) is valid for /(£) and I and there exist Ka = i& («=1, 2, • • - , m)
satisfying (3. 14) such that the graph of function x = xQ(t} given by

(3. 15) lies in & and the Jacobian matrix J2 of the left member of

(3.14) with respect to Ka (<*=!, 2, • • • , m) is non-singular for Ka = K°a

(«=!, 2, • • - , w), then given boundary value problem (3.1) — (3. 2)
possesses an isolated solution^ x = x(f} for any e such that

(3.27)

where

(3. 28) £l = min eo,

LMVWLl-k

In (3. 28), k is an arbitrary positive number smaller than 1 and

(3.29) Af=max[l,2|[/i-1|[].

1) A solution x = x(f) of the boundary value problem

(i) d*-=x(jt,x)

(ii) T,Lix(ti)=l
i=0

^V
is called to be isolated if the matrix Zi L»0i(£i) is non-singular, where ^i(0 is

i = 0

the fundamental matrix of the first variation equation of (i) with respect to the

solution x = x(f) satisfying the initial condition (Di(fy=E. For details, see [1].
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For the isolated solution x = x(f), it holds that

(3. 30) U-x,\\^[H,

and moreover the solution of boundary value problem (3.1) — (3. 2)
is unique in the region

(3.31) \\x-x*\\.^^(?-\*\H*K,K)

for e such that

(3.32) 0<|e|<minU, „- "
\ I2Ql±0I\.

where
( i r 7-

/q QO\ s min J ̂  J-f PC

Proof. Let x = x(t) be an arbitrary solution of boundary value
problem (3.1) — (3. 2) such that (f,*(0)e.0. Then by Theorem 1 we
have (3. 10) and (3. 11). However by the assumption we have (3. 9).

Hence, if we replace Ka by ic^ + Ka, then for e^Q, using (3. 15), we have:

(3.34)

which is evidently equivalent to the system of equations

l(*,*; 0—

(3. 35)
J -P ff (*t

«? r C^3 j At o \«J y

where /c is an ^-dimensional vector whose components are Ka («=1, 2,
• • • , m). From the derivation of (3. 34), it is clear that for e=£0, (x(f), K}

with some A: is a solution of (3.35) if and only if x(f) is a solution
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of boundary value problem (3.1) — (3. 2).

Put

F(x,K; e) ={#(*,*; 0, F*(x,K\ e)},

then equation (3. 35) can be written as

(3.36) F(X,K-, e) = 0,

which can be regarded as an equation in a Banach space with unknown

{x(f),K}. Moreover, for small \s\,

(3.37) F^XotQ

is small and

(3.38) F2(*0,0

X-X" 5,

is also small as seen from (3.15) and (3.14). Hence {xQ(t),Q} is an

approximate solution of (3. 36). This suggests the application of

Theorem 2 to equation (3. 36) for assuring the existence of its solution.

Needless to say, the existence of a solution of (3. 36) implies the exis-

tence of a solution of our boundary value problem (3.1) — (3. 2).

Let us define the norms of {x(f),ic} and F(x,ic\ e) respectively by

(3- 39)

and let us examine the conditions of Theorem 2 one by one.

(i) The domain of definition of F(X,K; e)- For \\x-t

and H^ei, by (3.19), (3.17) and (3.7), we have

(3. 40) , s)X[s, x

Yvir 2V'2
^£ika )
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Hence we see that F(X,K\ i) are certainly defined for

(3. 41) |[#-*oi[^0 , |

and

(3.42) lel^ei.

Here it is needless to say that

(3.43) flo-ejflo/

since (3. 28) implies

XN

(ii) The Frechet derivative of F(X,K\ e) and operator J. Let

JK(JX,K\ e) and ]&(JX,K\ e) (/=!, 2) be respectively the Frechet deriva-

tives of Fi(jx,K\ e) with respect to x and K, and put

(3.44)

,«; e) ]K(X,K\ s)

Then evidently J(X,K; e) is the Frechet derivative of F(x,&\ e) with

respect to {#, «}. By our definition, from (3.35), it readily follows

that, for any continuous vector function h(f) and any m-dimensional

vector ^ whose components are A& 03=1, 25 • • • , M),

3=1

5,,
(3. 45) {

f1 1 f1

Jo J Joo

r

i ^
o ( L

PI

e\ jff(s,
Jo
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By the definition of J2, it is then clear that

(3.46) /22(*0,0; 0) = /2.
/x

Let us take operator / so that

(3.47) 7=/(*o,0;0).

Then by (3.45) and (3.46), the equation

(3.48)

means that

3=1

which can be solved as

fA(0 = *'
(3.49) \ 3=1

U=7rV.

This means that operator / has an inverse /~* and

(3. 50) {h, 4 = 7"1 (h', *'} •

From the second of (3. 49) we have

and from the first of (3. 49) we have successively

( «
s
3=1

= |[A'II .+IMI| .
Hence, by (3.29), we have

!/2 / m ..A1/2

ill
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which by (3. 50) implies

This shows that inequality (2. 7) in Theorem 2 is valid for / denned

by (3. 47) and M given by (3. 29).

(iii) The bound r for the residual error of approximate solution

{*,(0, 0}. From (3. 37) and (3. 38), by (3. 19), (3. 17), (3. 8), (3. 21)

and (3. 22), we have

(*0,0; 0 1| HlttGt.,0; e)||.+ ||F2U,,0; Oil

Hence we may suppose that

(3.52) r=\e\- [H0KQ-

(iv) The region A>. We define the region Ds by

(3.53) D*={{X,K} II*-*olI.+ lklI^K

where 3 is the number given by (3.33). Since (3.28) implies

LMVW

it is clear that

(3. 54)

which together with (3. 43) implies

(3. 55) £>0.

Now for any {x,ic}^D&, by (3.33), we have

This implies that any {x,ic}&D& satisfies the inequalities (3.41), that
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is, region D5 is contained in the region of definition of F(X,K; e) for

I e | <^ei . This means that our Ds fulfills condition (2. 3) of Theorem 2

for |£|^£l.

(v) Condition (2. 4) of Theorem 2. Let h(f) be an arbitrary

vector function continuous on / and I be an arbitrary ^-dimensional

vector whose components are ^a G*=l, 2, • • • , m). Then by (3.45) and

(3.47), we have

*GO, e] A (tf

i n m

H(s,d)X[(S,x(,i),*}d(S,e "S
o J 3=1

Hence, if |£|^El, for {j:,*}eZ?s, by (3.19), (3.17), (3.8), (3.21),

(3.22), (3.18), (3.40) and (3.7), we have

(3.56)

However by (3.28),

8! #0 #,

and by (3.33),

L VW[Ksd+

Hence for {x, K} e Ds and e | ̂ ei , from (3. 56) , we have
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, *; o -/] {h, $ ! ! < £ - - (

M

which clearly implies

for {X,K} eDs and |e|<^si. This shows that condition (2. 4) of Theorem

2 is fulfilled for H^.

(vi) Condition (2.5) o/ Theorem 2. For M^ei, by (3.52) and

(3. 28), we have

- [H,

and
Mr ^K, + LVW(H,

MK3 rIT ,

Ks LI 1-

+ (#0

L VW(H0

Hence by (3. 33), we see that

Mr ^
T=¥-5

which proves that condition (2. 5) of Theorem 2 is fulfilled for | e | <ii.

Through (i)~(vi), we have seen that for equation (3.36) the con-

ditions of Theorem 2 are all fulfilled by the approximate solution

{#o(0>0} provided [el^si. Thus by the conclusion of Theorem 2 we

see that for | e | ̂ ei, equation (3. 36) possesses a unique solution {x3 K}

= {&^^,K} in region D5 and moreover there exists /^(i, £; e) and
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(3.57) U-^l^U\

By the remark made in the beginning of the proof, x(t} is a
solution of boundary value problem (3.1)^(3.2). This proves the
existence of a solution of the given boundary value problem (3. 1) ~~
(3. 2).

Inequality (3. 30) in the conclusion of the theorem readily follows
from (3.57).

We shall now prove the isolatedness and the uniqueness of the
solution x = x(f).

1° Proof of the isolatedness. The first variation equation of
(3.1) with respect to x = x(f) is

///?
(3.58) -

and hence for proving the isolatedness of the solution x = x(f),it suffices
to prove that equation (3. 58) possesses no non-trivial solution satisfying

(3.59) SI,Aa) = 0.
i=0

XX

In fact, let ®(f) be the fundamental matrix of (3. 58) satisfying the
XX

initial condition (&($) = E. If x-=ot(f) is not isolated, then by the
definition of the isolatedness it holds that

therefore there is a non-trivial vector c satisfying

(3.60)

Put

then this is clearly a solution of (3. 58) and moreover satisfies (3. 59)
on account of (3.60). This says that if x = x(f) is not isolated, then
there is a non-trivial solution of (3.58) satisfying (3.59), in other
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words, if (3.58) possesses no non-trivial solution satisfying (3.59),

then x = x(t} is isolated.

Now let /z(0 be an arbitrary solution of (3. 58) satisfying (3. 59).

Then by Theorem 1 we have

(3. 61)

(3. 62)

for e^=0, where Aa («=!, 2, • • • , m) are arbitrary constants. Rewrite

(3.61) as

then by (3. 45) we have

(3.63) /ii(*,£; e)/2 + /i2OM; e)J = 0,

where A is an m-dimensional vector whose components are Aa («=1, 2,

•~,ni). Next substitute (3.61) into (3.62), then we have

e Ms, ^
(Jo j

which by (3. 45) means

(3-64) /2iOe,/3;

The above equation together with (3. 63) implies

Since /Of, £; e) has an inverse, we thus have

{A,^}=0,

that is,

A(^)=0 and 4-0 (a=l,2, • • - , w).

This proves that equation (3. 58) possesses no non-trivial solution satis-

fying (3. 59). By the remark made in the beginning, this implies that
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the solution x = £(f) of boundary value problem (3. 1) — (3. 2) is isolated.

2° Proof of the uniqueness. Let x = x(f) be an arbitrary solu-
tion of the given boundary value problem (3. 1)~~(3. 2) lying in region
(3. 31) for e satisfying (3. 32).

In (3. 31) it is needless to say that

for e satisfying (3. 32).

Now, since x = x(f) is a solution of boundary value problem (3.1)

— (3.2) for £=£0, equalities (3.34) hold for present x(f). Then from

the first of these equalities we have

Then for the M-dimensional vector K whose components are Ka Gz=l,

2,-,w), by (3.24), (3.31), (3.19) and (3.17), we have

t + K
K

1 + K

Then by (3. 31) we have

which means that {x(f),K}^Ds. Since {x(f),K} is a solution of (3.36)
and (3.36) possesses a unique solution {x(f),tc} in D5 for l e |<^e i , we
thus have

This proves the uniqueness of the solution of boundary value problem
(3.1) — (3. 2) in region (3.31) for e satisfying (3.32) and this com-
pletes the proof of the theorem. Q. E. D.

Remarke The solution x — £(£) obtained in Theorem 3 is isolated
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and hence it will be possible to compute such a SDiution on a machine

starting from the approximate solution x = xQ(t} if one uses, say, the

method developed by the author in [3].

3. 4. An example. Theorem 3 will be illustrated with the boundary

value problem:

(3. 65) X + ±n2X = e(f)+ef(t,X,X,e) (• =d/df),

(3.66)

Put

(3.67)

then corresponding to (3.65) and (3.66), we have

(3.68)
(Xz= -2n%i + —-e(t)^—-f(ty Xlf 2nX2, s),

Zn ZTC

(3.69) ^(0) = /lf jr,(l) = /z.

Comparing these with (3. 1)~(3. 2), we see that

(3. 70)

]'
N=l, tQ = Q, ti = l,

1 01, A=rO
.0 oJ Li oJ U2J

(3-71) IT - GI, A=ro on, /=r/l1
Li

By (3. 70),

r 0(0

(3.72)

l(5~1(0 = r cos 2^
L sin2nt cos2nt-l

consequently
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(3.73) G=2]Z,,<Z>a) = rl DI .Li CJ
Then m = l and we may take 0i(0» di and 5 so that

(3. 74) * (0 = in fcrf , rf,

(3.75) S = rl Oi.r1 °T
LO OJ

Then we readily see that

(3.76) f#OU) = T ccs27r(f-s) sin2;c(f-s)-| for

-s)J

) = 0 for

Thus, in the present example, we find after elementary calculations

that

1° condition (3.9) of Theorem 3 is

(3. 77) ll-
 1

l z - -
Zn Jo

2° *0(0 given by (3. 15) is of the form

1 f
#0(0 = r K° sin 2nt + h cos2nt + ̂ \ sin 27r(£- s)(3. 78) 0 Zn Jo

i r^
-s— \ cos27r(£ — s)
ZTT Jo

3° equation (3. 14) of Theorem 3 is

(3. 79) r/l t, Ksin2nt + l1cos2Tt:t^-l-\t

Jo L Zn Jo

2nK cos 2nt ~ 2nli sin 2nt + \ ccs 2;r (f — 5) • g (5) rf5, 0 sin 2?r^ dt

= 0.

Hence by Theorem 3 we see that if f(t, x, x, e~) is twice continuously

differentiate with respect to x, x and e, equality (3. 77) is valid for

/i, /2 and e(f), and there is K = KQ satisfying (3.79) such that the de-
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rivative of the left member of (3. 79) with respect to K dees not vanish

for K = KQ, then for sufficiently small |e|, given boundary value problem

(3.65)^(3.66) possesses a unique isolated solution x = £(f) which

converges to xQ(f) given by (3. 78) as s-»0.

If we replace boundary condition (3. 66) by

(3.660 *(0) = *(!), *(0) = *(!),

then instead of (3. 71), we have

o-i, Li=-rl o-i, /=
(3.7io r~

LO iJ Lo iJ LoJ
Hence instead of (3. 73), (3. 74) and (3. 75), we have respectively

(3.73') G=0;

(3.74') *i(*}

(3.75') S = rO On.
Lo oJ

Thus, in the present case, we find that

1° condition (3. 9) of Theorem 3 is

(3.770
Jo Lcos2nt

2° #0(0 given by (3. 15) is

(3. 780 -
y 2

- — 2 -
i/2 27T

3° equation (3. 14) of Theorem 3 is

(3.79') /- . .dt=Q,
Jo Lcos27rrJ
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where

(3. 80) f=f\t, -4=-Oti cos27r? + A:2 sin 2*0 + — t' sin 2* Of -s) -e(s)ds,
L 1/2 2n Jo

r»f 1
7rO + \ cos27r(£ — s) -e(s)ds, 0 I .

Jo Jv 2 Jo J

Hence by Theorem 3 we see that if f(t, x, x, e) is twice continuously

differentiable with respect to X9 x and e, equality (3. 770 is valid for

0(0* an(i there are Ka = K°a (<z=l, 2) satisfying (3.790 such that the

Jacobian of the left member of (3.790 with respect to Ka (a =1,2)

does not vanish for Ka = K°a (a =1,2), then for sufficiently small |e ,

given boundary value problem (3. 65) and (3. 660 possesses a unique

isolated solution x = x(t} which converges to #0(0 given by (3.780

as e—*0.

§4. Application to Boundary Value Problems Associated

with Nonlinear Differential Systems Containing

a Small Parameter

Nonlinear differential systems containing a small parameter can be

written in the form (0. 6). In the present paragraph, by the application

of Theorem 3 the following boundary value problem will be solved:

j?-
(4.1)

(4.2) S •£,£(*«) = *,
N

where ?, 3(t, ?) and B(t, f, e) are ^-dimensional vectors, e is a parameter,

LI (£ = 0, 1, 2, ••• , JV) are given ^x^ matrices, / is a given ^-dimensional

vector, and

4e 1. Preliminaries. In (4. 1) we suppose that 3(t,$) is four times

continuously differentiable with respect to <? and $(£,?, e) is three times

continuously differentiable with respect to f and e for (^|)ej2 and

1 s I ^gn , where s0 is a positive number and Q is the domain of the t$-
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space intercepted by two hyperplanes £ = 0 and t=l such that every

section of & by an arbitrary hyperplane t = r (0<Ir<;i) is a non-empty

open set of the £-space.

W"e assume that the unperturbed system of (4.1)

(4.3) te=E(t,z)

possesses a solution z = fo(0 satisfying boundary condition (4,2) such
that the graph of f = ?0(0 lies in ti for 0<^<;i. By the assumption
on @, it is clear that there is a positive number dQ such that

(4. 4) Q,= (a f) i ilf-fo(0ll^o, *e/[0, 1] } d£.

Let y(t, f) be the Jacobian matrix of E(t, f ) with respect to £
and put

(4.5)

Then the linear differential system

(4.6)

is the first variation equation of (4.3) with respect to the solution
z = fo(0- Let $(0 be the fundamental matrix of (4.6) satisfying the
initial condition $(0) = E. When the matrix

N

z = 0

is non-singular, that is, the solution £ = ?0(0 is isolated, boundary value
problem (4.1)~(4. 2) has been already solved in [1]. Hence in the
present paragraph the case where G is singular will be discussed.

Suppose that the rank of G is n — m (l<^w<^)- Then according
to Theorem 1, we have m linearly independent solutions 0a(0 (#=1, 2,
•~,m) of (4.6) satisfying the boundary condition

m linearly independent vectors Ja («=1, 2, • • • , m) satisfying
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and the matrix H(t, s) of the .//-mapping corresponding to matrices

A(f) and Z,, (i = 0, 1, 2, — , JV).
The symbols necessary for succeeding discussions will be now

introduced.

1° F(X f), Q±(t, g, e) and ®2(t, £, e). r(jt, f) denotes the Frechet
derivative of W(t,g) with respect to <?, ®i(£,?, e) denotes the Jacobian

matrix of ®(t,£, e) with respect to ?, and ©2(^^e) denotes the deriva-
tive of ©(#,f, e) with respect to e.

2° J. J denotes the matrix whose row vectors are da (a=l,2,

•••,m).

3° 0Q, CaB, Ca and C0 (a, j9=l, 2, • • - , M). These symbols denote

respectively the following m-dimensional constant vectors:

(4.8)

2=0

Ca= J 2^0(0 J(0 rt^ fo(0] ^a 5)0 [5,
o

x ^ ( ^ 5 ) 0 [ 5 , f , ( s ) , 0 ] d s - H ( t , s)0[s, f,(s), 0]rfs
Jo Jo

+ 20![t,f0(0,0] • T#a, s)0[s, Us), Vds

4.2. Theorem concerning boundary value problem (4.1) —(4. 2).

Theorem 4, For boundary value problem (4.1) —(4. 2), assume

that the appearing functions have the smoothness mentioned in the

preceding section and that the rank of matrix G defined by (4. 7)

is n—m
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// ©o = 0 and the equation

(4. 9)
a. 0=1 a = l

possesses a solution Ka = K°a (a = l,2, • • • , m) for which the Jacobian of
the left member of (4. 9) does not vanish, then boundary value prob-

lem (4.1) — (4. 2) possesses a unique isolated solution ?=!(£) in the

neighborhood of

(4.10)

for sufficiently small e|>0, and for such f(0> it holds that

(4.11) ll?(0-f(OII. = 0(s2) (— 0).

// 6)0^0 and the equation

(4.12)

possesses a solution Ka = K°a (a=l,2, • • • , w) /or which the Jacobian of

the left member of (4. 12) d0£s ^o^ vanish, then boundary value prob-

lem (4.1) — (4. 2) possesses a unique isolated solution ?=i(0 in the
neighborhood of

(4.13)
oc = l

for sufficiently small \ e \ >0, and for

(4.14) ||f (0 - f(0 If, = 0(e) (s->0)

Proof. Put

(4.15) £ = f0(0+£y* G>=1 or 1/2)

and suppose that

(4.16) \ev\'\\x\[<8Q.

Then substituting (4.15) into (4.1), we have
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However by the mean value theorem, we have

Hence we can rewrite (4.17) as follows:

/ * •
(4.18) J5L±_ =

at

Now let us consider the case where v=\. In this case, (4.18) is

of the form

(4.19) =

where

(4. 20) X(t, #, e) = T f T [*,
Jo Jo

M r[t,g0(t)+
Jo Jo

+ \ '0! [f , f o (0 + ^e^, 0e] ̂  • ̂  + \®2 [t, f o (0 + 0e*,0e] rf0.
Jo Jo

Equation (4. 19) is of the form (3. 1) and moreover, for the solution

I =f (0 of boundary value problem (4. 1) — (4. 2) with e^=0, from (4. 15),
we have

(4.21) S £!*(*,) = <).
z=0

Since -Y(f, ̂ , e) is twice continuously differentiable with respect to x

and e from our assumption, we can now apply Theorem 3 to the weakly

nonlinear differential system (4.19) with boundary condition (4.21).
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For this boundary value problem, as seen from (4.8), condition (3.9)

of Theorem 3 is

and equation (3. 14) of Theorem 3 is

- ,
Z

X ] £000(0 + H(t, S)6> [5, f0(s), 0] rfs
J3 = 1

which, by (4. 8) , can be written as

Hence by Theorem 3 we get the first half of the theorem except for

the isolatedness of the solution ? = ?(0-

To prove the isolatedness of the solution ? = ?(0> consider the first

variation equation of (4.1) with respect to the solution ? = ?(0- As

readily seen, it reads

(4.22)

On the other hand, as seen from (4. 17), the first variation equation of

(4.19) with respect to its solution x = ot(f) is

(4. 23) -&- = {W [t, f0(0 +e*(0] +^i V, fo(0 +e*(0, e] }^-

Equation (4.22) then coincides with equation (4.23) since 1(0 and

A(f) are connected by

as seen from (4.15). Now by Theorem 3 the solution x = x(t} of
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(4. 19) is isolated in the case under consideration. Hence we see that

the solution f = 1(0 of the given boundary value problem (4. l) — (4. 2)

is also isolated. This completes the proof of the first half of the

theorem.

To prove the latter half of the theorem, let us consider the case

where y=l/2 in (4.18). In this case, putting

(4.24) e1/2 = ̂ ,

we can rewrite (4. 18) in the form

(4. 25)

where

(4.26)

In this case, condition (3. 9) of Theorem 3 becomes an identity and

equation (3. 14) of Theorem 3 becomes

which, by (4. 8), can be written as

a, 3=1

Thus, in a similar way as before, we get the latter half of the theorem.

This completes the proof. Q. E. D.

Remark 1. Theorem 4 is an extension of Theorem 3. To clarify

the relationship between these theorems, consider the case where B(t, ?)

is linear in ?, that is, 5(t, I ) is of the form

Then by Theorem 1 the existence of a solution £ = ?0(0 °f (4. 3) implies

the validity of condition (3. 9) of Theorem 3 and vice versa. More-

over by Theorem 1 solution £ = ?0(0 is of the form
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lo(0 = S««*a

where A:a («=1, 2, • • • , m) are constants. Condition "<90 = 0" of Theorem

4 means then

(4.27)

which is nothing else equation (3. 14) of Theorem 3.

When B(t,£) is linear in ?, it is evident that F(£, ?)==0. Hence

CctiB-O («,|3 = 1,2, — , w) and

(4. 28) Ca=

Then equation (4. 9) of Theorem 4 becomes

(4.29)

and the non-vanishing of the Jacobian of the left member of equation

(4.27) with respect to Ka (^=1, 2, • • - , m) means

(4.30) dettC^Cz,".,^]^,

which evidently implies the existence of a solution of equation (4. 29)

with non-vanishing Jacobian of the left member of the equation.

The above discussions show that if £(£,?) is linear in f, then the

conditions of Theorem 3 imply the conditions of the first half of Theorem

4 except for the smoothness condition on function ©(£, ?, e). This shows

that Theorem 4 is really an extension of Theorem 3 to general non-

linear differential systems containing a small parameter.

Remark 2. In Theorem 3, as seen from (3.15) and (3.30), the

zero-th approximation of the desired solution is given, while in Theorem

4, as seen from (4.10)^(4.11) and (4. 13) — (4. 14), the first approxi-

mation of the desired solution is given.
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Remark 3. Equations (4. 9) and (4.12) may have several solutions

for which the Jacobian of each left member of the equations does not

vanish. In such a case, it is needless to say that the given boundary

value problem (4.1)~~(4. 2) also possesses several solutions correspond-

ing to solutions of (4. 9) and (4.12).

Remark 40 In Theorem 4, the explicit bounds for |e| and |[l(0

— ?(OI[» are omitted for brevity of the statement. However it is need-

less to say that they can be obtained, if necessary, by applying Theorem

3 to equations (4.19) and (4.25).

Remark 50 The solutions f=|(0 obtained in Theorem 4 are iso-

lated and hence, like the solution x = x(f) obtained in Theorem 3, it

will be possible to compute such solutions on a machine starting from

the approximate solutions ?=?(0 given by (4.10) and (4.13) if one

uses, say, the method developed by the author in [3].
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