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A Classification of Factors, 11
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Huzihiro Arakr*

Abstract

The algebraic invariant ro(M) of a factor M, introduced in an earlier
paper and called the asymptotic ratio set, is shown to be closed for any
factor M. As a consequence, this set must be one of the following sets:
(i) the empty set, (ii) {0}, (iii) {1}, (iv) a one parameter family of sets
{0, x#; n=0, =1, ---}, 0<<x<<1l. (v) all non-negative reals, (vi) {0.1}.

§1. Introduction

In an earlier paper [1], we introduced an algebraic invariant r.(M)
for a factor M. It is the set of all x, 0<Cx<Too, such that M is alge-
braically isomorphic to MXR,. Here R, is the type I. factor, R, is
the hyperfinite type II, factor, and R,=R, for 0<<x<{1 is a type III
factor given by definition 3.10 of [1].

In [1], it is shown that r.(M)— {0} is either empty or a multi-
plicative group. Furthermore, for the case where M is an infinite tensor
product of type I factors, r.(M) is shown to be closed. However, this
was not known in [1] for arbitrary M.

In this note, we show that r.(M) is closed for any factor M.
The method of proof is already indicated in section 6 of [1], but new
additional technique here is the use of weak clustering property, which
is obtained by the crucial lemma 2. 4.

§2. Lemmas

Lemma 2.1. Let R, be mutually commuting factors such that
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R=(UR))" is a factor. Let D be a finite set of unit vectors. Given
€, there exists an N such that

2.1 | (@, Qo) — (7, 0) (0, Q0) | <e

for any >N, QR;, |Ql|=1, veD, e D.

Proof. (cf. [2]) Since R is a factor, the von Neumann algebra
generated by UR; and R’ is the set of all bounded operators. Thus

the self adjoint elements of the = algebra generated by UR; and R’

are strongly dense among all self adjoint operators. In particular for
the one dimensional projection P(®) associated with a vector @, there

N

exists a self adjoint P’ in {UR,)UR'}” for some finite N such that
i=1

P’ is in the following strong neighbourhood of P(0):

2.2) {4; |[{P(0) — A}v|<<e/2, ves D}.
Then for any @< R,, i>N, ||@!=1, we have [@, P']=0 and

| (7, Qo) — (7, 0) (0, Q0) |
=|(Z,Q{P@)—P}0)|+ | ({P'—P(0)}7, Q0) | <e

Definition 2.2. Let M be a type I, factor with a matrix unit %,
k,1=1,---,n and R be a factor containing M. For any Q= R, define

2.3) Tkl(M>Q:j2;ujk Qu; .

Lemma 2.3. Let R be a factor and M be a type I, factor in R’
For Qe (MUR)"”, ©(M)Q is in R, [z, (M)Q|X[Q] and

2.4 Q=3 (ru(M)E).
Futhermore, let +» be a unit ’Vector and
(2.5) =20 (7 (MDQY) € M.
Then [@[<(@QIl.

Proof. Since M is type I,, it is possible to identify the Hilbert
space H with a tensor product H\QH,, M with B(H,)X1 and u,

with #,Q1, where H, is spanned by an orthonormal basis ¢, ***, @s,
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% ?;=0,,¢, and B(H,) denotes the set of all bounded operators on H;.
M’ is then 1QB(H,), in which R is contained.

The equality (2. 4) follows from (2.3) and % #;;=0: U, >\ tUw=1.
If @ is in the * algebra generated by M and R, then it is of the form
(2.4) where 7,(M)@ is in R. Therefore r,(M)QP<R holds also for
the weak closure of such @, namely for all € in (MUR)”. The norm
of 7, (M)@ can be estimated by

[z (M)QI= sup | (2:@y, (MR %) |
because t,(M)Q=1QPB(H,). The right hand side is majorized by
}S}Il’lgll (o1 Qv tn Quuy {0 Y} ) | 0 Qe [| | Q]

A unit vector « defines a density matrix p in B(H,) (=0, trp=1)
through the relation

(b, 1R =trol, Qe B(H).

For any unit vector ¢, and @, in H;, we have

| (01, @'02) | = [tr {(:@0) (D} | Kljuel QN = Q]

where p; is the one dimensional prejection on @, and # is an isometric

operator with one dimensional range, bringing @ onto @,. Therefore

i<l

Lemma 2.4. Let R, be mutually commuting factors such that
R=(UR))"” is a factor. Let M be a type I, (m<Coo) factor contained
in R’. Let D be a finite sets of unit vectors such that the inequality

(2.1) holds for any @M, ||Q||=1, v=D, o= D. Given ¢>0. Then
there exists an N such that

(2.6) [ (w,Q0)— (7,0)(0,Q0) | <<e+¢€
for any (>N, @=(MUR)", |Q|=1, ¥v=D, o=D.

Proof. Let u., k,I=1,---,7n be a matrix unit for M. Let P(0)
be the one dimensional projection associated with each ¢<=D. Find

sufficiently large N(@) for each ¢#=D such that there exists a selfadjoint
P’(0) belonging to
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((URYURY”
and satisfying
2.7 [{P"(0) —P(0)} 7| <e”
2.8 [{P"(0) —P(0)} u..7||<<e”

for all #€D and [, k=1, ---,n. Here
(2.9 €'=2"1+n*)""¢.
Let N= IiléxN(m) and Qe (MUR,)”, i>N, ||@|=1. We then have
the following inequalities, which proves (2.6):
| (7, Qo) — (7, 0) (2, Q0) |
=z, Q{P(e) —P'(0)}0) |
+ 2 ({F(0) —P(0)} un?, Qu 0) |
+1(@, Q0)— (7, 0)(0,Q0) |
+ 21 ({P(0) —P'(0)} 20, Qu0) (¥, 0) |
+ (0, Q{F' (@) —P(0)}0) (7, 0) |
<[QIe"” +X[Qulie” + € lle+ X[ Qull” + Q1"
gZ(1+n2);"+e=e'+e. |
Here we have used the notation and result of the previous lemma in

which »=0 and denoted ,,(M)® simply by @,,.

Definition 2.5. A unit vector ¥ is pure for a type 1 factor M
if e(Q)= (¥, Q¥), Q=M is a pure state on M.

If H=H,QH,, M=%(H,)X1, then ¥ is pure if and only if
W.:?F1®W2 for some W1€H1, WgEHg.

Lemma 2.6. Let H=HQH,, H=RQ(H, 2,), R,=1.Q{B(H,)
®((§§)1“)}. Let M be a type I factor in B(H,)X1 and let a unit
Vec"c‘o‘; ¥ be pure for M. Given ¢>0. Then there exists an N and a
unit vector Z¢ such that ¥ is pure for M as well as for R, for any

v>N, ||[# —¥||<<e and ¢ is the same as the vector state corresponding
to @, for each R,, v>N.
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Proof. Since M is-type I, we may identify H, with H,,QH.,.,
M with B(H,)®1. Since ¥ is pure for M, it can be identified with
7..Q%’ where ¥’ € H,,QH,. For given ¢>0, there exists ¢ of the form
k

E‘P;@\U‘:, "!PLEHLZJ ("!’i; '\!"i):&'j: ZH«){,\:]F:]_ SuCh that
(2.10) 7" —wei|<<e/2.

By lemma 2.7 of [1], there exists an NN and «»," for each ¢ such that

(2.11) «p?::¢4“69<5§yzo,
(2.12) [l — i [ <<e/ (2R),
(2.13) [ [l = [l I

Then the vector
k
(2.14) Ye= g};ﬂal@w‘@\p;“@( @Vszu)

has all the required properties.

§3. Theorem

Theorem 3.1. The asymptotic ratio set r.(M) for any factor
M is closed.

Proof. If xx0 and =1 is in r.(M), then R.~R.QR,~R.QR,
shows that 0=r.(M) and 1=r..(M). Thus we consider the case where
x,€r.(M), limx,=x, 0<<x,<<1, 0<<x<<1 and prove that rxer.(M);
ie. M~MQR,.

First fix a countable sequence of unit vectors %,, n=1,2, --- which
are dense in the unit sphere of H and let D,= {&,, ---,%,}. Let >0,
e=>¢,<co. We shall now construct by a mathematical induction on
7 a sequence of mutually commuting type I, factors M, in R, and N,
in R/, and a sequence of unit vectors %,, #=1,2, -+, such that (1) z,
is pure for each (M, UN,)"”, m<n, (2) the vector state ¢x, for each
M,, m<n has a spectrum ((1+%,)7% x,(1+x,)7), (3) [[%—%ues|<en
(n=2) and (4)

(3.1) | (7, Qo) — (7, 0) (0, Q0) ! <ze
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n—u

for any € in {UWM...\UN,..))”, |1Q|=1, v=D., oD,, m<i.

For n=0, ;feo do not have any cbject to corstruct. Now supposz
M,, N, and %, are constructed for n<<k satisfying all the regquirements
related to M,, N,, . n<<k. We then want to construct M,, N, and %.

Let M®*™=(UM.,)"”, M*™»={M*}'NM, N =(UN,)”, N®¥®=
{N®Y M. Si;;:; M, and N, are finite type I facto;';f we may iden-
tify H with H®QH®*»; M, M, N, N with M DR, 1®M\ ),
J/V\(“‘®1, 1®J/\/\<’*2>; and (M JN™)” with B(H*™)R1. By using
(2. 4), it is easily shown that M and M’ are identified with M (“)(X)Z\//f\ 2>
and ]/V\(’”)@]/V\‘“’. Since M is type III (x,=1,0 is in r.(M)), M is
spatially isomorphic to ]/12(”2). Since X, is pure for each M,UN,,
n<<k, it is pure for ]@ (’“)(X)]/\\f *D and can be identified with J*@y*,
) = [ #2][ = 1.

We now use the information that M is isomorphic to MQR.,
where R,,,=®13,: on H=Q(H:, 22). Let R: be 1®ﬁ2®(@1u) and Sy
be 1®(ﬁz)’<§§)(®1u). By lemma 2.6, there exist an N;T;nd a unit
vector ¥*® on EZ“) such that [[(%®—*Dil<e,, ¥ is pure for every
(R:\USY)”, with v>>N;, and the vector state gyes for (R;US%)”, v>N;
is the same as ¢ for (ﬁZU(I/?\Z)’)”. We then set %, =Ry, (If
k=1, take %=y =YX (XRY) for any [v+]|=1.) The conditions (1),
(2), (3) are automatically Vsatisﬁed for M,=R%, N.,=S%, any v>N;.

By lemma 2.1, there exists an N, such that

3.2 | (w7, Qo) — (7, 0) (0, Q0) | e,

for any QCR:, v>N,, |Q|=1, ¥ D,, 0= D,.
By lemma 2. 4, there exists an N3 for each <<k such that

3.3 |(#,Q0) —~ (#,0)(0,Q0) | < e+

for any v>Ni, Q@ [{UMLUNJ}URUSHI”, [Ql=1, zeD,
oeD,.

We then set M,=Rj;, N,=S} for some v larger than max (NN,
N,, N3, -+, Ni™"). The required properties are now all satisfied.
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By the property (3) and >le,<<oo, the unit vectors %, form a
Cauchy sequence. Let x be its strong limit. Then % is a unit vector,
pure for each (M, UN,)” and the vector state ¢x on M, has the spectrum
(A+2)7 x,(1+2x2,)7"). Let

3.0) R=(UM)", S=(UN",
3.5) H,={(RUS)"x)"

where w denotes the closure. The properties of x imply that the re-
strictions of R and S to H, and the space H, are unitarily equivalent
to QR,, R, and Q(H,, 2,) where dim H,=4, Sp(2./R,)=Sp(2./R;)
=(A+x), x.(1+2x,07"). Thus (R|H,)~(S|H,)~QR,, where Rl H,
denotes the restriction of R to H,.

Next we use the clustering property (4) to show that R, S and
(RUS)” are factors. Let @ be an operator in the center of either R,
Sor (RUS)” and |[@]=1. Then @ must commute with all (M,UN,)”,
n=1,2,3, - and hence it is in {U (M, UN,)}” for any N. (Again
use the fact that {U (M UN )} 1s a finite type I factor and (2. 4).)
Since the unit ball of U( U YM UN.,])"” is weakly dense in the unit

m=1 n=N

ball of (L<JN[M JN.D, we have
(3.6) |(7,Q0)~ (7,0)(0,Q0) |< 3 e

for any ¥&Dy,,, 0= Dy,,. Since N is arbitrary, we obtain in the
limit of N—oo,

@.7 (7, Q0)=(7,0)(0,Q0).
The same equation for @*, with ¥ and 0 interchanged implies that
(3.8) (7, Q7) = (0, Qo)

for (¥,0)=0. Since ¥, @ run over a set of unit vectors {%,} which is
dense in the set of all unit vectors, (3.8) and (3.7) imply that Q@=cl.
This proves that R, S and (RUS)’ are factors.

Since the projection on H, commutes with R, S and (RUS)"”, the
factors R, S and (RUS)” are isomorphic to its restriction on H,.
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In particular, R~R®R, and (RUS)” is a type I factor.

The proof of the theorem can now be completed by

Lemma 3.2. Let H=H,QH,, ﬁ be an infinite tensor product of
type I, factors on H,, Rzl@ﬁ, S:1®J/€’. Let M be a factor on H
such that MDR, M’'>S. Then M= M,QR for some factor M; on H,.

Proof. Let
(3.9) H.~®(H;, ¢), R-®R,
(3.10) D(n) = H@(QHND(D),
3-11) D(n, n+8) = HOQHIB(@0.)D( & HY.
Let #! be a standard matrix unit of
(3.12) R=1,0R.®(®1)
relative to 2,, Sp(JZ,,/ﬁ,) be (4,,1—2,) and
(3.13) nA=2tu(R)A+ A —24)we(R) A,
(.10 SES | O

Further let [A], be the unique operator in B(H:Q (é}H DHR(R1L,)
y=1 v>n
satisfying

(3.15) (@, [A],0:) = (01, A0,)
for all @,, 0,€D(n).
If A€M, then r, .., AEM, |, ... A|<|A| and
(3.16) (@1, (t10r A)0:) = (01, AD,)
for all @,, ®.D(n,n+k). Hence
(3.17) (@1, (s A)0:) = (01, [A].0,)

for @,, &, D(n+k). Since D(n) is an increasing sequence of sets with
a dense union and ||z, ...A] is bounded uniformly in &, [A], is the weak
limit of <, ,..,A as k—oco and hence is in M. By definition, [A], is
then in
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(3.18) M»=MNO(UR,)".

Because (3.15) holds for #., .= D,, D, is an increasing sequence
of sets with a dense union and [[[A].] is uniformly bounded by | A
(which immediately follows from (3.15)), A is the weak limit of [A4],
as n—oo. Hence

(3.19) M= (M),

Since QR, is a finite type I factor, M is generated by L’_‘JRV and
M®=MANOR'. Hence

(3.20) M=(MOCUR)Y'={(MNR)JR}".

Sin:e MM R’ commutes with R and S, it is isomorphic to M; X1 on
H.®H, for some M, and M= M.QR.
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