Publ. RIMS, Kyoto Univ. Ser. A Vol. 4 (1969), pp. 585-593

A Classification of Factors, II

By

Huzihiro Araki*

Abstract

The algebraic invariant $r_{\infty}(M)$ of a factor M, introduced in an earlier paper and called the asymptotic ratio set, is shown to be closed for any factor M. As a consequence, this set must be one of the following sets: (i) the empty set, (ii) {0}, (iii) {1}, (iv) a one parameter family of sets {0, x^n ; $n=0, \pm 1, \cdots$ }, 0 < x < 1. (v) all non-negative reals, (vi) {0.1}.

§1. Introduction

In an earlier paper [1], we introduced an algebraic invariant $r_{\infty}(M)$ for a factor M. It is the set of all x, $0 \le x < \infty$, such that M is algebraically isomorphic to $M \otimes R_x$. Here R_0 is the type I_{∞} factor, R_1 is the hyperfinite type II₁ factor, and $R_x = R_{x^{-1}}$ for 0 < x < 1 is a type III factor given by definition 3.10 of [1].

In [1], it is shown that $r_{\infty}(M) - \{0\}$ is either empty or a multiplicative group. Furthermore, for the case where M is an infinite tensor product of type I factors, $r_{\infty}(M)$ is shown to be closed. However, this was not known in [1] for arbitrary M.

In this note, we show that $r_{\infty}(M)$ is closed for any factor M. The method of proof is already indicated in section 6 of [1], but new additional technique here is the use of weak clustering property, which is obtained by the crucial lemma 2.4.

§2. Lemmas

Lemma 2.1. Let R_i be mutually commuting factors such that

Received October 17, 1968.

^{*}Max-Planck-Institut für Physik und Astrophysik, Munich. Germany.

On leave from Research Institute for Mathematical Sciences. Kyoto University. Kyoto, Japan.

Huzihiro Araki

 $R = (\bigcup_{i} R_i)''$ is a factor. Let D be a finite set of unit vectors. Given ϵ , there exists an N such that

$$(2.1) \qquad |(\varPsi, Q \phi) - (\varPsi, \phi)(\phi, Q \phi)| < \epsilon$$

for any i > N, $Q \in R_i$, ||Q|| = 1, $\Psi \in D$, $\emptyset \in D$.

Proof. (cf. [2]) Since R is a factor, the von Neumann algebra generated by $\bigcup_i R_i$ and R' is the set of all bounded operators. Thus the self adjoint elements of the * algebra generated by $\bigcup_i R_i$ and R'are strongly dense among all self adjoint operators. In particular for the one dimensional projection $P(\emptyset)$ associated with a vector \emptyset , there exists a self adjoint P' in $\{\bigcup_{i=1}^{N} R_i\} \cup R'\}''$ for some finite N such that P' is in the following strong neighbourhood of $P(\emptyset)$:

(2.2)
$$\{A; \| \{ \mathbb{P}(\boldsymbol{\emptyset}) - A \} \boldsymbol{\Psi} \| \leq \epsilon/2, \forall \boldsymbol{\Psi} \in D \}.$$

Then for any $Q \in R_i$, i > N, ||Q|| = 1, we have [Q, P'] = 0 and

$$\begin{split} &|(\varPsi, Q \boldsymbol{\vartheta}) - (\varPsi, \boldsymbol{\vartheta})(\boldsymbol{\vartheta}, Q \boldsymbol{\vartheta})| \\ &= |(\varPsi, Q \{ \mathbf{P}(\boldsymbol{\vartheta}) - P' \} \boldsymbol{\vartheta})| + |(\{P' - \mathbf{P}(\boldsymbol{\vartheta})\} \varPsi, Q \boldsymbol{\vartheta})| < \epsilon. \end{split}$$

Definition 2.2. Let M be a type I_n factor with a matrix unit u_{kl} , $k, l=1, \dots, n$ and R be a factor containing M. For any $Q \in R$, define

(2.3)
$$\tau_{kl}(M)Q = \sum_{j=1}^{n} u_{jk}Qu_{lj}$$

Lemma 2.3. Let R be a factor and M be a type I_n factor in R'. For $Q \in (M \cup R)''$, $\tau_{kl}(M)Q$ is in R, $\|\tau_{kl}(M)Q\| \leq \|Q\|$ and

$$(2.4) Q = \sum_{k,l} u_{kl}(\tau_{kl}(M)Q).$$

Futhermore, let ψ be a unit vector and

$$(2.5) \qquad \qquad Q' = \sum_{k,l} u_{kl}(\psi, \tau_{kl}(M) Q \psi) \in M.$$

Then $||Q'|| \leq ||Q||$.

Proof. Since M is type I_n , it is possible to identify the Hilbert space H with a tensor product $H_1 \otimes H_2$, M with $\mathcal{B}(H_1) \otimes \mathbf{1}$ and u_{kl} with $\hat{u}_{kl} \otimes \mathbf{1}$, where H_1 is spanned by an orthonormal basis $\varphi_1, \dots, \varphi_n$,

 $\hat{u}_{kl}\varphi_j = \delta_{lj}\varphi_k$ and $\mathscr{B}(H_1)$ denotes the set of all bounded operators on H_1 . M' is then $1\otimes \mathscr{B}(H_2)$, in which R is contained.

The equality (2.4) follows from (2.3) and $u_{kl}u_{ij}=\delta_{li}u_{kj}$, $\sum u_{kk}=1$. If Q is in the * algebra generated by M and R, then it is of the form (2.4) where $\tau_{kl}(M)Q$ is in R. Therefore $\tau_{kl}(M)Q \in R$ holds also for the weak closure of such Q, namely for all Q in $(M \cup R)''$. The norm of $\tau_{kl}(M)Q$ can be estimated by

$$\|\tau_{kl}(M)Q\| \leq \sup_{||\Psi^{l}||=1} |\langle \varphi_{1} \otimes \psi^{1}, \tau_{kl}(M)Q \{\varphi_{1} \otimes \psi^{2}\})|$$

because $\tau_{ii}(M)Q \in 1 \otimes \mathcal{B}(H_2)$. The right hand side is majorized by

$$\sup_{||\psi_1||=1} |(\varphi_1 \otimes \psi^1, u_{1k} Q u_{l1} \{\varphi_1 \otimes \psi^2\})| \leq ||u_{1k} Q u_{l1}|| \leq ||Q||.$$

A unit vector ψ defines a density matrix ρ in $\mathcal{B}(H_2)$ ($\rho \geq 0$, tr $\rho = 1$) through the relation

$$(\psi, \{1 \otimes \widehat{Q}\}\psi) = \operatorname{tr} \rho \widehat{Q}, \qquad \widehat{Q} \in \mathcal{B}(H_2).$$

$$|(\boldsymbol{\varphi}_1, \boldsymbol{Q}'\boldsymbol{\varphi}_2)| = |\operatorname{tr}\{(\rho_1 \otimes \rho)(\boldsymbol{u} \otimes 1)\boldsymbol{Q}\}| \leq ||\boldsymbol{u}|| ||\boldsymbol{Q}|| = ||\boldsymbol{Q}||$$

where ρ_1 is the one dimensional projection on \mathscr{O}_2 and \mathfrak{u} is an isometric operator with one dimensional range, bringing \mathscr{O}_1 onto \mathscr{O}_2 . Therefore $\|Q'\| \leq \|Q\|$.

Lemma 2.4. Let R_i be mutually commuting factors such that $R = (\bigcup R_i)''$ is a factor. Let M be a type I_n ($n < \infty$) factor contained in R'. Let D be a finite sets of unit vectors such that the inequality (2.1) holds for any $Q \in M$, ||Q|| = 1, $\Psi \in D$, $\phi \in D$. Given $\epsilon' > 0$. Then there exists an N such that

(2.6)
$$|(\Psi, Q\phi) - (\Psi, \phi)(\phi, Q\phi)| < \epsilon + \epsilon'$$

for any i > N, $Q \in (M \cup R_i)''$, ||Q|| = 1, $\Psi \in D$, $\emptyset \in D$.

Proof. Let u_{kl} , $k, l=1, \dots, n$ be a matrix unit for M. Let $P(\emptyset)$ be the one dimensional projection associated with each $\emptyset \in D$. Find sufficiently large $N(\emptyset)$ for each $\emptyset \in D$ such that there exists a selfadjoint $P'(\emptyset)$ belonging to

Huzihiro Araki

 $\{(\bigcup_{i=1}^{\mathbf{N}(\phi)} R_i) \cup R'\}''$

and satisfying

- (2.7) $\|\{\mathbf{P}'(\boldsymbol{\phi}) \mathbf{P}(\boldsymbol{\phi})\}\boldsymbol{\Psi}\| \leq \epsilon''$
- (2.8) $\|\{\mathbf{P}'(\boldsymbol{\varPhi}) \mathbf{P}(\boldsymbol{\varPhi})\}\boldsymbol{u}_{lk}\boldsymbol{\Psi}\| < \epsilon^{\prime\prime}$

for all $\Psi \in D$ and $l, k=1, \dots, n$. Here

(2.9)
$$\epsilon'' = 2^{-1}(1+n^2)^{-1}\epsilon'.$$

Let $N = \max_{\substack{\emptyset \in D}} N(\emptyset)$ and $Q \in (M \cup R_i)''$, i > N, ||Q|| = 1. We then have the following inequalities, which proves (2.6):

$$|(\Psi, Q \theta) - (\Psi, \theta)(\theta, Q \theta)|$$

$$\leq |(\Psi, Q \{P(\theta) - P'(\theta)\}\theta)|$$

$$+ \sum_{k,l} |(\{P'(\theta) - P(\theta)\}u_{lk}\Psi, Q_{kl}\theta)|$$

$$+ |(\Psi, Q'\theta) - (\Psi, \theta)(\theta, Q'\theta)|$$

$$+ \sum_{k,l} |(\{P(\theta) - P'(\theta)\}u_{lk}\theta, Q_{kl}\theta)(\Psi, \theta)|$$

$$+ |(\theta, Q \{P'(\theta) - P(\theta)\}\theta)(\Psi, \theta)|$$

$$\leq ||Q||\epsilon'' + \sum_{k,l} ||Q_{kl}||\epsilon'' + ||Q'||\epsilon + \sum_{k,l} ||Q_{kl}||\epsilon'' + ||Q||\epsilon''$$

$$\leq 2(1 + n^2)\epsilon'' + \epsilon = \epsilon' + \epsilon.$$

Here we have used the notation and result of the previous lemma in which $\psi = \varphi$ and denoted $\tau_{kl}(M)Q$ simply by Q_{kl} .

Definition 2.5. A unit vector Ψ is *pure* for a type I factor M if $\varphi_{\mathbb{F}}(Q) = (\Psi, Q\Psi), Q \in M$ is a pure state on M.

If $H = H_1 \otimes H_2$, $M = \mathcal{B}(H_1) \otimes 1$, then \mathcal{V} is pure if and only if $\mathcal{V} = \mathcal{V}_1 \otimes \mathcal{V}_2$ for some $\mathcal{V}_1 \in H_1$, $\mathcal{V}_2 \in H_2$.

Lemma 2.6. Let $H=H_{\mathfrak{s}}\otimes H_{\mathfrak{b}}$, $H_{\mathfrak{b}}=\otimes(H_{\nu}, \mathfrak{Q}_{\nu})$, $R_{\nu}=\mathbf{1}_{\mathfrak{s}}\otimes\{\mathscr{B}(H_{\nu})\otimes(\bigotimes_{\mu\neq\nu}\mathbf{1}_{\mu})\}$. Let M be a type I factor in $\mathscr{B}(H_{\mathfrak{s}})\otimes\mathbf{1}$ and let a unit vector \mathscr{V} be pure for M. Given $\epsilon>0$. Then there exists an N and a unit vector \mathscr{V}_{ϵ} such that \mathscr{V}_{ϵ} is pure for M as well as for R_{ν} for any $\nu>N$, $\|\mathscr{V}-\mathscr{V}_{\epsilon}\|<\epsilon$ and $\varphi_{\mathfrak{V}_{\epsilon}}$ is the same as the vector state corresponding to \mathscr{Q}_{ν} for each $R_{\nu}, \nu>N$.

Proof. Since M is-type I, we may identify H_a with $H_{a1} \odot H_{a2}$, M with $\mathcal{B}(H_{a1}) \otimes 1$. Since Ψ is pure for M, it can be identified with $\Psi_{a1} \otimes \Psi'$ where $\Psi' \in H_{a2} \otimes H_b$. For given $\epsilon > 0$, there exists Ψ'_{ϵ} of the form $\sum_{i=1}^{k} \psi_i \otimes \psi'_i$, $\psi_i \in H_{a2}$, $(\psi_i, \psi_j) = \delta_{ij}$, $\sum ||\psi'_i||^2 = 1$ such that

 $(2.10) || \Psi' - \Psi'_{\epsilon} || < \epsilon/2.$

By lemma 2.7 of [1], there exists an N and ψ_i'' for each i such that

- (2.11) $\psi_{i}^{\prime\prime} = \psi_{i}^{\prime\prime\prime} \otimes (\bigotimes_{\nu > N} \mathcal{Q}_{\nu}),$
- (2.12) $\|\psi_i' \psi_i''\| < \epsilon/(2k),$
- $(2.13) \|\psi_i''\| = \|\psi_i'\|.$

Then the vector

(2.14)
$$\Psi_{\epsilon} = \sum_{i=1}^{k} \Psi_{a1} \otimes \psi_{i} \otimes \psi_{i}^{\prime \prime \prime} \otimes (\bigotimes_{\nu > N} \mathcal{Q}_{\nu})$$

has all the required properties.

§3. Theorem

Theorem 3.1. The asymptotic ratio set $r_{\infty}(M)$ for any factor M is closed.

Proof. If $x \neq 0$ and $\neq 1$ is in $r_{\infty}(M)$, then $R_x \sim R_x \otimes R_0 \sim R_x \otimes R_1$ shows that $0 \in r_{\infty}(M)$ and $1 \in r_{\infty}(M)$. Thus we consider the case where $x_n \in r_{\infty}(M)$, $\lim x_n = x$, $0 < x_n < 1$, 0 < x < 1 and prove that $x \in r_{\infty}(M)$; i.e. $M \sim M \otimes R_x$.

First fix a countable sequence of unit vectors Ψ_n , $n=1, 2, \cdots$ which are dense in the unit sphere of H and let $D_n = \{\Psi_1, \dots, \Psi_n\}$. Let $\epsilon_n > 0$, $\epsilon \equiv \sum \epsilon_n < \infty$. We shall now construct by a mathematical induction on n a sequence of mutually commuting type I₂ factors M_n in R, and N_n in R', and a sequence of unit vectors χ_n , $n=1, 2, \cdots$, such that (1) χ_n is pure for each $(M_m \cup N_m)''$, $m \leq n$, (2) the vector state φ_{χ_n} for each M_m , $m \leq n$ has a spectrum $((1+\chi_m)^{-1}, \chi_m(1+\chi_m)^{-1})$, (3) $||\chi_n - \chi_{n-1}|| < \epsilon_n$ $(n \geq 2)$ and (4)

(3.1)
$$|(\Psi, Q\phi) - (\Psi, \phi)(\phi, Q\phi)| < \sum_{\alpha=0}^{n-m} \epsilon_{m+\alpha}$$

for any Q in $\{\bigcup_{\alpha=0}^{n-m} (M_{m+\alpha} \cup N_{m+\alpha})\}''$, ||Q|| = 1, $\Psi \in D_m$, $\Phi \in D_m$, $m \leq n$.

For n=0, we do not have any object to construct. Now suppose M_n , N_n and χ_n are constructed for n < k satisfying all the requirements related to M_n , N_n , χ_n n < k. We then want to construct M_k , N_k and χ_k .

Let $M^{(k1)} \equiv (\bigcup_{n < k} M_n)''$, $M^{(k2)} \equiv \{M^{(k1)}\}' \cap M$, $N^{(k1)} \equiv (\bigcup_{n < k} N_n)''$, $N^{(k2)} \equiv \{N^{(k1)}\}' \cap M'$. Since M_n and N_n are finite type I factors, we may identify H with $H^{(k1)} \otimes H^{(k2)}$; $M^{(k1)}$, $M^{(k2)}$, $N^{(k1)}$, $N^{(k2)}$ with $\widehat{M}^{(k1)} \otimes 1$, $1 \otimes \widehat{M}^{(k2)}$, $\widehat{N}^{(k1)} \otimes 1$, $1 \otimes \widehat{N}^{(k2)}$; and $(M^{(k1)} \cup N^{(k1)})''$ with $\mathcal{B}(H^{(k1)}) \otimes 1$. By using (2.4), it is easily shown that M and M' are identified with $\widehat{M}^{(k1)} \otimes \widehat{M}^{(k2)}$ and $\widehat{N}^{(k1)} \otimes \widehat{N}^{(k2)}$. Since M is type III $(x_n \neq 1, 0$ is in $r_{\infty}(M)$, M is spatially isomorphic to $\widehat{M}^{(k2)}$. Since x_{k-1} is pure for each $M_n \cup N_n$, n < k, it is pure for $\widehat{M}^{(k1)} \otimes \widehat{N}^{(k1)}$ and can be identified with $\psi^{(k1)} \otimes \psi^{(k2)}$, $\|\psi^{(k1)}\| = \|\psi^{(k2)}\| = 1$.

We now use the information that M is isomorphic to $M \otimes R_{x_k}$ where $R_{x_k} = \otimes \widehat{R}_k^{\nu}$ on $H_k = \otimes (H_k^{\nu}, \mathcal{Q}_k^{\nu})$. Let R_k^{ν} be $1 \otimes \widehat{R}_k^{\nu} \otimes (\bigotimes_{\mu = \tau^{\nu}} 1_{\mu})$ and S_k^{ν} be $1 \otimes (\widehat{R}_k^{\nu})' \otimes (\bigotimes_{\eta = \tau^{\nu}} 1_{\mu})$. By lemma 2.6, there exist an N, and a unit vector $\psi^{(k3)}$ on $H^{(k2)}$ such that $\|\psi^{(k2)} - \psi^{(k3)}\| < \epsilon_k$, $\psi^{(k3)}$ is pure for every $(R_k^{\nu} \cup S_k^{\nu})''$, with $\nu > N_1$, and the vector state $\varphi_{\psi^{(k3)}}$ for $(R_k^{\nu} \cup S_k^{\nu})'', \nu > N_1$ is the same as $\varphi_{L_k^{\nu}}$ for $(\widehat{R}_k^{\nu} \cup (\widehat{R}_k^{\nu})')''$. We then set $\chi_k = \psi^{(k1)} \otimes \psi^{(k3)}$. (If k=1, take $\chi_k = \psi^{(k2)} = \psi \otimes (\bigotimes \mathcal{Q}_1^{\nu})$ for any $\|\psi\| = 1$.) The conditions (1), (2), (3) are automatically satisfied for $M_k = R_k^{\nu}$, $N_k = S_k^{\nu}$, any $\nu > N_1$.

By lemma 2.1, there exists an N_2 such that

$$(3.2) \qquad |(\varPsi, Q\phi) - (\varPsi, \phi)(\phi, Q\phi)| < \epsilon_{k}$$

for any $Q \subset R_k^{\nu}$, $\nu > N_2$, $\|Q\| = 1$, $\Psi \in D_k$, $\emptyset \in D_k$.

By lemma 2.4, there exists an N_3^n for each n < k such that

$$(3.3) \qquad |(\Psi, Q\phi) - (\Psi, \phi)(\phi, Q\phi)| < \sum_{\alpha=n}^{k-1} \epsilon_{\alpha} + \epsilon_{k}$$

for any $\nu > N_3^n$, $Q \in [\{\bigcup_{\alpha=n}^{k-1} (M_\alpha \cup N_\alpha)\} \cup (R_k^\nu \cup S_k^\nu)]''$, ||Q|| = 1, $\Psi \in D_n$, $\Phi \in D_n$.

We then set $M_k = R_k^{\nu}$, $N_k = S_k^{\nu}$ for some ν larger than max $(N_1, N_2, N_3^1, \dots, N_3^{k-1})$. The required properties are now all satisfied.

By the property (3) and $\sum \epsilon_n < \infty$, the unit vectors χ_n form a Cauchy sequence. Let χ be its strong limit. Then χ is a unit vector, pure for each $(M_n \cup N_r)''$ and the vector state φ_{χ} on M_n has the spectrum $((1+\chi_n)^{-1}, \chi_n(1+\chi_n)^{-1})$. Let

(3.4)
$$R = (\bigcup M_n)'', \quad S = (\bigcup N_n)'',$$

$$(3.5) H_0 = [(R \cup S)'' \chi]^u$$

where w denotes the closure. The properties of χ imply that the restrictions of R and S to H_0 and the space H_0 are unitarily equivalent to $\otimes R_n$, $\otimes R'_n$ and $\otimes (H_n, \mathcal{Q}_n)$ where dim $H_n=4$, $\operatorname{Sp}(\mathcal{Q}_n/R_n)=\operatorname{Sp}(\mathcal{Q}_n/R'_n)$ $=((1+x_n)^{-1}, x_n(1+x_n)^{-1})$. Thus $(R \mid H_0) \sim (S \mid H_0) \sim \otimes R_n$, where $R \mid H_0$ denotes the restriction of R to H_0 .

Next we use the clustering property (4) to show that R, S and $(R \cup S)''$ are factors. Let Q be an operator in the center of either R, S or $(R \cup S)''$ and ||Q|| = 1. Then Q must commute with all $(M_n \cup N_n)''$, $n=1,2,3,\cdots$ and hence it is in $\{\bigcup_{n>N} (M_n \cup N_n)\}''$ for any N. (Again use the fact that $\{\bigcup_{n<N} (M_n \cup N_n)\}''$ is a finite type I factor and (2.4).) Since the unit ball of $\bigcup_{m=1}^{\infty} (\bigcup_{n>N+m} [M_n \cup N_n])''$ is weakly dense in the unit ball of $(\bigcup_{n<N} [M_n \cup N_n])''$, we have

$$(3.6) \qquad |(\Psi, Q\phi) - (\Psi, \phi)(\phi, Q\phi)| < \sum_{n=N+1}^{\infty} \epsilon_n$$

for any $\Psi \in D_{N+1}$, $\emptyset \in D_{N+1}$. Since N is arbitrary, we obtain in the limit of $N \rightarrow \infty$,

$$(3.7) \qquad (\Psi, Q\phi) = (\Psi, \phi)(\phi, Q\phi).$$

The same equation for Q^* , with Ψ and ϕ interchanged implies that

$$(3.8) \qquad (\Psi, Q\Psi) = (\emptyset, Q\emptyset)$$

for $(\Psi, \emptyset) \neq 0$. Since Ψ, \emptyset run over a set of unit vectors $\{\Psi_n\}$ which is dense in the set of all unit vectors, (3.8) and (3.7) imply that Q=c1. This proves that R, S and $(R \cup S)''$ are factors.

Since the projection on H_0 commutes with R, S and $(R \cup S)''$, the factors R, S and $(R \cup S)''$ are isomorphic to its restriction on H_0 .

In particular, $R \sim R \otimes R_x$ and $(R \cup S)''$ is a type I factor.

The proof of the theorem can now be completed by

Lemma 3.2. Let $H=H_1\otimes H_2$, \widehat{R} be an infinite tensor product of type I_2 factors on H_2 , $R=1\otimes \widehat{R}$, $S=1\otimes \widehat{R'}$. Let M be a factor on H such that $M\supset R$, $M'\supset S$. Then $M=M_1\otimes R$ for some factor M_1 on H_1 .

Proof. Let

$$(3.9) H_2 = \otimes (H_2^{\nu}, \mathcal{Q}_{\nu}), \quad \widehat{R} = \otimes \widehat{R}_{\nu},$$

(3.10)
$$\mathbf{D}(n) = H_1 \otimes (\bigotimes_{\nu=1}^{n} H_2^{\nu}) \otimes (\bigotimes_{\nu>n} \mathcal{Q}_{\nu}),$$

$$(3\cdot 11) \qquad \qquad \mathbf{D}(n, n+k) = H_1 \otimes (\bigotimes_{\nu=1}^n H_2^{\nu}) \otimes (\bigotimes_{l=1}^s \mathcal{Q}_{n+l}) \otimes (\bigotimes_{\nu>n+k}^s H_2^{\nu}).$$

Let u_{ij}^{ν} be a standard matrix unit of

(3.12)
$$R_{\nu} \equiv \mathbf{1}_{1} \bigotimes \{ \widehat{R}_{\nu} \bigotimes (\bigotimes_{\mu \neq \nu} \mathbf{1}_{\mu}) \}$$

relative to \mathcal{Q}_{ν} , $\operatorname{Sp}(\mathcal{Q}_{\nu}/\widehat{R}_{\nu})$ be $(\lambda_{\nu}, 1-\lambda_{\nu})$ and

Further let $[A]_n$ be the unique operator in $\mathscr{B}(H_1 \otimes (\bigotimes_{\nu=1}^{n} H_2^{\nu})) \otimes (\bigotimes_{\nu>n} 1_{\nu})$ satisfying

$$(3.15) \qquad (\emptyset_1, [A]_n \emptyset_2) = (\emptyset_1, A \emptyset_2)$$

for all $\Phi_1, \Phi_2 \in D(n)$.

If
$$A \in M$$
, then $\tau_{n,n+k} A \in M$, $\|\tau_{n,n+k} A\| \leq \|A\|$ and

$$(3.16) \qquad (\varphi_1, (\tau_{n,n+k}A) \varphi_2) = (\varphi_1, A \varphi_2)$$

for all φ_1 , $\varphi_2 \in D(n, n+k)$. Hence

$$(3.17) \qquad (\boldsymbol{\emptyset}_1, (\boldsymbol{\tau}_{n,n+k} A) \boldsymbol{\emptyset}_2) = (\boldsymbol{\emptyset}_1, [A]_n \boldsymbol{\emptyset}_2)$$

for $\varphi_1, \varphi_2 \in D(n+k)$. Since D(n) is an increasing sequence of sets with a dense union and $\|\tau_{n,n+k}A\|$ is bounded uniformly in k, $[A]_n$ is the weak limit of $\tau_{n,n+k}A$ as $k \to \infty$ and hence is in M. By definition, $[A]_n$ is then in

A classification of factors, II

$$(3.18) M^{(n)} \equiv M \cap (\bigcup_{\nu > n} R_{\nu})'.$$

Because (3.15) holds for $\Phi_1, \Phi_2 \in D_n$, D_n is an increasing sequence of sets with a dense union and $||[A]_n||$ is uniformly bounded by ||A||(which immediately follows from (3.15)), A is the weak limit of $[A]_n$ as $n \to \infty$. Hence

$$(3.19) M = (\cup M^{(n)})''.$$

Since $\bigcup_{\nu=1}^{n} R_{\nu}$ is a finite type I factor, $M^{(n)}$ is generated by $\bigcup_{\nu=1}^{n} R_{\nu}$ and $M^{(0)} = M \cap R'$. Hence

(3.20)
$$M = (M^{(0)} \cup R)'' = \{(M \cap R') \cup R\}''.$$

Since $M \cap R'$ commutes with R and S, it is isomorphic to $M_1 \otimes 1$ on $H_1 \otimes H_2$ for some M_1 and $M = M_1 \otimes \widehat{R}$.

Acknowledgement

The author would like to thank the warm hospitality at the Max-Planck-Institut für Physik und Astrophysik, München, Germany, where a part of this work has been done.

References

- [1] Araki, H. and E. J. Woods, Publ. RIMS, Kyoto Univ. Ser. A, 4 (1968), 51-136.
- [2] Araki, H., Progr. Theoret. Phys. 32 (1964), 844-854.