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Abstract

Let E be a certain nuclear topological vector space contained in the
Hilbert space (Z,2) on the real line and let the Gaussian probability measure
be defined on the conjugate space E* of E. We consider such a subgroup
of the rotation group of (L2) that acts on E and contains the shift as a
one-parameter subgroup. With a rather systematic way we define two more
one-parameter subgroups which, together with the shift, constitute a sub-
group isomorphic with the projective linear group PGL(2, R). It plays a
role of the time change of the white noise. In this set up we formulate
and prove the principle of projective invariance of the Brownian motion
given by P. Levy.

§1. Introduction

The purpose of this paper is to investigate a specific class of one-

parameter groups of orthogonal operators acting on Z,2(JR), the Hilbert

space of real-valued square integrable functions on the real line JR, and

its relation with some probabilistic properties of the Brownian motion.

For brevity we shall denote the Hilbert space L2(-R) by £> throughout

the paper.

For our purpose, we first consider some subgroups of the group of

all orthogonal operators acting on £>, as follows:

Let E be a topological vector space contained in £> and its topology

be stronger than the norm topology of §. Then we have the relations
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where E* is the conjugate space of E. An orthogonal operator g of

§ is called a rotation of E, if g maps £ onto itself and is a horneo-

morphism of E. The collection of all such g's forms a group which

we denote by O(E; £>) or simply by O(I?) and call £&g rotation group

of E.

The second fundamental object which we corsider in this paper is

the so-called white noise; it is a probability measure PL on E* and its

characteristic functional (or, what is the same, its Fourier transform)

is equal to

(A) C(f)=e"4|l£l1', for f of E,

where |[ • |[ stands for the norm of §. The characteristic functional of

PL is defined as usual:

(B)

where <X <?> stands for the canonical bilinear form on E*xE.

The functional C(-), defined by the equality (A), is continuous

and positive definite in E, therefore, there exists a probability measure

p. on E* satisfying the relation (B), in case the vector space E is

nuclear (see, for example, [1]), which we assume throughout the paper.

As is easily seen from the expression of the characteristic functional

C(-), it is invariant under the action of g of O (-£")• Hence the meas-

ure PL is invariant under g*, the adjoint operator of g, acting on the

space E*. Moreover, it is known that PL is ergodic with respect to

the group O*(E} = {g*\ g^O(E)}.

Now we consider dynamical systems in the above set up. Given

a one-parameter subgroup (#.) of 0(£), we can define a flow, or a

dynamical system (#*), — °°<t<oa, on the measure space (£*, #)•

The simplest and most basic of such is the shift:

The corresponding flow on (£*, /*) is nothing but the flow of the

Brownian motion. This situation will be clarified by Proposition 4 in
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Section 4. Generalizing the concept of the shift we are led to consider

an important class of one-parameter groups which come from the change

of the variable of functions f(w) having the form:

with the relation ^0^s(^) = ̂ /+s(^).

All these considerations, which are preliminary to our principal

purpose, are summarized in Section 2.

In Section 3 we shall show that, starting with the shift, we obtain

an interesting class of one-parameter subgroups which form a three

dimensional subgroup G0 of 0(£). Here the nuclear space E is taken

in accordance with the group G0 , and the group G0 is isomorphic with

the group PGL(2, U), the group of all projective linear transformations

in real two dimension. In the course of our study to determine the

group Go we appeal to the usual technique of Lie algebra.

In Section 4 we shall apply our constructions to a theory of the

Brownian motion. Namely, we show that in our set up, the fact that

the group O(£") admits the subgroup G0 gives us a rephrase of the

principle of projective invariance of the Brownian motion discovered

by P. Levy.

This principle is illustrated as follows: Given a Brownian motion

B(f)> 0^f<C°o, we can speak of a pinned Brownian motion, say pinned

at the moments t0 and ti (0<jf0^£i) in such a way that B(t^) = B(t^)

= 0. Denote such a process by X(t}, to<zt<^ti, and normalize it so as

to obtain a Gaussian process F(Y), tQ<Lt<Lti°, that is, put

where F(-) denotes the variance. Now let g be a projective tranrfor-

mation of the interval [t0, ti] onto an interval. Then the process Yg(f)

= Y(gt), t^t^ti, is the same process as the original process Y(f).

The process F(0 can be realized as a system of random variables on

the probability space (£"*, JUL) and the action by the above g can be

represented by a member of the group G0.
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The group 0{E) was considered, among similar objects, by the last

named author of the present paper in 1961, and some results on its

structure and unitary representations have been given in series of lectures.

They will be published on other occasions. The authors of the present

paper had a series of seminars in 1967 at the Research Institute for

Mathematical Sciences, Kyoto University, and the results in the present

paper, together with other several related topics, were discussed. The

first named author has investigated the subjects of Section 4 and other

similar problems. They will be published in another paper.

§2. Rotation Group of Hilbert Space

In this section we shall give fundamental definitions and some

preliminary results used throughout the paper. In particular we shall

define a dynamical system in general, the rotation group of the Hilbert

space and the white noise.

Let (M, m) be a measure space with a 0-finite measure m. A

mapping q> from M to M is said to be nonsingular {or absolutely

continuous'), if

(i) both <p and qT^ are defined on M modulo M-null sets;

(ii) they are measurable;

(iii) they carry every ^-null set into an M-null set.

A dynamical system (^,), — °o<£<oo, On (M3m) is a one-para-

meter family of nonsingular transformations q>t such that

V3<Pt = <p*+t (modO) for each t and s,

and that <ptu is measurable in (t, u).

Let £2(M) be the Hilbert space of all square m-integrable real

functions on M with the inner product

(/, fo) = \ fhdm.
JM

We denote by 0(L2(M)) the group of all orthogonal operators acting

on L2(M). A dynamical system (<?,) on M generates a one-parameter

subgroup {Ft") of O(Z,2(M)) in the following manner:
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(1) F, : /(iO |-> f f a u ) ] , for / of

It satisfies the group property:

(2) FsFt = Fs+t.

The mapping t |-» Ftf is strongly continuous for every / because
(t, u) \-> (ptu is measurable. Thus we can define the generator A9 of
the one-parameter group (F,) by the following formula:

(3) A9f=limFtf~f , if the strong limit exists.
t->Q t

If both / and h belong to the domain of A9 , then the relation
, h) = (/, JF.,/0 implies that

(4) (^

Suppose we are given a dense linear subspace E of L2(M) such
that £ is a nuclear topological vector space and the inner product
(/,/&) is continuous on E. Now let G be a subgroup of 0(Z2(M)).
We say that E is stable under G if each g of G leaves £ invariant.
In this case g is a homeomorphism of E. We denote by O(J?) the
set of all such g's; it is a subgroup of 0(£2(M)). We do not consider
topology of OCE1) in the present paper.

Consider the functional

(5) C(£)=e-*KI12, n

Then by Bochner-Minlos theorem, there exists such a probability measure

IJL on the conjugate space E* of J5 that C(f) is the characteristic func-

tional of fjL:

(6)

The measure /* is called £/zg 20/zz'fe noise.

Now we have the following proposition which is proved easily.

Proposition 1. Let & be the white noise on E*. Then

(i) // (#*) is a continuous one-parameter subgroup of
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then (#,*) is a flow on (£*, M), where gt* denotes the adjoint operator

of gt'
<g,*x,£y = <x,g£y, for x of £* and f o/ £.

(ii) // we define the mapping 7- from E into LZ(E*, /*) by

(7) r : £ H r ( f ) = <*,£>,

£/zg?z r £<z^ ^ extended to a mapping which defines a linear isometry
from L*(M) into L2(E*, ^0- Moreover, each image r(/) 0// w

L2(M) (we sA0// denote it also by <#, /» is <2 Gaussian random
variable with mean 0 ^mrf variance \\f\\2.

§3. Projective Linear Group

In what follows, we shall consider the case where M is the real
line R and m is the Lebesgue measure. We shall denote m(du^) simply
by du and Z,2(l?) by & In this section we shall define a specialized
nuclear space E and consider a subgroup of O(E), isomorphic with the
real projective linear group PGL(2, R~). They are utilized in the follow-
ing section.

To begin with, we consider the shift (0,) which is a dynamical
system on R defined by

(8) at : u |-> u — t,

The corresponding one-parameter group (5,) on $) and its generator Aa

are expressed in the following forms:

(9) S, :/(«) ->/(* «)=/(«-*)
and

(10) J.a :/(«) -> —-j—f(u) for smooth functions /.

Our aim is to find dynamical systems on J? which are defined by
the change of variable u and generalize the concept of the shift. We
can give the following two dynamical systems as examples. The first
one is given by

(11) rt : u |-> uef,
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which we shall call the tension. The corresponding operators have the
form

T, :/(iO |->/0*eOe</2.

The second one is given by

(12) Kt:u\-* -T^ ;

and the corresponding operators have the form

We are interested in finding, in a systematic way, a more general
class of dynamical systems which fulfill commutation relations each

other. For this purpose we consider the collection a of all C ""-functions
a(u) on 1?, which becomes a Lie algebra with the product:

(13) [a,b}, - - - - - .au au

For each function #(•) in a, we define the differential operator

(14)

Then, under some regularity conditions, the generator of a dynamical
system (#>,) is expressed in the form

4* = Z)(fl), where fl(«) =
at

In case where the system (<?,) is the shift (<?,) or the tension (rf),

a(u} = — 1 or a(u} = u, respectively.

Here arises a problem: For which function #(•) the operator D(a)

could be a generator of a dynamical system? Concerning this question,
we can prove the following proposition:

Proposition 2. Denote by a, (»=1, 2, • • • ) any possible n-dimen-
sional subalgebra of the Lie algebra a spanned by 1 and n~l poly-

nomials. Then there are only two possible cases ; more precisely,
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( i ) The monomials 1 and u form a base of a two-dimensional

a2 with the relation

(15) [-1, *] = -!;

the operator D(u) {defined by formula (14)) corresponds to the

generator of the tension (r,)-

(ii) The monomials 1, u and u2 form a base of a three-dimen-

sional a3 with the relations

(16) [1,«2]=2«, [u,u2]=u2,

and we have

(iii) For n>3, there exists no subalgebra a,.

Proof. Let functions 1 and #(•) forma base of a subalgebra a2a

Then [1, a] =ar and it has to be a linear combination of 1 and a, that
is, ar = a+$a. The solution of this differential equation is

or

according as ^ = 0 or 9^0. In the latter case the function #(•) is not
a polynomial, therefore we should choose the functions 1 and M as a

base of a2.

The case of an algebra a3 can be treated in an analogous manner,

and the last assertion can be proved easily. Q. E. D.

Remark. Dynamical systems (a^, (r,) and (&,) are related with
each other in the following way:

(17) Tt6s = 0*expt'Ct >

(18) r/^ = ^esp(-0^/ >

(19) Kt = r*6tl,

where X is the non-singular transformation defined by

(20) X : u H — .
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The operator L associated with X by the formula (1) is given by

(21) L: / ( l0K

The next step of our discussion is to find a function space E,

which is contained in § and is stable under the operators (S*)>

and (!£,)>' namely, we are looking for such a space E that (5,),
and (J5T,) belong to the group 0(1?). The following function space D0,

introduced by Gelfand and others [2], is fitting for our purpose:

(22) A = {/(«) ; /(«) e C~ and Z/(«) e= C~} ,

where L is the operator defined in (21). The topology of D0 is defined
in the natural way. Then we have

Proposition 3. We can define a countable system of norms in

the space DQ so that DQ becomes a countably Hilbertian nuclear space
and the following relations hold:

Proof. We use an auxiliary function space W which is the collec-
tion of all C "-functions /(0) on the circle S1 with the diameter equal
to 1 such that f(0 + TT) =/((?). We introduce countably many Hilbertian
norms |[-|[, (£ = 0,1,2,—) to W as follows:

(23) for / of W.

Let Wp be the Hilbert space obtained by the completion of W with

respect to the p-th norm ||-||,. Then the following functions in W

form a complete orthonormal system in Wp:

-1/2

(24)

\ p'° •/" '

By using this base, we can prove that the injection Wp+2-*Wp is
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nuclear transformation and that

Hence W is nuclear,

Consider the linear transformation r from W to D0 given by

(25) r : /(*) I- (r/) («) = Xl
 1

 2 /(arctan w).2

Obviously r is a one-to-one and onto mapping, so that we can transfer

the nuclear structure of the space W to the space A- Thus we have

proved that A is a 0-Hilbert nuclear space. The relations Ac$cZ?*

are obvious. Q. E, D.

Remark,, The Hilbertian norms appeared in the proof of Proposi-

tion 3 are transformed by the mapping r into the following forms:

(26) iifii;=sr !(z>(i+«'))'f(«)i8rf«,
.7 = 0 J-co

for f of A, £ = 0,1, -.

Moreover, the system of elements of A given by

(27)

/ = 0

(6=1,2,

k

Vn

is a complete orthonormal system of DQip which is the Hilbert space

obtained by the completion of A with respect to the norm |[ • |[, given

by (26). (See expression (24).)

Theorem 1. Let GQ be the subgroup of 0(§) generated by one-

parameter groups CS,X (T,X C-fo) and the operator L defined in
(21). Then A is G^-stable; in other words, G0 is a subgroup of
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The proof is straightforward by the definitions of the subgroup G0

and the space DQ.

We now come to obtaining an explicit expression of the subgroup

Go in Theorem 1. Let

be an element of GL(2, R~). With g we associate a transformation g

from D0 to § in the following manner:

a- • fu ) I— fg •sw'
Then we have

Theorem 2, The transformation g given by the formula (28)
belongs to 0(Z?0) for every matrix g of GL(2, K), and the mapping
g\->g defines an isomorphism of PGL(2, R} and G0.

Proof. Linear fractional transformations <st, tt and Kt are defined

by matrices

«-o-tj -g, w-tr M - ,c-o-[_} g
of GL(2, JR), respectively; and the transformation /I given in the formula

(20) corresponds to the matrix

pri
Ll 0_r

On the other hand every matrix g of GL(2, JR) is expressed, modulo

the center, in either of the following way:

Therefore the mapping g ->g is a homomorphism from GL(2, fi) onto

G0. The kernel of this mapping coincides with the center of GL(2, J?)9

from which follows the assertion of the theorem.
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§4. Protective Invariance

This section will be devoted to an investigation of the projective
invariance of the Brownian motion due to P. Levy [3] by using our dis-

cussion in Section 3.

We start with the nuclear space DQ and the white noise jm. on D*,

the conjugate space of D0.

Lemma. Let g be an element of O(Z)0) and f belong to £>. Then
the mapping f -» gf can be defined in such a way that

(29) <x,gf> = <g**,f>

in L2(D*,jji) as functions of x.

Proof. The equation (29) is true for every x if / is in DQ. For

/ in § we take a sequence (?„) in DQ which converges to / in §. Then
the sequence of functions in x, «#, £"?«», is convergent in L2(D*,yi).

Denote the limit by the symbol <#,£/>. On the other hand we have

<g*x,£n> = <x,g£n>,

and the left-hand side has the limit <£•*#,/> in L2(D*,j>*). Thus we
have the equality (29). Q. E. D.

Using our set up we have a realization of the Brownian motion.

Proposition 4. (i) The process defined by

B(t, x} = (x, Zc-eo.oiU • ) -*c— .<>]( ' )>/}

is a Brownian motion.

(ii) The process defined by

U(Jt, x} = < T*x, *[0.i]>, -

is an Ornstein-Uhlenbeck Brownian motion.

Proof. Both (5(0) and (£7(0) are Gaussian systems with mean
zero and their covariance functions are given by

1) The function XA denotes the indicator function of a subset A of R.
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f \ f \ _L I ol _ | / _c |

\ B(t, x}B(s, x)dp.(x}= ' ' ' ' - —
JDO* ' 2

and

respectively. Q. E. D.

Remark. The relation (17) implies that

/C >|#'T'*_ T^C*
Wsexpfy ^ / — -i t &s •

Hence we may say that the Brownian motion is a transversal of the
Ornstein-Uhlenbeck Brownian motion.

We consider a continuous curve (/,) in the Hilbert space § where

t runs on an interval /. The adjoint g* of an element g of 0(Z)0) is
a metrical automorphism of (Z)0*, /*), therefore Lemma implies that the
stochastic processes defined by

(30) <x,fty-,

and

(si) <g*x,fty=<x,gfty-,
have the same probability law. Now let £F be a family of curves

(32) /(K; *; a, b) = i- Xi.M~ , a<t<b,
— —

with the parameter — w<a<Jb<w. Then we shall show that the
family £F has an interesting relation with an element of PGL(2, JR).

Theorem 3. ( i ) Let n be a projective transformation from

[a,b] onto [c,d] with the condition that n(_a) = c and n(b} = d. Then

there exists an element g of PGL(2, R) such that the corresponding

g of GO (defined in Theorem 2) acts on £? in the following way:

(33) ?/(•;«; c,d)=/(.;7T-1(0;«,6), c<t<d.

(ii) For any two curves belonging to the family 3, there exist

n and g which satisfy the relation (33).
(iii) Two stochastic processes
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<*,/,(•; t\ c,rf)>, c<t<d,

and

probability law.

Proof. We may consider TT the restriction of a linear transformation

to the interval [# , 6] , which is also denoted by TT. Let

be the corresponding matrix in GL(2, jR). Since ?r is projective it pre-

serves the anharmonic ratio:

Thus we have

(34) J1 _
5 — ̂ : Z? — u n(s)~c d~n(u}

Setting ^ = 71(5) and 'differentiating the expression (34) in u, we

obtain

(35) &-^(0 . w = m j £ c a<u<bfC<t<d
n~^(t}~a

and

(36) b~^ .
~ l -n~l(t}-a (b-u)2 t — C (J-

Combining the formulas (34), (35) and (36), we have

The rest of the theorem is obvious. Q. E. D.
Since
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(/(•; t; a, b}, /(•; 5; a,b}) = V(s,t; a,b~) ,

the assertion (iii) of Theorem 3 means the principle of projective in-

variance of P. Levy for the Brownian motion. The proof of Theorem

3 is an illustration of this principle in our set up.
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