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A Geometric of Numerical Solution of
Nonlinear Equations and Error

by Urabe's Proposition

By

Yoshitane SHINOHARA*

1. Introduction

In his paper [1], Rybashov proposed a method of approximate
solution by an analogue computer of a system of nonlinear equations

(£) F(x) = {fk(x19 x2, -, *„)} = 0 (fe = l, 2, -, «).

However his method can be practised easily on a digital computer
and by doing so, we can get a more accurate solution of nonlinear
equations. In the present note, we shall describe a method to
practise Rybashov's method on a digital computer and illustrate our
method with a system of transcendental equations which appears
in making a map of Japan by a simple conic projection.

In numerical solution of nonlinear equations, after finding an
approximate solution in any way, it is also important to verify the
existence of an exact solution and to know the error bound of the
approximate solution obtained. In the present note, we shall show
that we can indeed verify the existence of an exact solution and
know the error bound of the approximate solution obtained from
the approximate solution itself by the use of Urabe's proposition [2].
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2. The Method of Computation

From equations of the system (E\ we choose n — l equations,

say,

(2.1) f*(x19x2, -,xn) = 0 (a = 1,2, -,H-1).

The condition necessary for a system of equations (2. 1) is only that

the rank of the matrix (dfjdxt) (a = 1,2, • • • , n — l ; * = 1,2, • • • ,«) is
equal to w — 1. The system of equations (2.1) then determines a

curve

C : x = x(s) ,

for which from (2. 1) we have

(2.2) fj§/-.^ = 0 (a = l,2,-,fi-l).
'=i o#z- as

Put

(2. 3) D, = (-I)*'- i»" ...... » - - i (i = l, 2, -.., ») ,
0(^1 > ""> ^ f - i > -^f+i > ""> ^»)

then from (2. 2) we have

(2.4) d-J± = *D* (i = l,2, -,»),
a5

where X is an arbitrary parameter. Let us choose a parameter 5

so that 5 may be an arc length of the curve C. Then we readily

see that X is given by

(2.5) X=±[2Z>n- 1 / ' .
1=1

Hence from (2. 4), for the curve C, we have a system of differential

equations of the form

(2.6) ^ = X(x).
ds

Now we take a point x=x^ on the curve C and suppose

jcc0)=jc(0). Then we can compute the curve C integrating numerically

equation (2. 6) by a step-by-step method, say, the Runge-Kutta

method. Let jcco (/=!, 2, ••• ) be the approximate value of jc(s)
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obtained at the /-th step by the numerical integration. Then we
may have /«[jcCO)]-/M[jc(1)]^0. Otherwise we continue the numerical
integration of (2.6) until we have

(2.7) fn[*'-l^-f »[*"]£<) •

Once we have had (2.7) for some /, we check if |/w[xc/~ir]| or
l/wEX^ll is smaller than a specified positive number 8. If this is
not satisfied, we multiply the step-size of the numerical integration
by 2~p (p^T) and repeat the numerical integration starting from the
value xa~^. If we repeat this process, then after a finite number
of repetitions we shall have

(28) |/-C*c|-l5]-/-C*c/5]^Of

( lAC*"-1']! or |/,[^

provided on the curve C there is a simple solution of (E), that is,
a solution of (E) for which the Jacobian of F(x) with respect to x
does not vanish. The value JCC/~ ID or jccn satisfying (2.8) gives an
approximate solution of the given system of equations (E). Starting
from JCC/~ ID or xa\ we then can compute a solution of (E) by, say,
Newton's method. However, if £ is very small, jcc/~1} or xc/) itself
will give an accurate approximate solution of (E).

Remark 1. In the course of the numerical integration of (2.6),
it may happen that

(2.9) I/J>CI>] I ^fi-

at some /-th step for some positive integer a^n — I, where f is a
prescribed positive number. When (2.9) happens, one however can
correct jcc/) so that the corrected value ic/) may satisfy inequalities

for all or = 1,2, • • • ,»—!. To do so, it suffices to apply Newton's
method to (2.1) starting from jc=jcc/) leaving one of xfn's (/ = !, 2,
• • • , r i ) f ixed .

Remark 2. To find a point x=x^ on the curve C, it suffices
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to find a solution of the system (2.1) consisting of n — l equations

after asigning a suitable value to some one of jtr/s (* = 1, 2, ••• ,«)•
Our method is clearly applicable to systems consisting of n — l
equations. Repeating such a process, the problem thus is reduced
to finding a solution of a single equation.

Remark 3. If we continue the numerical integration of (2.6)
through the approximate solution obtained or begin the numerical
integration of (2.6) in the reverse direction, then we shall have (2.8)
again provided there is another simple solution of (E} on the curve
C. Continuing our process, we thus can get numerically all finite
simple solutions of (E) lying on the curve C.

3e Urabe's Proposition

Urabe's proposition [2]. Let

(3.1) F(x) = 0

be a given real system of equations and suppose that F(x) is conti-
nuously differentiate with respect to x in a region £1 of the x-space.
Assume that equation (3.1) possesses an approximate solution x=x
such that the Jacobian matrix J(x) of F(x] with respect to x is non-

singular for x=x and there are a positive constant § and a non-
negative number «;<! satisfying the following conditions for any
norm of vectors and matrices:

(3.2) (ii) !!/(*)-/(*)! ^ for any
M

(iii)

where r and M(^0) are numbers such that

(3.3) \\F(x)\\^r and \\J~\x)\\ ^

Equation (3.1) then possesses one and only one solution x=x in

fL and we have



(3.4)

Geometric Method of Numerical Solution of Nonlinear Equations

,,* -,, ^ Mr

For the proof, see [2], pp. 124-125.

The proposition gives conditions under which the existence of

an approximate solution implies the existence of an exact solution,

and the error estimate of an approximate solution can be got from

itself without knowing an exact solution. Hence by verifying the

conditions of the above proposition for an approximate solution

obtained by computation, we can know the existence of an exact

solution and at the same time get the error bound of the approximate

solution obtained by computation.

4. An Example

In order to make a map of Japan by a simple conic projection,

it is necessary to find a function y(x) which satisfies the first order

differential equation

(4.1)
ax sin x

and the boundary condition

(4.2) /(«) =/(£)
sin 6

for an appropriate positive constant 17. In (4.2), 0 is a solution of

the equation

(4. 3) y"(0) = 0 ,

and

a = 44° , (3 = 66° .

As readily seen, the general solution of (4.1) can be given by

(4. 4) y= yn(x} = 2 tan-"(*/2) [£

where x± may be supposed without loss of generality to be equal to

55°-(44°-t-66°)/2. From the boundary condition /(a) =/(£), it
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readily follows that

(4. 5) C, = [sin a • tan^a/2) • f tan*(x/2)dx

-sin/3.tan"(/3/2).r tan^/2)^])

[sin/3-tan%(3/2) - sin a-tan^/2)] .

Now, differentiating equation (4.1) with respect to x, we see that

equation (4.3) is equivalent to the equation

(4.6)

From the boundary condition y'(/3')=->]'y(d')/sind, we further have

(4.7) 2-^L-.yv(f)) = -?-y,(0).
sm /3 sin 0

Thus we see that for solving the initial problem, it suffices to solve

numerically the system of equations

(4.8)

for the function y^x) given by (4.4) and (4.5).

We shall now apply our method to the above system of equa-

tions. According to (2.4)~(2.5), for the curve C determined by
) = 0, we have

(49) ? = _ B
^ ' } ds VF* + FI' ds

and solving the equation F(0, 0) = 0 numerically, we get

(4. 10) rj = 0 , 9 = 0.95114 50249 ,

which can be assumed to be an initial value for the solution of

(4.9) corresponding to s = 0.

We specify the values of 8 and f so that

(4. 11) 6 - 10-9 , f = 10-8 .
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In the numerical integration of (4.9), we start with step-size 2~5 and
multiply the step-size by 2~3 when the second inequality of (2.8) is
detected to be unfulfilled.

On the computer TOSBAC 3400, we have got ;

(4.12) ?C54D = 0.57355 02977 , 0C54) = 0.94679 70998 ;

7?C53> = 0.57355 02976 , 9^ = 0.94679 70998 ;
0 /3C53)\ /~V,V,('54') /3C54)\ ^x C\ •
, C7 )*^J\J] , t/ ) ^ U ,

o, ^CM)) = _0.43655 74569xlO-10,
543, 6>C54)) = 0.43655 74569 x 10-10 .

For the purpose of making a map, it is unnecessary to find all
solutions, but it suffices to get any one of the solutions. Hence we
have stopped the computation after having found the above (i?c54},
0C54)).

In order to get an error bound for the approximate solution

(4. 14) x = {^, 3} = to^

we apply Urabe's proposition to the equation (4.8) using the
Euclidean norms. Put

(4.15) x = to, 0}, F(x) = {F(ri, 0), G(n, 0)} ,

then from (4.13) readily follows

(4.16) |!F(±)||<0.437xv
/2 xlO-10<r = 0.437x 1.415xlO'10.

Put

/(*) = rF,(i7,0)
_G,(?, 0)

then for jc=jfc, we have

/(je) = T - 0.74233 20101X10'2 - 0.98257 30255 X10°

L 0.24747 58356x10 0.18917 48980x10-

J-\x) = T 0.77797 54129xlO-10 0.40407 98559x10°

L - 0.10177 36060 x 10 - 0.30528 15454 x 10~2J ,

and hence
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(4.17) 1 |/-'(*)| |<M =1.096.

Let £1 be the region such that

(4.18) n = { x = (i7, 0):

where 71=0.01745 32925 (0.01745 32925 radian = 1°). Then, com-
puting the values of ||/(x)— J(x)\\ for grid points

(i = 0, ±1, -, ±8; j=Q, ±1, • -., ±80, -81, -82, -, -88),

we see that

(4.19) ||/(x)-/(x)|| <: 0.890

for any xeO. Put

(4. 20) S = 0.0174 ,

then evidently

(4.21) ns c n,

and we have (4.19) for any xenSo Hence by (4.16), (4.17), (4.19)

and (4.20), we see that the conditions (ii) and (iii) of (3.2) in
Urabe's proposition are fulfilled if there is a positive number «<1
satisfying the following inequalities:

0.890 ^
(4. 22)

1.096 x 0.437 x 1.415 xlQ-10 < Q om

These inequalities are equivalent to the inequalities

0.890 X 1.096 rg *£ 1 - L096 X °'437 X L415 x 10"°,

that is,

(4. 23) 0.97544 g « ̂  0.99999 999610

Hence, indeed, there is a positive number *;<! satisfying (4.22).
This proves that all the conditions of Urabe's proposition are ful-
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filled by the approximate solution x=x. Thus we see that equation
(4.8) possesses one and only one exact solution x=x in £1$ and that

(4.24) i | j fc_- | |^

where K is an arbitrary number satisfying (4.23). From (4.23) and
(4.24), we then see that

(4.25) ||^-x||^

which gives an error bound for the approximate solution x=x =
{^\0^} given by (4.12).

For the function $(x)=y$(x)y we have

jK(<*) = 0.99072 83110 ,
/(/?) = 0.99072 83110 ,

and
n0 = 0.99072 83109 .

These show that y=$(x) satisfies the given boundary conditions
accurately.

Remark. In the above computation, we have used the follow-
ing formulas :

tan (x/2)-dx

' + V l o g t , }

where ^.-tan(^./2) (f = l,2).
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