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The Singularities of the Solutions of
the Cauchy Problem

By

Yusaku HAMADA*

This paper is concerned with the Cauchy problem of linear
partial differential equation with holomorphic coefficients in complex
domain.

The Cauchy-Kowalewski theorem asserts that locally there exists
a unique holomorphic solution of the Cauchy problem provided that
the initial surface is non-characteristic and the initial data are
holomorphic.

J. Leray [1] studied in detail the case where the initial surface
has characteristic points. He proved the remarkable results that
near the characteristic point of the initial surface the solution is
ramified around the characteristic surface tangent to the initial
surface, and it can be uniformised explicitly (also L. Carding, T.
Kotake and J. Leray [2]).

On the contrary we treat the case where the initial surface is
non-characteristic, but the initial data have singularities. In this
case, under some conditions, we shall show that the solution has
the singularities along the characteristic surfaces issuing from the
points of singularity of the initial data. Furthermore we can obtain
an explicit representation of the solution.

The purpose of the present paper is to formulate this situation
and to show some results.

Our method relies essentially on the papers of S. Mizohata [4]
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and [5], in which he constructed the fundamental solution of hyper-

bolic equation and null solutions. We also use the calculations

established by D. Ludwig [3]. Though these analysis were made

in the real space, there is no modification to apply them to our

problem in the complex domain.

In the next section we describe the precise statement of our

results.

I wish to express my sincere gratitude to Professor S. Mizohata

for his encouragement.

§ le Notations and Results

Let Cn be the ^-dimensional complex space. For the point of

Cn we use the notation x = (xls~,xn} and write x = ( x 1 9 x ' ) 9 x /

\^2 i * " 9 %n) •

We consider linear partial differential operator of order m with

holomorphic coefficients

where a = (a± , - • - , an) is n- tuple of integer ^0 with \a\ = a1 +

and a^x) are holomorphic in a neighborhood of x = Q.

We denote by h(x ; p) the homogeneous polynomial in p defined

by

h(x ; p) = h(x ; A ,-, A,) = S <*•(*) P*

where p<*=pii~-pn», P' = (P2 ,°~>Pn} and h{(x ; p*) are the homogeneous

polynomial in p' of order i .

We shall assume am>0 f...?0(jc) = l throughout this paper. This

means that the surface ^ = 0 is non-characteristic for the differential

< o \
x, — ).

dx/
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(0, *') = wk(x>] for k = 0, 1 ,-, m-l ,
9#f

where the initial condition wk(x') are holomorphic in a neighborhood

of x' = Q except for x2 = Q.
In solving this problem, we shall make the following assumption

(1.2) If A(0;A,1,0,- ,0) = 0, then hPi(Q ; pl9 1,0 ,-,0)=|=0 .

Now we can construct the characteristic surfaces K19-',Km

issuing from xl = xz = Q. The surfaces K{ are regular and are defined

by the equation <pa)(#) = 0 (9#}=t=0 and <p™(Q, x*)=x2).
l:>

Then our statement may be stated as follows

Theorem. Under the assumption (1. 2), the Cauchy problem (1. 1)

<2 unique solution u(x) which is analytic in a neighborhood of

= Q except for K1[^K2[^ ••• \JKm and has the singularities on

More precisely, provided that wk(x'} k = Q, 1,2 ,--,m — 1 have at most

poles along x2 = Q, the solution u(x) is expressed in the form
m ( JTCzViA

(1. 3) u(x) = 2

where F^(x), G^(x) and HG^(x) are holomorphic in a neighborhood

of x = Q and p{ is integer ^0.
In the case where at least one of wk(x

f] has essential singularities

along xz = 0, the solution u(x) is expressed in the form

m r oo 7?w>(r\
(1. 4) u(x) = 2 2

-

?\x), G^D(x) and H(i\x) are holomorphic in a neighborhood

of x = Q.

Remark. The uniqueness of the solution follows from the
Cauchy-Kowalewski theorem.

1) 9CO(V) does not signify the derivative of <p(x).
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The proof of this theorem consists of two steps. In the first

step, we construct the formal solution satisfying the given conditions.
This enables us to calculate actually the integer p^ F™(x) etc. in

the expressions (1. 3) and (1. 4). In the next step we discuss the

exactness of the formal solution.
Section 2 contains the construction of the characteristic surfaces

KI . Section 3 is devoted to the construction of the formal solution

and in Section 4 we discuss the exactness of the formal solution

and prove the above theorem, in the case where the initial data
have at most poles. Section 5 is devoted to proving the theorem

in the case where the initial data have essential singularities.

§ 2. The Construction of the Characteristic Surfaces

In this section we shall construct the characteristic surfaces

K1,-"JKm issuing from x1 = x2 = 0.

For this purpose, we consider the first order differential equation

(2. 1) h(x, ?>,(*)) - 0

with the initial conditions

Thus we have

9>,a(0, x'} = 1 , p,3(0, *0 = 0 , -, ^(O, *') = 0 .

By the assumption (1.2), for \x\ sufficiently small the equation

h(x ; A> 1? 0 , - • • , 0) = 0 has m distinct roots pl^=ai(x ; 1, 0 , - • - , 0)

(f = l ,2 ,— ,m), where h(x ; A ,'~,pn}= n (pl-ai(x ; A ,— ,^))3) and1=1
a£(x

m, 1, 0 , - • - , 0) (f = l,2 , • • • , m) are holomorphic in a neighborhood

of x = Q. We also write a,- = az-(0 ; 1, 0 , - • - , 0).
As is well known, <p(x) is obtained by solving the associated

ordinary differential equations

2) See page 16.
3) This holds for \p2-l\, l^3 i ,"-, |A/ | sufficiently small.
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dXi _ , / -x
dt

(2.2)

with the initial conditions

*i(0) = 0, x2(Q)=y2,-,xn(Q)=y,
A(0) = a,(0, /; 1, 0 ,-, 0), &(0) - 1, A(0) - 0 ,.-,^(0) = 0
9>(0) = J2 -

Let the solution of (2. 2) be

Then from (2. 2) we can easily see that

= hPi(0, /; a,-(0, / ; 1, 0 ,-, 0), 1, 0 ,-, 0)^0

for |/i sufficiently small.
From the theorem of the implicit function, it follows that

yn =yn(xl,~',xn) ,
where the functions on the right hand side are holomorphic in a
neighborhood of x = Q.

Hence, we have

<P = y2 = y2(Xi , — , xn) = <P«\XI , - • - , xn) i = 1, 2 ,--, m .

Thus, the characteristic surfaces Kf issuing from x1 = x2 = 0 are given
by the equation

9>cl^1,-,^) = 0.

Moreover, from the fact that <p(i\Q, x')=x2, we can write
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, = a, .

Here <p*\x) are holomorphic in a neighborhood of x = Q.
Since

?>%(0) = 1

we conclude that Kg are regular surfaces and <p"\x)^Q.

§ 3. Construction of Formal Solution

In this section and the next section, we treat the case where
the initial data have at most poles along xz = Q on the initial surface

*, = <).
According to the principle of superposition, it is sufficient to

consider the following special initial value problem

(3.1)

and the initial conditions

(3.2) |̂ (0, *0 = 0 k^h and

where / is the integer >0 and w(x") is holomorphic function of

In solving this problem, we shall make use of the formal solu-
tion of (3.1) and (3. 2). For this purpose, we introduce the functions

fj(s) (j=—w> —m + l. , -••) satisfying the following relations

( d

(3.3)

ds
-fj(s) = fj-^s) j = -m, -m + 1,

sl

f-h+l(s) = log s

a a

a
2 3 a

A = o .
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We assume that with the aid of these functions the solution
u(x) has the form

in °°

(3. 4) u(x) = 2 { 2 /*(9>"'(*)) «£"(*)} •
1=1 k=Q

Here u^(x) are functions to be determined.

Now, we have the identity

(3. 5) a( x, iC/Op) ̂ ] ^/^((p) h(x> <PX)
V dx /

f W C^1jl 1
X / \ ^ fa£J)(Y rr) \ -I- /* (fy\ ii \ A- f^in~^(rn\ T r1J~\ -4- • • • -4- f(tT)\ T V 1J~\i x i iv v-^j r x) i^Oj^^i/yti'/ i^_/ \r/^ /2L J "^ ' •/ \/ / ^mL.^J >

where AC^(JC, f) implies — A(JP, g) and c^x) is holomorphic function
9fy

and Lp (p=2, 3 ,••• , m) are differential operator of order p with holo-
morphic coefficients.

Let us act the differential operator alx, - ) on both sides of
\ Qx I

(3.4).

By using the above formula (3. 5), we get

(3. 6) a - - u(x) =22 { fk-n>(^ h(x, <p«>) «i»
Qx / i=l k=Q

( n r)7/cg)

2*c'5(*,9>;l>)^+c,.1(*)«i''j=i 9*

We recall that <pCD(#) are the solution of the equation h(x, 9>»°(^)) = 0.
Thus if we work out formally the coefficients of /y(^

cn) in (3. 6)
and set each of them equal to zero, we obtain the sequence of the
recursion formulas

n fti/M
(3. 7) _£•,[>&"] = 2 *<"(*, ^()) + Q .(ar)^" = 0 i = 1, 2 ,-, m

(3. 8) •«> = - « f = 1' 2 '-•

for the determination of u™ u{° ,-

4)
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Here we note that the hypothesis (1.2) implies fcl\x, ^

In solving (3. 7) and (3. 8), we find it convenient to give to the
first variable xl the special role rather than to use the independent

variables ^ , • • • , Jtrw. Namely we denote x^ by t and (#2 »•"»#») by
( x l 9 — y x H ) . We also denote xf by # and #" by x'.

Then we can rewrite the equation (3. 7) and (3. 8) as follows

,

(3. 9) [̂««'] = £s_ + g «,-. Xf , *)- + <:,(*, *) «$" = 0

?re

(3. 10) _£[«<,»] = - L,., [«<%_/] * ̂  1 ,

Next, Let us turn to a consideration to the initial conditions
(3. 2). As is easily seen, we have following relations :

771 oo

= (2 2/*(<pc"X"(f, *))«-.
2 = 1 fe = 0

l

= 2 2
(3.11) ( "l

x

»/n r-i _ f v* Vprrtu,*; -^ z.

+ fk-m+*(<Pm}\(m-^

Here, for simplicity in notation, we have denoted by the same nota-
tion 3Jiy, (/= 1,2 , • • • , w—1) the various differential operators of order
j which consist only of the derivatives with respect to t. This will

not give rise to confusion. From here on until the end of the next
section, we use this notation.

Now the right hand side of (3.2) can be expressed in terms of
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//(#i) U=— hy —h + I , - ••) . After doing so, if we compare the
coefficients of f j ( x ^ in (3. 2) wih those of (3.11), then we obtain

(3. 12)
2 to-

\

where a,(*) = (0, *)•
Of

Generally for ^ = 1 ,2 , - - - , we have

m, TO. — 1

)]"-1^" ,̂ *) = (2 2

Let

1 1 1

at(x) az(x) am(x)

This is Vandermonde's determinant of a 1 , - - - , a m . As is shown in

the preceding section, these are distinct, and hence this determinant

does not vanish in a neighborhood of x = Q. Therefore, from (3.12)

and (3.13) we can determine successively the initial data of u^

(fe = 0,l,2,-)-
Indeed, for i = 1, 2 , • • • , m and k = Q, 1,2,--, we get the expres-

sions of the following type

(3.14) uF(Q, x) = A(A, i, JC)M;(^)
m TO—1

(3.15) «i"(0, Jtr) = 2 2 ^C«"i->])«-o,
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where A(/z, i, x) is the holomorphic function which depends only on

h, i and the operator a{x, -—-] .
V Qx /

Summarizing the above results, we find that «£ f ) are successively
determined by the following recursion formulae.

«j *j
(3. 9) _£•,[«&"] = ^- + S a (,, * ) 2 _ + (/

9f >=i dXj

with the initial condition

(3. 14) i4(>(0, AT)

And for k = l,2 ,—

(3. 10) ^,[«i'>] =

with the initial condition

(3. 15) ltf'(0, JT =
Wi — 1

1=1 J=l

§ 4o The Exactness of the Formal Solution

The Cauchy-Kowalewski theorem guarantees the existence of
the holomorphic solution of (3. 9), (3. 14), (3. 10) and (3. 15). But in

order to show that the formal solution (3. 4) is the exact solution

of (3. 1) and (3. 2), we must establish an estimate of u^\ For this
purpose, we use the following propositions 1, 2 and 3 due to Mizohata

([4] and [5] especially [5] §5).

In the following we denote - by D.
dx

Proposition 1. Let a(x) and b(x) be two holomorphic functions.

We assume

where r and s are non negative integer. Then we have the following

estimate
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R — 1 .

Consider the first order differential operator

(4. 1) £ = JL+ 2 */f, *)

where 0y(J, x) and c(£, #) are holomorphic functions, which have the
estimates

(4.2)

(4.3)

Q ,(op)

Proposition 2. Under the above condition, we consider the solu-

tion u(t, x) of X[u~}=f(t, x) with the initial condition u(0, #)=().

Moreover we assume

(4.4) \D*Dlf(t,x)\

(4.5) \D"tDlu(t,x)\

2 r ~ ? / exp (7 1 f I )#( f I )

where K(f)= exp (7«?)(l+7«f) cwJ 7 c«J p are constants such that

(4.6) 7^min(6'y0 ,27), 0 < p < i
lO .

In the case where the initial data do not vanish, we use the following
Proposition 3. Consider the solution u of

Concerning the initial value w(0, x\ we assume

(4. 7) |D2«(0, x)| < v*~y>'A r > 0

(4.8) \D"tDlu(t,x)\^2(r + q+ i ;^ !exp(7|f|)g(|f|) r+g+|v |(7«)M,
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where j and p are constants satisfying the condition of Proposition 3.

Under the above preparations, let us enter into the estimation

of u^\ Since the coefficients aitj(t,x) and c{(t, x) in the equations
(3. 9) and (3. 10) are holomorphic, we can assume that there exist

constants y, y0 and p such that

(4.9) |fl;.,a,.X*,*). , . , . . , , ,
(op)

(4.9') \m,xc((t, *)j<-ML7 , y>0

and satisfy (40 6).

In the process in which we estimate successively u%\ in con-
sideration of the fact that (4.9) and (4.90 hold in (3.9), (3.10),
Proposition 2 and 3, for simplicity we may omit the suffix i of the
differential operator X{ and LitP in (3.9) and (3.10). This will not
lead us to confusion. For a moment, we make this convention.

Now, since w(xr) and A(/z, /, x) are holomorphic functions, there
exist constants A, B and p such that

(4.10) |Z

(4.11) | , ,(op;

where A = max \ w(xf} \ and B is constant independent of h, L
I^KP

Then it follows from (4. 10), (4. 11) and Proposition 1 that

(4. 12) | Dl{A(h, i, x)w(*)} | < 2-- B .

This is an estimate of the initial data of «&° and so allows us to apply
Proposition 3 to (3. 9) and (3. 14). Namely, we have

(4.13) \D\DluX\t, x)\

For general k>l, we can establish an estimate of the form
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(4.14) \D}Dlu<£\t9 x)\

where c(K)=c^NA and c0(>l) and N denote some constants

depending only on the operator a(x9 ) and
^ dx I

(4.15) A -max \w(xf)\.

We shall prove the estimate (4.14) by induction on k,

At first we note that by (4.13), (4.14) holds surely for k = Q.

Now let us assume that this estimate (4.14) holds for £ = 0, ! ,••• ,&.

To establish the validity of (4.14) for £4-1, we split M("+I into two

parts.

^c?l+i — u^l+1 + u^l+1.

Here uw
k+l is defined by the solution of the equation

(4.16) ^jK^ = 0

with the initial condition

(A 1VN 7ycn /n r"l — "V 4" V1 ^W r77cn 1"\ 1\f±. j-1) u ^4-j^u, X) — / i \ / i ^Jvtyj^zf fe+i-yj/^=oj •

While u^l^ is the solution of the equation

(4.18) ^^

with the initial condition ac'J+1(0, #) = 0.

Then we can apply Proposition 3 (resp. Proposition 2) to

M I ' A H (resp. M^ITj). At first we consider M ( '*+I. In order to apply
Proposition 3 to (4.16) and (4.17), we have to estimate the initial

condition (4.17).

Recalling that 3Ky represent the differential operators of order j,

which consist only of the derivatives with respect to t, and using

(4.14) and Proposition 1, we have
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m m— 1

22 0:C3H,[y' 2+l_,])f_
=1=1 J=l

where M, (/= 1,2 , • • • , w—1) are constants depending only on a(x, —
V Qx

m-l

Setting M= 2 Mj, we get easily

where M is constant depending only on the differential operator

•(*•£).
Then Proposition 3 yields the following estimate

(4.19) \D}D^1(t,x)\

Next we turn to the estimate of wc'J+1. We observe the deriva-
tives Dq

tDl of the second member of (4. 18). By the assumption on

induction, for 2<^<m each term is estimated by

Npc(k+2-p} l ) ' exp (7 \t | )K( I / 1 )

with suitable constants A^, determined only by Lp. Hence, setting
m

L=^N., and summing up over p from 2 to m, we get the estimate
p=2 V

of the second member of (4. 18)

l)! exp (7 1 / 1 )/f( 1 * I Y
P

9Again we note that L depends only on alx,

This enables us to apply Proposition 2 to (4.18). We get
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exp (7 1 * | )#( | f |

From the fact that K(\t\)<K(l) for | f |<l , we can rewrite the
above inequality as follows

(4.20)

Let us set

c0 - 2 max ( 2mM(<yri)m~~1 , 2L^^ frit)1", l
\ P

Then adding (4. 19) and (4. 20), we obtain

^^
Consequently, if we choose for c(Q) and c(k) the constants such
that

c(Q) = 22AB = NA and c(k) = c*NA ,

we arrive at the desired estimate (4.14) for fe + 1. This completes
the induction.

Now, this estimate (4. 14), once established, permits us to show

that the formal solution (3. 4) is the exact solution.
Before doing so, we find it convenient to utilize the original

notation (#!,-••,#„) which does not give to the first variable the
special role. Then we can rewrite (4. 14) as follows

(4. 21) ! DluF(x) \ < cSNAv exp

LPWJ
where

exp (78) for x |< 8 ,

P rx K(8)jn

and
^4 = max | w(#") | .
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Now we return to the proof of the exactness of the formal solution
(3. 4). In order to do so, it suffices to discuss the exactness of the
partial sum for any /. But it can be written in the form5)

i"W = F™(*l + log ?">(~

for l-h > 0
* = ! & ! '

and

,2-j T . L95 z v^/J ^ -/z+/-t-&v^/ ior ^ /z ̂  U „
k=h-l K\

In either case, it is sufficient to discuss the convergence of the
series

(A. 99} V1 UP^OOj ^co /^N
-̂4:. ^r^y X j — ^* —h+I+k\-*'J

/j=maxCl//-/!,!) ^ j

By using (4. 21), we have the following inequality for the general
term of (4.22)

This shows that (4. 22) converges uniformly throughout a neigh-

borhood \<p(ii\x) < - of x = 0. Consequently, we conclude that
c^the formal solution expresses the exact solution in { x <S] — U K{1=1

for £>0 sufficiently small. This establishes our theorem in the case
where the initial data have at most poles.

§ 50 The Case Where the Initial Data Have Essential

Singularities

Since there is no modification necessary for the other cases, we

5) In the case where the initial conditions are given by (3. 2), for the integer p{ in
the expression (1.3) we have p^l — h. For at least one of * = 1, 2, • • • , m , we have
pt = l — h. Of course, it may happen that for some « FCO00=0.
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shall carry out the discussion merely for the following special case.

(5.1) a(x, -j-)u(x) = Q

and the initial conditions are given by

(0, #0 has essential singularities along the surface x2 = 0
(5' 2) and ^(0, #0 = 0 for 1 < k < m-l .

v 9#*

Now our assumption means that u(0, #0 has Laurent expansion

of the form

(5. 3) «(0, #0 - ± *^p x" = (#, ,...,*„) ,
' = 1 #2

where #/(#") are holomorphic functions in a neighborhood of x" = Q.

We again use the principle of superposition, that is, we consider

the Cauchy problem

«(#,—J«,(#) = 0

(5.4) J 2^(0? #0 = z

, —7^(0, # 0 = 0 for 1 < k < w —1 .

With the aid of the solution ut(x) of this problem, we define u(x)

by the sum of the series
00

/ = !

It is obvious that «(#) satisfies purely formally our conditions (5.1)

and (5.2). Therefore if we can show that the series (5.5) con-

verges uniformly on every compact subset of a neighborhood of

# = 0 except for the reunion K1D"-^Km of the characteristic sur-

faces, we can conclude that u(x) represents the exact solution of

our problem.

In the following we proceed to the discussion on the conver-

gence of the series (5. 5).
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Now the consideration of §§ 3 and 4 enables us to write HI(X)
in the explicit form

(5. 6) «,(*) = 2(2 (-i)-.^lL^o (jc),-=i t*=i L95 (*)]

2 [ ^ ] V ^ ; l+4(*) log *,«>(,)

Substituting (5. 6) into (5. 5), we have the double series

(5.7) u(X) =

+( 2 C^^IV,'. /+.w) log ̂ o

Since it is sufficient to discuss the sum for any i, we may omit the
suffix i. The estimate of utj k follows from the result (4. 21) of the
previous section. In order to do so, we must estimate #/(#") in the
initial data (5. 4). Since #/(#") are the coefficients of Laurent expan-
sion of u(Q, x'} it follows from Cauchy's inequality that

P
iv| ,

where

(5.9) M(€) = max |«(0,*0i.

By (4. 21), taking for ^, we have

(5. 10) «,.,(*) | < ^*! WS)P exp
(I L) .

If this estimate is once established, it is easy to examine the con-
vergence of (5. 7).

Indeed, at first we consider the partial sum
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By (5. 10), after brief computation, we get

2 !«*>-/!

Since we have

we see that (5.11) converges in \<p\>G.
Next we consider the remaining part of (5. 7)

(5. 12) { 2 2 ^£F «i. '+*(*)} log -Xl / = i * = o ^1 J

We observe the coefficient of log<p(jt:) in the first term. From
(5. 10), after brief computation, it follows that

2

Therefore the double series

VI VI !>(*)]*— —

converges uniformly in - - <1, that is, \cp\<
l-c(S)\<p\ c(S) .

This yields that the coefficient of log <p(x) in the first term of (5. 11)

is holomorphic in \<p < ~ ^ . Evidently the same holds for the
c(S).

second term of (5. 12). Collecting the above results together, we

see that (5.7) represents the exact solution in £< <p\ <;1""ggW>
c(S}

Since £(>0) is arbitrarily small, we conclude that (5.7) is analytic
m

in { | x | < a} — U Ki with a suitable positive constant a-. Further-
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more (5. 7) can be rewritten in the form (1. 4). This completes the
proof of our theorem.
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