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The purpose of this paper is, in brief, to show generalizations
of Kantrovich's inequality :

(*) "If (Xh^x^H, p^O and A+A+ ~'+Pn = 1, then

One such generalization is to take (*) for an estimate of the
covariance of variables x and 1/x:

C(x, l/x}^-(H-Ii)2/4Hh .

We shall study the bound of the covariance C(x, y) in general case,
At the same time (*) can be seen as an estimate of the ratio of
the arithmetical mean and the harmonic mean. In this direction
G. T. Cargo and O. Shisha [1] have showed the best estimate for
the ratio of means with degree r and degree s by the supremum
H and infimum h of the variable. We shall show the best estimates
for the difference, the ratio etc. of two "comparable" means by H,
h and a mean, from which we can derive the results in [1]. As
to the difference of arbitrary two means, we have rough estimates
using the estimate for the covariance stated above.

The main results are stated in theorem 2, 3 and proposition 30

We use integral notation for means, but nothing essential is lost
to restrict ourselves to finite cases.

I wish to thank Professor S. Hitotumatu who encouraged me
to complete this study.
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1. Generalized means and absoluate inequalities.

Let O(S5, IJL) be a completely additive measure space with

measure 1. We take a monotone increasing continuous function /

on an interval /. Then we can define the mean Jli/^x) of x(f) with

respect to / for any function x(t] on O satisfying the following
conditions :

i) x(f) has values in /,

ii) f°x(t) is summable on n.

We put

We can easily verify the following

Proposition 1. i) <3A,f(x) is contained in the convex hull of the

essential range of x(f). Consequently, if x(f) is essentially equal to

a constant c, 3ttf(x) = c.

ii) // x(t)^y(t) (a.e.), 3ttf(x)^3ttf(y). Furthermore if

^{fefl x(t)>y(t}}>$ then 3ttf(x)>3ttf(y).

iii) JHaf+b(x) = 3ttf(x) for a =f= 0.

iv) // {/»(#)} is uniformly convergent to f ( x ) , and {xn(t}} is con-

vergent to x(t] almost everywhere, and if there is a summable function

F(t) on O such that \fn°xn(t)\^F(t)9 then lim JHfn(xn) = JUf(x).
n-^oo

v) Let T be a measure preserving transformation on O, then

iv) // g is an increasing continuous function on the convex hull
of the essential range of fox, 3ttgof(x)=f~l[_3ttg(f°x}~].

As to iii), we see in next theorem that the converse is valid.

If H is finite, JMx(x) and M^^x) stand for the weighted

arithmetical and geometrical mean respectively. We shall often

denote them by Jl(x) and 3(x). Jl(x) is defined just for summable

functions on £1. It is obvious that 3ttf(x)=f~l[_Jl(f°x}~\.

Let 3=3(7) be the totality of the monotone increasing con-
tinuous functions on 7, and @ = @(7) the totality of the measurable

functions on O whose ranges are relatively compact in 7. Then the
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mean JM/jc) is defined for any f(x)^?$ and x(f)^&. For /,
we define f>g when JMf(x)2><!Mg(x) for any x(f)^@. This is a
pseudo-order relation in %.

Theorem 1. If H(S3, //,) 2*5 not trivial, that is if S3 has a set CD

with measure X=t=0, 1, £fen /or /, #eg, />£ (/" awe? only if f°g~l

is a convex function. Whence <3ttf(x) = <3ttg(x) for any #(f)e@ if and
only if g=af+b for a=^Q.

This is easily proved by approximating x with step-functions.
We have defined the relation (>) regarding JHf only as a functional

on @, but if />£ so far as JM/jc) and JHg(x) make sense the
inequality <3H/x)^<3Hg(x) still holds.

2. Estimate of covariance.

Let x(t), y(t) be essentially bounded measurable functions on IL
We use the following notations :

H = ess. sup x(t\ h = ess. inf x(t), D(x] = H—h ,

K = ess. supXO» * = ess-
C(^f ly) = JL(xy)-JL(x}JL(y) =

= C(x, x} .

C(x, y) is the covariance of x and j. ^(jc) is the variance of x.

Lemma. // P, Q^O ; p, g^O,

i) min (PQ, pq) ̂  (P-p}(Q - q) /4,

ii) m^(Pq,pQ}^-(P-p}(Q-q)l^

In either case equality holds if and only if P+p = Q + q = Q or P=p =
or Q = q = Q.

Proof, i) Assume that

then
(

This contradicts to the obvious inequalities :
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If p=p = Q or Q = ? = 0, equality holds. Otherwise, (P-p}(Q-q)

> 0 and taking (#) into account we have the equality condition
= 4pq = (P-p}(Q-q}. This implies

= 0.

ii) Replace Q, # respectively — q, —Q and apply i).

Theorem 2. |C(*, J>) 1 = \Jl(xy) - J l ( x ) J L ( y ) \ ̂  D(x)D(y)/4.
Equality holds in either case i), ii) or iii) :

i) x or y is essentially constant', then C(x, y)=D(x)D(y)/4 = Q.

ii) There exist B, 57eS3 such that

= !*&*) = 1/2,
x(f) = H, y(f) = K on B ,
o:(0 = hy y(t) = k on Bf ;

then C(x,y)=D(x)D(y)/4.

iii) There exist B, B'^%$ such that

x(t) = h, y(t) = K on B ,
jc(0 - H, y(t) = k on B'\

then C(x, y) = - D(x)D(y)/4.

Proof. Let x/ = x-JL(x\ y=y-JL(y). Then Jl(x/)

and

C(x, y) = C(x', /) =

Put a=H' = ess. sup ̂ '(f), ^ = /T/:=ess. sup/(/), then

C(*,^ -#'#'.

Similarly we obtain

a^j)^-^\
C(x,y)^-Hfk/, -h'K' .

On the other hand Jl(x') = Jl(y') = Q means H', tf'^0 ; A', ̂ ^0. So
we can apply lemma :
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C(x, y)^ -min (H'K', h'W)^ -D(«OD(/)/4 = -D(x)D(y)l± .

C(x, y)^ -max (#'£', hfK/)^D(xr)D(y)/4=D(x)D(y)/4 .

As to the equality conditions, i) is trivial. So we assume

H-h = H'-h'>0, K-k = K'-k'>0 .

Equality

mm (H'K', h'k') = D(x)D(y)H

holds if and only if H' + h'=K' + k'=0. And then equality

C(x, y) = -min (H'K', h'kT) = -H'K'

holds if and only if

(x'-H')(y'-Kf) = 0

almost everywhere, that is,

Because of H'+h' = K' + k'=0 and JL(x') = JL(y) = Q, this is equivalent
to the following condition :

»{t\x'(f) = H'} = p{t\y(t) = K'} = 1/2,

x'(f) = h', almost everywhere on fl— (f|/(/) = K'} ,

y(t) = k', almost everywhere on H— {t x'(t) = H'} .

Then we are only necessary to put

B = (t\x'(t) = h', y'(t) = K'}, B' = (t\x'(t) = H', y(t) = k'} ,

and we have the equality condition iii). ii) is similarly proved.

Corollary, i) // JL(xy) = JL(wz),

JL(x)Jl(y) - Jl(w)JL(z) \ ̂  [_D (x)D (y) + D (w)D (z)~} /4 .

ii) If h>0,

.D(x)D(y/x)
• 4JL(x)

iii) | CV (2 x,) -E "^(X-) I ̂  S ^ ( * i ) D ( X j ) /4 .

ii) is practical in calculating the approximate value of the mean of

quotients.
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3. Estimates of differences of means.

Now we treat the estimate of the difference of Jlif(x) and <3ttg(x}
using the result of section 2.

Proposition 2. Let f(x) be a continuous function on an interval

containing the essential range of x(f). Then

where df/dx is any of the right or left, upper or lower differential

coefficient of f(x). And if x is essentially equal to a constant, L = l=Q,

otherwise

L= ess. sup ,
X(f) — Jl(x)

/= ess.inf /°*0

N. B. Here / is not required to be monotone increasing.

Proof 8 JL(fox) -f [cJ(jtr)] = JL{fox -

For such t as x(f) = Jl(x}, we define

x(f)-JL(x) 2

Taking account of the equality: JL{_x(f) — Jl(x)~\=Q, we have
only to apply theorem 2 to the variables

X(t)-Jl(X) and

Proposition 3. For f ( x ) , g(#)

^

df/dg denotes any of the right or left, upper or lower differ-

ential coefficient of the function fog-1 on g(I). And if x is essentially

equal to a constant, L~l = Q, otherwise
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L= ess.sup
g°*(f)*giJHg(.x-)l

/= es,inf

Proof. We apply proposition 2 to e =f0g~l^$$l[_g(I)^\ an(i
, then

Corollary 1. | .5K/*) - (̂*) I
inf

£D(gox)D(df/dg)l4[. inf /'(*)]
c5J/^^^

Corollary 2. // Q<h<H,

ii)u)

4. The best estimates of difference of two comparable means.

The results in section 3 are rather simple, but not the best
estimates, for equality signs do not hold if h^H.

If we restrict ourselves to the case f^>gy we have the most
accurate estimate for the difference of JM/jc) and <3Hg(x).

Lemma 2. Assume that n has the following property :

(*) For arbitrary o>e33 with measure TV and arbitrary i/ satisfying

0^1/^17, 93 contains a set o/c&> with measure -rf '.

Take e,f, g, 9?e?§(/) satisfying />#>£.

attains its maximum value <&(H, h, m) under the conditions ;

ess. sup x = H , ess. inf x = h , ^He(x) = m ,

for such x as takes only H and h as its values.
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It is sufficient to prove to restrict x to vary in step-

functions. If x takes L^H, h as a value on a set u> with measure

77 > 0, define a new step-function x* as follows. Divide &> into

measurable sets co19 coz with measure ^19 ??2 respectively such that

And let

{ H on co1 ,

A on o>2 ,

x on coc .
Then we have

So that,

(*)]
Repeating such a modification, we arrive at a variable x as stated

above.

Theorem 30 For e, f, g, <p<=L% satisfying f>e>g

where

9 h, m) =
e(H) — e(K)

e(H)-e(h)
Equality holds if

= h] =1.

If f°g~l is everywhere properly convex, this is also the necessary

condition for equality.

If we assume

e(h) = f(h) = g(K), e(H} = f ( H ) = g(H) ,

*& becomes simpler :

9 h9 iri) = <p°f~l°e(iri) — cp°f~l°e(iri) .
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Proof. If £1 satisfies the condition (*) in lemma 2, take a
function x stated in lemma 2 with 0-mean m. And we have the
desired <l> by direct calculation of ^{_^M,f(oc)~\--(p\_J\ig(x)}.

If £1 does not satisfy the condition (*), take the product space
£1' of £1 and the interval [0, 1] with ordinary Lebesgue measure

and let TT be the natural projection to fl. H' satisfies the condition

(*) and the established inequality for X' = X°TC means one for x.

The equality condition shows that if n has the property (*) this
estimate is the best one as by H, h and JMg(x). In order to have

the best estimate only by H and h, we are only necessary to find
the maximum value of <&(H, hy m} leaving H and h fixed.

Finally we show some applications. Put

f ( x ) = <?(x) = x , e(x) = g(x) = log x

in theorem 3, and assume A>0, then

*(H, h, m} = (g-*)logm-glog*+*logg_OT _
log H—log h

This as a function of m takes the maximum value

h( -14- log r - log log r) /log r

for m = A/log F, where

•n i *•*• ^r = ^]

Similarly, putting

we have

, //, m) =
log H—logh

and its maximum value is

T, A, ^/r) - log (r/e log r) .

Thus we have proved the following

Proposition 4. Assume that /i>0 then
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log H-log h
r -log log r) /log r.

equality sign holds if and only if

v(t\x(f) = H}+[jL{t\x(t} = h} =1,

And both equality signs hold together if and only if

( ^{t x(t) = H} = -log log T/log (#//*),
( fi{t x(t} = h} = 1 +log log T/log (#//*).

..v JL(x) < (H-h) log G(x}-Hlogh + h log H^ T

The first equality sign holds if and only if

iL{t\x = H}+fjL{t\x = h} = 1.

And both equality signs hold together if and only if

i*,{t\x(f) = H} = l/log(H/K)-h/(H-h),
iL{t\x(f) =h} = H/(H-h)-l/log(H/h).

The inequality

is one of the results by G. T. Cargo and O. Shisha [1], the rests
of which can also be proved using theorem 3.
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