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Finiteness of the Number of Discrete
Eigenvalues of the Schrodinger

Operator for a Three Particle System

By

Jun UCHIYAMA*

§ 1. Introduction

In this paper we shall study discrete eigenvalues of the

Schrodinger operator for a three particle system with infinitely heavy

nucleus. The operator

(1.1) H= -A1-A2-^---^-+ 1 (Z>0)
r, rz l^-rj

is a most interesting case. Zislin [11] and Jorgens [6] has shown

that the essential spectrum of the operator (1. 1) consists of
z2 \ z*— , oo . In fact — — is the least eigenvalue of the operators
4 / 4

-A,— — (i = l,2) (see (2.7) and (2.8)). In case Z=2 in (1.1)

r\ —
L

(Schrodinger operator for helium atom), Kato [7] has shown that
/ 2?\

there exist an infinite number of discrete eigenvalues in ( — °o , — — ) .
V 4 /

Moreover, Zislin [11] and the author [9] have given the same

results as Kato's for Z>1 (positive ions composed of one nucleus

and two electrons). In case 0<Z<1, no such knowledge as for

discrete eigenvalues seems to have been obtained. However, for

0<Z<1 (in this case the operator (1.1) has no physical meaning),

we can assert by Theorem 1 in §2 that there exists at most a
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! Zz\finite number of discrete eigenvalues in ( — °o , — — ) . For Z = 1
V 4 /

(hydrogen negative ion), the problem is unsolved.
Theorem 2 is an extension of the well-kown fact that the operator

in L2(R3)

(1.2) L= -

has at most a finite number of discrete eigenvalues in (— °°,0),

where #(r)> — — • — for r>R and tends to zero as r-»coo
4 r2

§ 20 Statement of the Theorems

Let O be a domain in the w-dimensional Euclidean space Rm*

We write for /,£eL2(n), ( f(x)gffidx = ( f 9 g ) Q a n d ||/||Q = (/,/)2/2.
JQ 2

For simplicity we write rt = (x^29 x3i-.l9 x3i), r~ |r,-| = (2*i/-v)1/2»

and
2

v=o
9/

2x1/2

(/ = !, 2). Let CJTCffm) be the space of all C°° functions with compact
support, S)n

L^(Rm) be the completion of Co(Rm) with the norm

^yilW/2, where ^f= and |

.(l2-) = /; sup , C6dy< + ™. Now1 ^nm\x-y\<i\x~~y\ "
let us consider the Schrodinger operator of the form

(2. 1)

For each term of this operator, we assume that

(2.2) qi(r^LL(R^ C = l, 2) and P(r,,

(for some a>0) are real- valued functions,

(2. 3) <7/(i*,-) (^ = 1> 2) converge uniformly to zero as rz— >^o ,

(2.4) P(r l sr2)>0 in J?6 ,

(2. 5) P(ri9 r2) converges uniformly to zero as r1-^oo whenever r2

is fixed, and as r2-^oo whenever rl is fixed,

(2.6) there exist some constants k, &'(!<&<£'< + oo), /5

(0</3<1)? £>0, J?>0, c>0 such that
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-- for k<*-±-<k' and

>0 for kf<^- and

>-^ for k<*^<k' and
V* £ PI

r$
>0 for &'<— and

Then we have

Theorem 1. The Schrodinger operator H of the form (2. 1) has

the following properties :

(f) // we assume (2. 2), (2. 3) tf^ */ ^fe domain of H is 3)l*(RB)9 H

is a lower semi-bounded self adjoint operator in LZ(R6).

(if) Under the conditions (2. 2)-(2. 5) the essential spectrum o-e(H) of

H is [//,, oo ), where

(2. 7) n = min inf (H&, cp)

(2.8) ff,= -A, + ̂ (r/).

(iff) // ^^ assume (2. 2)-(2. 6) a^J /^<0? there exists at most a finite

number of discrete eigenvalues in (—°°, //,)-

Remark 1. The condition (2.6) is satisfied by ^,-(r*) (z=l ? 2)

and P ( r l f r z ) having the following properties; for some 7(0<7<2)

(2.9) ^-(r,)>--^ for r{>R (/ = 1,2),
r\

(2.10) PCr^r,)^- - *—- for
l^-rj^

(2. 11) 6 > « ,

where |ri-r2| =(

In fact for /?>! large enough to satisfy - — — <2>0, we
(1 + /? )

have ITJ — r2 >rx — r2>(l— k~l)i\>R for r2<k~lrl and sufficiently large

1? and by (2.9) and (2.10) P(rly r2) + gi(rj> -g • for
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rz<k~lr^ and sufficiently large r^. Therefore (2.6) is satisfied for
/S = l. On the other hand, assume (2. 2)-(2. 5) and

(2.12) 0,(rf.) < - ^ for r,>I? (f = 1, 2) (0<7<2),
Yi

(2.13) P(r lyr2)< * for |ri-r2|>#,
l^-r^7

for 0<7<2,

JL for 7=2
4

together with some conditions on P(r19 r2) for ra — r2| <J?. Then the
existence of an infinite number of discrete eigenvalues has been shown

by the author [9].

Remark 2. In case //, = 0, we can see that H is a non-negative

operator in L2(J?6) (see the proof of Lemma 6), and has no discrete

eigenvalues.

If q{(r^) (f = l, 2) tend to zero more rapidly than (2. 9), we have

only to assume (2.4) in place of (2.6) and (2.4) as for P(rl9r2).

Namely, we have

Theorem 2. // we assume (2.2)-(2.5) and the condition

(o i c\ n (r \ ̂ > J- j- fnr Y~>^R (i — 1 9^\£. ID; V f V ' f V ^ ~;—^ /^r 'i^*^ \* — ±> ^) 9
4 r?

£fe Schrodinger operator H of the form (2.1) fezs #£ mo5^ a finite

number of discrete eigenvalues in (— °°, ^), where ^ is given by (2. 7)

and (2. 8).

Remark 3. If only one of tfz-(rz-) (f = l, 2) satisfies (2.15), we
can not, in general, assert that # has at most a finite number of
discrete eigenvalues in (— oo,//,).

In fact let

TO for 0<r!<
(2.16) ^(rj - .10 for

(2.17) ^( r 2)<-fl+ £U for r2>#
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(2.18) P(r lyr2) -0.

Since H2 has an infinite number of discrete eigenvalues in (—°°, 0)
(see, e.g. Glazman [4] or Uchiyama [9]), we write its eigenvalues
Xj<X2< ••• <0. If F0 is sufficiently large, the least discrete eigenvalue
fjL of HI is smaller than Xx. Then by (2.7) and (2.8) <r,Cff) = [>, °°)
and H has an infinite number of discrete eigenvalues {^ + X fe}&==12...
in (-00,^).

§ 3. Proof of the Theorems

As for Theorem 1 we have only to prove (iii), since it is known
that (i) holds by Ikebe-Kato [5] and Jorgens [6], and (ii) by Jorgens
[6] and Zislin [11]. Hereafter we assume (2. 2)-(2. 6) till the com-
pletion of the proof of Theorem 1.

Let g(f) be a function having the following properties: g(t)^
C°°(0, oo), g(t) = l for t>k',g(t}=Q for 0<t<k and Q<g(t)<l for
0<£< + °o. By the condition (2.3) and //-<0, we can choose R>I
large enough to satisfy the following inequalities:

#i(ri) > — for ri > — >

Q.Ifo) > — for r2> —^ ,

(3.2) ?g(f)g"(f) + cR*>Q for k<t<k'.

We define domains {nj^j..^ in R6 as follows:

^i = {r±<R and r2<R}> &2 = \^i>R and r2<

{ r$ ~] 3

rz>R and rx< -^-} and O4 = J?6- U Oz.^ J 1=1

Then by #>1 and 0</3<1, we have n f.nny = 0(i=l=j) and [jnz--l?
6.

For convenience, let us introduce the following notation for

(3.3) L[>] = (HTjr,Tlr)R* = i] { iNV^I i l l .+ I H V ^ I I i l . -
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Now we shall show the following lemma.

Lemma 1. For any ^^^(J?6), L2[i/r]>^||i|r|||2 and L3[>]

Proof0 Let iK*)eCo(^6). BY Green's theorem, we have

(3-4)

2 j

= (
J Q2

On the other hand, since g (—^jr^W^tDi^R3) whenever rl is fixed
rz

(r^>R)y we have by (2.7) and (2.8)

(3. 5) [ 3 V2(^) i 2dr2 + ( 3g2(r2) | ̂  1 2rfr2 > p \ 3 1 g^ \ 2dr2 .
J R J R J R

Integrating (3.5) on the subdomain {r^^r^R} in R3 with respect

to r19 we have

(3.6)
^02

Then by (3. 4) and (3. 6), we have

Jo2

Therefore by (3.7) and 0<g(t)<l for
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a2

{vg2+gg"r^
a2l r\

Let ^=t. We have by (2. 6), (3. 1) and (3. 2)

(3.9) (l

?>,))} > 0

for t>k and r^R. In fact ^(0 = 1 and £"(0 = 0 for t>kf, and
„

^->0 for ^<^<^' i.e. r 2 > - > . Then by (3. 8)
2 fe' k'

and (3.9) we have for any

(3.10) L

Making use of Lemma 2 below due to Ikebe-Kato [5] and Jorgens
[6], (3. 10) holds for any ^^^)^(RS). In a similar fashion we have

for any ^£E<Z)i<£6). q.e.d.

Lemma 2. 1/Pe
(z) Under the conditions (2. 2) «wJ (2. 3)

(3.11) qi^Q«(R*} for l>a>0 (i = 1, 2) .

(«) // q(x)^Qa(R
m) for some a>0, then for any v >0 f/zere exists

some constant c(5?)>0 swe/z M«^ /or

(3.12)

Next we have

Lemma 3B For any

Proof . By (2. 4) and (3. 1), we have

q.e.d.
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Last of all we shall show the following lemma. The method

of proof is similar to that of Glazman [4], who has used it for the

Schrodinger operators for two particle systems.

Lemma 4. There exists some finite dimensional subspace 2ft in

L2(R6) such that for any

(3.13)

where 5K-1- denotes the orthogonal complement subspace of 3Jt in L2(R6).
Before proving Lemma 4, we introduce the function space fi/Xfl)

= {/ : D*f^L2(£i) for any a(\a\<ri)}, where derivatives are taken

in the distribution sense, and bring out the next lemma (see e.g.

Mizohata [8]).

Lemma 5. There exists an "extension operator" O which maps

^(OO to £)1AR6) and some constant ?=?(n i fO)>0 such that for

any <p^8\?(£l?)

(3.14) (3>cp)(x) = cp(x) for

and

where I |<p| l^i2(Ql) = {I \<p\ \l, +111 V<p 11 \l) .

Proof of Lemma 4. By Lemma 2 and Lemma 5, we have for
any i/re.2)fX7?6)

f 2 ' f
JOi * ~JR6 * ~

Then by (2.4) we have for any ty^<3)2
L

2(R6)

(3.17) AI>]> (1-2^)| 11 v^l I IS,- 2(n+c(n)}c\ \^\\2
Qi.

Now let A—— A and its definition domain Z?(-A) = |/:/ec?iz(nl)

and -^ = 0 >, where -=£ means the derivative along the normal to
Qn 9Qj J 9w

the boundary 91^ of f l l . It is known that A is a non-negative
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self adjoint operator in L2(nj and the eigenvalue problem for A can

be solved by the variational method concerning the form || | V<p! 11^ in

the admissible function space Si2(^i) (see e.g. Courant-Hilbert [2],

[3]). We choose ^>0 to satisfy 2o?<l. Since the spectrum of A con-

sists only of discrete eigenvalues, the number of eigenvalues smaller

than ^ ^" ^ is finite. Let this number be p, where multiple
1—2cr}

eigenvalues are counted repeatedly, and {<pn}n=lt...tpdD(A) be ortho-

normal eigenfunctions in L2(£\) belonging to these eigenvalues. We

define ^n(x)^L\R6} by &n(x) = <pn(x) for #er\ and @n(x) = Q for
#$£V Let 2Ji be the subspace of L2(R6) spanned by {<pn}M=1...tp.
Then the dimension of 3Ji is finite, and by (3.17) we have for any

(3.18) ^iDx/r]=^A6l!'v/Hl£1 • q.e.d.

Proof of (iii) of Theorem 1. Let E(\) be the right-continuous

resolution of the identity associated with H. If the dimension of

the subspace E(fji — G)Lz(R6) is larger than that of 9Ji, we choose some

constant S>0 and some function ^e£(/u, —S^CS^c^fX^?6) to satisfy

i/re 2E-1- and IhHI^O. Then by ^e£(^-S)L2(#6) we have L[>]

<(/>& — 8)11^11*6. On the other hand, by Lemma 1, Lemma 3 and

Lemma 4 we have L[i/r]>//,||T/r||!6. These two inequalities are
incompatible. Therefore there exists at most a finite number of

discrete eigenvalues in (—00,^) . q.e.d.

Remark 4. As for the operator of the form (1.1), there exists

some Z0(1>Z0>0) such that for any Z(0<Z<Z0) the operator (1.1)

has no discrete eigenvalues.

Indeed, instead of (3.16) we have

(3. ley

Then if we take into consideration P(rl>r2)>— on £\, we have
2R

for any

(3. 17)' LM^I^Z^IMV^
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in place of (3. 17). Take Z sufficiently small. We have for any

By Lemma 1, Lemma 3 and (3. 18)', there exists no discrete

eigenvalues in (—00 ,^ ) .

Proof of Theorem 2. Under the conditions (2.2), (2.3) and

(2.15), the self ad joint operators #,.(*" = 1,2) in L2(R3) (whose domains

D(Hf} are <3)2
Lz(R*y) has at most a finite number of discrete eigenvalues

in (-oo,0) and <re(Hi) = [_Q, °°) (see, e.g. Birman [1]). Let the

discrete eigenvalues of H{ be X,- f l<X f- t 2<-"<X f- i W | .<0, if they exist,

and the orthonormal eigenfunctions belonging to these eigenvalues

be {(pi}k(^i)}k=i,-,nr,i=i,2^^i2(R3)- Let 31 be the finite dimensional
subspace in L2(R6) spanned by {^(rj^/fc)}^...^ ; /=i....t»2, and T

be the operator of the form

(3. 19) T = - A1 - A2 + qfrd + &(r2) .

If D(T) = £)2
L2(R3), T is a selfad joint operator in L2(R6) by Theorem

1 (i). Then we have

Lemma 6. // there exists some f^^^R6)^^ such that Tf

= /cf and 1 1/ 1 1*8 = 1, then K>P, where

fmin (xlpl, X2pl), if X l f l or X2f l e^wfo,
(o. ZUj jju = <

[0 , if neither XM ^or X2jl exists.

Proof. Let //,<0 and *<>. Put fltk(rz) = j 3f(r19 rz) fp^r^dr^
then we have /1>fe(r2)e^i2(j?3) and

(3. 21) (tf-X^/^fo)

- \
J

By (3.21) we have /ip*(r2) = 0 or /If*(r2) is an eigenfunction for H2

belonging to the eigenvalue /e — X l f j k<0. In the latter case, /1§jk(r2) is
B2

represented by /i,fe(r2)= 2 cfe /<P2 /W- By /e^JJ-1 we have c f e /
/ = !

= ((/i.*W, ^2./W)je3 = (/,^i,*-^2f/)je6 = 0. Thus we have/1>fe(r2) = 0 for
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any k(l <k<n^. Since 3)}*(Rm} = S2^(Rm}y by Fubini's theorem f(rly r2)
^3)2

L^(R3!) as a function of rx, whenever a.e. r2eJ?3 is fixed. Then

by ( g/fc, r2)^ l f jk(r1)rfr1=0 (* = 1, — , «0 and ^(//"J = [0, oo), we have
J R r _

for a.e. r2^R3 \ ^/-/tfr^O. By integrating this inequality over
J jR

J?3 with respect to r2, we have

(3.22)

In a similar fashion, we have

(3.23)

Then by (3. 22) and (3. 23)

(3.24) K

which contradicts K</UL<O. In case ^ = 0, Hi(i = l,2) are non-negative
operator in R3, and so we have (3. 24). q.e.d.

Now we continue the proof of Theorem 2. By Lemma 6, T
has only discrete eigenvalues {A, l f e - fX 2 /} in (—00, //O and eigenf unc-

tions {(plik(r^)(P2 ,i(r2)}> if ^i,& + ^2,/<A<" By (ii) of Theorem 1 we have
/>6, oo), where //, is given by (3.20). Then for any
we have

(3.25)

By (3.25) and (2.4), we have for any

(3.26) (H/,/)^>(T/,/)^

Since 5R is a finite dimensional subspace in L2(R6\ we have the
assertion of Theorem 2 by the same method as applied to the proof
of (iii) of Theorem 1. q.e.d.

Remark 5. Let

(3.27) ff =

where Hv=l]-^----- + 63V_y(rv) + gv(rv). If we assume (2. 2)-(2. 5)>
and
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(3.28) |& 3 V _y(rv) l< for r^R (" = 1,2;; = 1,2,3),

(3.29) ^./Oe.S1^3) are real-valued functions
(w = 1,2;; = 1,2, 3),

(3.30) q^)>- for

where f(x)^^l(R3} means that f ( x ) has continuous derivatives of
< + oo 9 then we havefirst order in R3 and sup \f(x) \ . —f ^

XSER* *<=R*k=i Qxk

the same results as Theorem 2.

In fact if D(H) = S)^(RQ}y H is a lower semi-bounded self ad joint
operator in L2Cff6) and cre(H) = \_p.y oo), where

(3. 31) JJL = min inf

(see, Jorgens [6]). On the other hand the operators Hv(v = l,2) in

LZ(R3) have at most a finite number of discrete eigenvalues in
(— oo, 0) and o-e(Hv) = [Q, °°) (see, e.g. Uchiyama [10]). Then we have

for the operator H^Hz the same results as Lemma 6 and we can

prove the assertion in a similar fashion to the proof of Theorem 2.

References

[ 1 ] Birman, M. S., The spectrum of singular boundary-value problems, Mat. Sb. 55
(1961) 125-174. (Russian) -Amer. Math. Soc. Transl. Ser. 2, 53 (1966) 23-80.

[ 2 ] Courant, R. and D. Hilbert, Methods of Mathematical Physics, Vol. 1, Chap. 6,
Interscience, New York, 1953.

[ 3 ] - , Methoden der mathematischen Physik, Vol. 2, Chap. 7,
Springer, Berlin, 1937.

[ 4 ] Glazman, I. M., Direct Methods of Qualitative Spectral Analysis of Singular
Differential operators, pp. 155-157, Israel Program, 1965.

[ 5 ] Ikebe, T. and T. Kato, Uniqueness of the selfadjoint extension of singular
elliptic differential operators, Arch. Rational Mech. Anal. 9 (1962), 77-92.

[ 6 ] Jorgens, K., Uber das wesentliche Spectrum elliptischer Differential-operatoren
vom Schrodinger-Typ, Institut ftir Angewandte Mathematik, Universitat Heidelberg,
1965, preprint.

[ 7 ] Kato, T., On the existence of solutions of the helium wave equation, Trans.
Amer. Math. Soc. 70 (1951), 212-218.

[8] Mizohata, S., Theory of Partial Differential Equations, Iwanami, Tokyo, 1965.
(Japanese) p. 171.

[ 9 ] Uchiyama, J., On the discrete eigenvalues of the many particle system, Publ.
RIMS Kyoto Univ. Ser. A 2 (1966), 117-132.



Finiteness of the Number of Discrete Eigenvalues 63

[10] , On the spectra of integral operators connected with Boltzmann
and Schrodinger operators, Publ. RIMS Kyoto Univ. Ser. A 3 (1967), 101-127.

[11] Zislin, G. M., A study of the spectrum of the Schrodinger operator for a system
of several particles, Trudy Moskov. Math. Obsc. 9 (1960), 82-120. (Russian)




