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Finiteness of the Number of Discrete
Eigenvalues of the Schrodinger
Operator for a Three Particle System

By
Jun UcHivyAmMA*

§1. Introduction

In this paper we shall study discrete eigenvalues of the
Schrodinger operator for a three particle system with infinitely heavy
nucleus. The operator

(1.1) H= —A-a-—2_2, 1 (Z>0)

7, 7, |7, —r,]|

is a most interesting case. Zislin [117] and Jorgens [6] has shown
that the essential spectrum of the operator (1.1) consists of

[—ZZ, oo). In fact —ZZ is the least eigenvalue of the operators

—A—Z (=1,2) (see (2.7) and (2.8)). In case Z=2 in (1.1)
¥;

(Schrodinger operator for helium atom), Kato [7] has shown that

2
there exist an infinite number of discrete eigenvalues in (— 00, — Zz) .

Moreover, Zislin [11] and the author [9] have given the same
results as Kato’s for Z>1 (positive ions composed of one nucleus
and two electrons). In case 0<Z<1, no such knowledge as for
discrete eigenvalues seems to have been obtained. However, for
0<Z<1 (in this case the operator (1.1) has no physical meaning),
we can assert by Theorem 1 in §2 that there exists at most a
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finite number of discrete eigenvalues in (—oo, —ZZ> For Z=1

(hydrogen negative ion), the problem is unsolved.

Theorem 2 is an extension of the well-kown fact that the operator
in L*(R®)
1.2) L=—A+q@)

has at most a finite number of discrete eigenvalues in (— oo, 0),

where q(r)z——i— . —:—2 for »>R and tends to zero as #—>co,

§2. Statement of the Theorems

Let Q be a domain in the m-dimensional Euclidean space R™.
We write for f, geL*(@), | f(e@dx=(f, 9)a and IIf la=(f, =
For simplicity we write r;=(¥s_z, Xsi-1» %), r,:[r,-[:(vz_ox%,._v)”z,

2 2 2 2\1/2
dri:dxsi—zdxai—ldxaiy Azf: Z 8f and lV,fI = (Z ’ af )
V=0 ax%i—v V=0 axai—v I
(:=1,2). Let C5(R™) be the space of all C~ functions with compact

support, Dr:(R™) be the completion of Cg7(R™) with the norm

1]
1 hgmery=(ZID 1, where D= 0" f and |al=a,
< 110X,

+-+a,,, and Qw(Rm)z{f; sup S |erﬂ_dy<+oo}, Now

"m—41-0
serm o x—y|mTtr

let us consider the Schrédinger operator of the form

2.1) (H) (%) = —Ar(x) — Ap¥r(x) + ¢, )Y (%) + go(r2) ¥ (%)
+P(r,, rz)‘l’(x) .

For each term of this operator, we assume that

2.2) g:r)EL(RY) (i =1,2) and P(r,, r,)EQ.(R")
(for some a>0) are real-valued functions,

2. 3) q:(r,) (z =1, 2) converge uniformly to zero as 7;,—co
2.4) P@r,,r,)>0 in R°,
(2.5) P@r,, r,) converges uniformly to zero as ,—>occ whenever r,

is fixed, and as 7,—>oco whenever r, is fixed,
(2.6) there exist some constants k, /(1 <k<k <+ o), B
(0<BL1), €0, R>0, ¢>0 such that
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¢ for k<’ <k and r>R
= or STS and » >R,

P(rl > rz) +q1(r1) :
>0 for K<TL and 7, >R,

7,

c 7’5 ’

2—2;8 for k§7£k and »,>R,

P(ru rz)+42(rz) ‘ ;
>0 for K<’z and 7,>R.

rl

Then we have

Theorem 1. The Schriodinger operator H of the form (2.1) has
the following properties :
(@) If we assume (2.2), (2.3) and if the domain of H is D3:(R°), H
is a lower semi-bounded selfadjoint operator in L*(R°).
(#5) Under the conditions (2.2)-(2.5) the essential spectrum o, (H) of
H is [, o), where

2.7 /4 = min inf (Hp, )2<0,
i=1,2 g Dp(RY)
llpllra=1
2.8) H; = —A;+q,(r).

(7i0) If we assume (2.2)-(2.6) and p<O0, there exists at most a finile
number of discrete eigenvalues in (— oo, u).

Remark 1. The condition (2.6) is satisfied by ¢;(r;) (=1, 2)
ard P(r,, r,) having the following properties; for some v(0<y<2)

2.9) ar)=—2  for n=R  (i=1,2),
r;
2.10) Par,r)>—2 for |r—r|>R,
irl_rziy
2.11) b>a,
where [r,—r,] =(31 (& — %,1.))'"
In fact for %k>1 large enough to satisfy a+—bk—_1?—a>0, we

have |r,—r,| >r,—7,>(1—k ), >R for r,<k 'r, and sufficiently large

7., and by (2.9) and (2.10) P(r,, rz)—i—ql(rl)z{(—l%d)y—a} %y for

1
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7,<k7'r, and sufficiently large »,. Therefore (2.6) is satisfied for
B=1. On the other hand, assume (2.2)-(2.5) and

212)  q@)<-% for >R (i=1,2) (0<y<2),
Vs

4

2 13) Py, r)<— 2

|ri—r,|"

>0 for 0<y<2,

for |r,—r,| >R,

(2.14) a—>b >i for v =2
4
together with some conditions on P(r,, r,) for |r,—r,| <R. Then the

existence of an infinite number of discrete eigenvalues has been shown
by the author [9].

Remark 2. In case x=0, we can see that H is a non-negative
operator in L*(R°) (see the proof of Lemma 6), and has no discrete
eigenvalues.

If ¢,(r;) (=1, 2) tend to zero more rapidly than (2.9), we have
only to assume (2.4) in place of (2.6) and (2.4) as for P(r,, ry).
Namely, we have

Theorem 2. If we assume (2.2)-(2.5) and the condition

(2.15) r)=~1 % for r=R (=1,2),

T
the Schridinger operator H of the form (2.1) has at most a finite
number of discrete eigenvalues in (— oo, u), where u is given by (2.7)

and (2.8).

Remark 3. If only one of ¢;(r;,) (i=1, 2) satisfies (2.15), we
can not, in general, assert that H has at most a finite number of
discrete eigenvalues in (— oo, u).

In fact let

——Vo for 0£71<R> (Vo>0),

2.16 (r ={
( ) @) 0 for »,>R,

@.17) ar)< -(% + e)rlz for 7,>R (>0),
2
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(2.18) P(r,,r)=0.

Since H, has an infinite number of discrete eigenvalues in (— oo, 0)
(see, e.g. Glazman [4] or Uchiyama [9]), we write its eigenvalues
A<, <---<0. If V, is sufficiently large, the least discrete eigenvalue
u of H, is smaller than \,. Then by (2.7) and (2.8) o (H)=[pu, )
and H has an infinite number of discrete eigenvalues {u-+Ng}zis...
in (—oo, ).

§3. Proof of the Theorems

As for Theorem 1 we have only to prove (iii), since it is known
that (i) holds by Ikebe-Kato [5] and Jorgens [6], and (ii) by Jorgens
[6] and Zislin [11]. Hereafter we assume (2. 2)-(2.6) till the com-
pletion of the proof of Theorem 1.

Let g(#) be a function having the following properties: g(¥)e
C=(0, ), g(®)=1 for t>F, g(t)=0 for 0<t<k and 0<g(t)<1 for
0<t< +oo. By the condition (2.3) and <0, we can choose R>1
large enough to satisfy the following inequalities :

a,(r) > % for 7> %ﬁ ,
3.1) s
q,(r,) > % for 7,> o
3.2) Fe®g"()+cR*>0  for k<t<Fk.

We define domains {Q,},, .., in R°® as follows:
Q, = {r,<R and 7,<R}, Q, = {rlzR and 7,< Iki} ,

g
Q, = {72212 and 7,< %} and Q, = R°— EJQ,-.

Then by R>1 and 0<8<1, we have Q,NQ,;=¢(i+/) and |)Q,=F".

For convenience, let us introduce the following notation for

v EDIAR) :

(3.3) L[] = (Hyr ¥ae = 2 {11Vl 13411 Vob 1B+ @b
+(42‘p7‘1")9,+(P'\:”’ \P)Q,‘} = Z.‘IJ L,[’l]l‘] .
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Now we shall show the following lemma.

Lemma 1. For any yE€DiAR°), LIv1=pllvlla, and L[]
= pllrllg,.

Proof. Let ¥(x)=Cg7(R®). By Green’s theorem, we have

3. 4) S

v e ) ax = 21,

9g \,lr+ g' dx
0x; x;

I

{IV.g1* |\ |*+&° | Vb |y dx + = ZSQ gi ala:fl dx

0

2

|
— [ 1192811917+ g1 V|

Qg

2 Crill>=ry>0 7=4 8x 8x T2

- lug ‘WWHS {IVng——z—Az(g2>}!de
SQZ ( >}V211fizdx Sazg(lg>gu(f>rl .

On the other hand, since g( >rzx,b(x)e.@Lz(R3) whenever r, is fixed
(r,>R), we have by (2.7) and @.8)

Il

@.5 | ivienidr | ae)igridn=u levidr,.

Integrating (3.5) on the subdomain {r,;»,>R} in R*® with respect
to r,, we have

3.6 | IV dr+| at)lgwidr =, (gylidx.

Then by (3. 4) and (3.6), we have
2 2 2 2 2 " 3P V2
@7 | tgvarragivyde=] {perragr v,
Q Qg 72
Therefore by (3.7) and 0<g(#)<1 for k<< + oo,
3.8  LI¥l=| {1Vl Q) vab|Ya

+| g1V rag vt
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+| ta@-g+pra vl
2 e 2 2
[ {ngree s+ a.0-g)rpra vl
02 4]

Let " . We have by (2.6), (3.1) and (3. 2)

7,

3.9) (1= g(tF)(— p+a,0r)
+ r—lﬁ {22 OF +7PP(r, 1) +4,0r))} =0

for t>k and »,>R. In fact g(¥)=1 and g”(¥)=0 for f>k’, and

P ) /B RP
-,u,+q2(r2)>~7>0 for k<t<F ie. 72>k_}>?° Then by (3. 8)
and (3.9) we have for any Jr(x)=Cq(R°)

(3.10) LLv] = uilvl,

Making use of Lemma 2 below due to Ikebe-Kato [5] and Jorgens
[6], (3.10) holds for any = Dj2(R°). In a similar fashion we have
L[v]1>ulllls, for any € Dix(R). g.ed.

Lemma 2. We have:
(@) Under the conditions (2.2) and (2. 3)

(3.11) 7;EQ,(RY for 1>a>0 G=12).

@) If q(x)=Q(R™) for some a>0, then for any 7>0 there exists
some constant c¢(n)>0 such that for any o< Di(R™)

@12 | lalipldz<al| vl ctliplim, where
L m Q@_ 2\1/2
Ve (; 0x; ) '

Next we have
Lemma 3. For any & D3R, LIv]>ulivl3,.
Proof. By (2.4) and (3.1), we have

LIw) = | (9 1V 4 Pl Y da | (a1l

> pllllg, - q.e.d.
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Last of all we shall show the following lemma. The method
of proof is similar to that of Glazman [4], who has used it for the
Schrodinger operators for two particle systems.

Lemma 4. There exists some finite dimensional subspace I in
LA(R®) such that for any < Di2(R% N ML

3.13) L[v]1=plll?, ,

where M- denotes the orthogonal complement subspace of M in L*(R°®).

Before proving Lemma 4, we introduce the function space £72(Q)
={f:D*feL*Q) for any a(|a|<n)}, where derivatives are taken
in the distribution sense, and bring out the next lemma (see e.g.
Mizohata [8]).

Lemma 5. There exists an “extension operator” ® which maps
E12(Q,) to Dix(R°) and some constant ¢=c(Q,, ®)>0 such that for
any pEE2(Q)

(3.14) (QPp)(x) = p(x)  for xEQ,,

and

(3.15) {||®¢[l?q)}z(Ra)Sﬂl‘ﬁ’”z’};(gl) ’
||| |Fs <cllpll3, ,

where 1|9y, 0,y = llolla, + 111 Vel 5}
Proof of Lemma 4. By Lemma 2 and Lemma 5, we have for
any € D7+(R°)
@18) || ailvldx|<{ 0l 10v I dr<all| 9@V [+ el Ov
<enll |V g, +@+eelvlls, (G =1,2).
Then by (2.4) we have for any € 9Di(R°)

@17 LIvl=A-2enll| vy |15, —2@+c))ellwllg, -

Now let A= —A and its definition domain D(A)={ F:Feci(Q)
and of =0} , Where of means the derivative along the normal to
on log, on

the boundary 98Q, of Q,. It is known that A is a non-negative
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selfadjoint operator in L*(),) and the eigenvalue problem for A can
be solved by the variational method concerning the form |||Vel|[g, in
the admissible function space £32(Q,) (see e.g. Courant-Hilbert [2],
[3]). We choose >0 to satisfy 2¢n<<1. Since the spectrum of A con-

sists only of discrete eigenvalues, the number of eigenvalues smaller

than 22 HCONE+u 5o frise
1—2¢n

eigenvalues are counted repeatedly, and {@,}., .. ,CD(A) be ortho-

normal eigenfunctions in L*(Q,) belonging to these eigenvalues. We
define @,(x)eL*(R°) by @, (x)=@,(x) for x=Q, and &,(x)=0 for
x&Q,. Let M be the subspace of L*(R°) spanned by {@,}n.—y .. ,-
Then the dimension of M is finite, and by (3.17) we have for any
Y€ Di(R°) N ML,

(3.18) L[ 1= pllll3, - q.ed.

Proof of (iii) of Theorem 1. Let E(\) be the right-continuous
resolution of the identity associated with H. If the dimension of
the subspace E(u—0)L*(R°) is larger than that of M, we choose some
constant 8§ >0 and some function &€ E(u — 8§)L*(R°®) C D%2(R°) to satisfy
YeWM and ||[Y||ge+0. Then by YE(n—38)L*(R°) we have L[v]
<(u—38)|\r||%s. On the other hand, by Lemma 1, Lemma 3 and
Lemma 4 we have L[y]>ullv|l%s. These two inequalities are
incompatible. Therefore there exists at most a finite number of

Let this number be p, where multiple

discrete eigenvalues in (— oo, u). q.e.d.

Remark 4. As for the operator of the form (1.1), there exists
some Z,(1>Z,>0) such that for any Z(0<Z<Z,) the operator (1.1)
has no discrete eigenvalues.

Indeed, instead of (3.16) we have

3167 || ailvi*dx|<Zenll W lIB,+ (ot cCeZIwlE, G =1,2).

Then if we take into consideration P(r,, r2)>2lR on ,, we have

for any € D%2(R°)

(3.17Y  LIy1>A—2en2)ll Ve 1, + (55—~ 2200+ cne ),
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in place of (3.17). Take Z sufficiently small. We have for any
V€ D3R
(3.18) L[ ]p =ll?, -

By Lemma 1, Lemma 3 and (3.18), there exists no discrete

eigenvalues in (— oo, u).

Proof of Theorem 2. Under the conditions (2.2), (2.3) and
(2.15), the selfadjoint operators H;(;=1,2) in L*(R*) (whose domains
D(H)) are 9%:(R%) has at most a finite number of discrete eigenvalues
in (—o0,0) and o (H;)=[0, ) (see, e.g. Birman [1]). Let the
discrete eigenvalues of H; be \;,<\;,<---<N;,, <0, if they exist,
and the orthonormal eigenfunctions belonging to these eigenvalues
be {@:sT)}oermis iz CDi(R?). Let N be the finite dimensional
subspace in L*R°) spanned by {p, x(r)@. ()} e=s o, s 121, my, and T
be the operator of the form

3. 19) T = _AI—AZ_i—ql(rl) +qz(r2) .
If D(T)=9%:(R%, T is a selfadjoint operator in L*(R®) by Theorem
1(i). Then we have

Lemma 6. If there exists some fED2(RYNNE such that Tf
=xf and || f|lge=1, then «>pu, where

min (A, 4, Xy), 0f Ny, 07 N, exists,

3.20 =
( ) » {0 , if wmeither \,, nor \,, exists.

Proof. Let <0 and «<p. Put fl'k(rZ):SRa [y, r) @ (r)dr,
then we have f, ,(r,) € D72(R°) and

(3.21) (=2 fis) = | TFG r) @atrar,
- SRsHlf(rv r2)7)1,k (r1) drl = H2f1,k(r2) .

By (3.21) we have f,,(r,)=0 or f,,@,) is an eigenfunction for H,
belonging to the eigenvalue «—2x, ,<0. In the latter case, f, ,(r,) is

represented by f,.(r.)= Ez CiPei(ry). By feRt we have ¢,
= ((fl,k(r2)7 ¢z,l(r2))R3: (f:¢1,k'¢2,l)R6=O- Thus we have f1,k(r2) =0 for
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any k(1<k<mn,). Since D}:(R™)=E3%2(R™), by Fubini’s theorem f(r,, r,)
€ 97%:(R*) as a function of r,, whenever a.e. r,eR® is fixed. Then
by S Sy )@, k) dr, =0 (k=1, -+, n,) and o ,(H,)=[0, o), we have
for alfe. r,eR® SR3H1 f+fdr,>0. By integrating this inequality over
R® with respect to r,, we have

(3.22) (H.f, fHrs=0.

In a similar fashion, we have

(3.23) (H.f, f)re=0.
Then by (3.22) and (3. 23)
(3' 24') K= (Tf) f)RS = (H1f7 f)R6+(H2f, f)RGzO ’

which contradicts «<<u<<0. In case =0, H;(i=1, 2) are non-negative
operator in R®, and so we have (3.24). q.ed.

Now we continue the proof of Theorem 2. By Lemma 6, T
has only discrete eigenvalues {A,,+X,;} in (—oo, 1) and eigenfunc-
tions {p, x(r)@. ()}, if X, z+N,,<p. By (ii) of Theorem 1 we have
o (H)=0,(T)=[u, ), where p is given by (3.20). Then for any
fED2(RHNN*- we have

(3. 25) (TF, rs=pll f |1 zs .
By (3.25) and (2.4), we have for any f & D:(R°) NN+
(3.26) (HS, Hrs= (TS, frs=pllf % -

Since M is a finite dimensional subspace in L*(R°), we have the
assertion of Theorem 2 by the same method as applied to the proof
of (iii) of Theorem 1. q.ed.

Remark 5. Let

3.27) H= é {ﬁ (L O b))+ q‘,(r\,)}+P(r1, r)

PN 0%g,_;
= H1+H2+P(r1; r),

2 2
where Hv=z(1_ é—a‘—kbw_j(rv)) u(ry). If we assume (2. 2)~(2. 5)
=0\ g

Xyv-j
and
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(3:28) [0y ;)< for 2R (=1,2;7=123),
7y

(3.29) b,,_;(r,)eB'(R°) are real-valued functions
w=12;;=123),

(3. 30) g(r)> -t for 2>R 0 =1,2),
7

248
v

where f(x)e $'(R®) means that f(x) 3‘has, continuous derivatives of
first order in R® and sup [f(x)] —l—?u;gkg’% (x)l < + o0, then we have
the same results as Tgifeorem 2. - *

In fact if D(H)=93(R°), H is a lower semi-bounded selfadjoint

operator in L*R®) and o, (H)=[u, o), where

(3.31) p=min inf (H,p, p)
v=1,2 |oplrs=1
P E Di(R?)

(see, Jorgens [6]). On the other hand the operators H,(»=1,2) in
L*(R®) have at most a finite number of discrete eigenvalues in
(—o0,0) and o,(H,)=[0, =) (see, e.g. Uchiyama [107]). Then we have
for the operator H,+ H, the same results as Lemma 6 and we can
prove the assertion in a similar fashion to the proof of Theorem 2.
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