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Introduction

In this paper, we will try to decompose (#—2)-connected 2n-
dimensional closed #-manifolds into a connected sum of certain
familiar manifolds. Our main theorems are given in the section 5.
I show there that under some conditions such z-manifolds are
decomposed as a connected sum of a homotopy 2#-sphere, some copies
of the product of the original z-spheres, the total spaces of some
(n—1)-sphere bundles over (n+1)-spheres, and the boundary of a
handlebody. And I give a sufficiency condition so that the handle-
body may vanish.

Throughout this paper, all manifolds are C* and compact con-
nected.

I would like to express my thanks to Professor N. Shimada for
his kind advices.

1. Notes for (n—1)-connected Case

Lemma 1.1. Let M™ be an (n—1)-connected 2n-dimensional
closed m-manifold (n>=3). We assume that Arf M=0 if n=4k+3.
Then, there exists such basis {\,, =", Ny, o, =+, ppy for H,M with
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intersection numbers N;\;=p; p;=0, N;+p;=0;; that the imbedded
n-spheres S%, S’} representing \;, p; respectively have trivial normal
bundles.

Proof. If » is even, the assertion is well known from Lemma
9 and Lemma 7 of [7]. Let n be odd. There exists a symplectic
basis {n,, -, Nps ittty ,u,p} such that Ki-hjzui-,u,j=0, 7\,5-;1,j=3;j
(L7D. The Arf invariant of M is defined as Arf M=&,)-&(u,)
+EMNL) +E(u,) + - +EMN,) - E(n,) (mod 2), where € is a certain function
from H,M to Z, and satisfies the relation &\ + u)=EN\)+&(u)+r-pu
(mod 2) [5].

Now, if a pair (\,, u;) satisfies €(A;)=0, &(u;)=1, replace these
by Ai=nA;, ui=N;+p;. Then, we know &(})=0, &(ul)=6EMN;)+E(u;)
+N;ep; =0 (mod 2). The case when &\;)=1, &(u;)=0 is also similar.
If two pairs (\;, pi), (A, p;) satisfy &) =&u;)=6N;)=E(;)=1,
replace these pairs by A =N;+X\j, pi=N;+N;+pu; and Nj=p;—u;,
wiy=N;+p;—p;. Then, similarly we know e(\}) =&(u}) =EN))=€(n})=0.
Since we assumed that Arf M=0, thus we have a new basis {Af, ---,
Ap» 1, v+, up} which satisfies &\])=&(’)=0. We note, if we
represent \;, u; by imbedded spheres, we can identify €(\;), &) as
the characteristic elements (€Z,) of the normal bundles of those
spheres. This completes the proof.

From this lemma, we can easily show that an (z—1)-connected
2n-dimensional closed z-manifold M*" (n>3) is, under the assumption
that Arf M=0 when n=4K+3, diffeomorphic to S”"XS"#4-.- #S"x S"
4S5, that is, a connected sum of p copies of S*x S” and a homotopy
sphere S?", where S™ is the #-dimensional ordinary sphere and 2p is
the rank of H,M.

Notes. The above shows that any two differentiable z-structures
on an (z—1)-connected 2zn-dimensional closed manifold are equivalent
modulo 4,,. On the other hand, R.K. Lashof has shown in [6] that
if two given (#—1)-connected 2x-dimensional closed differentiable
manifolds have a homotopy equivalence which induces the stable
equivalence of those tangent bundles, then they are diffeomorphic
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modulo 8,,. This shows that any two differentiable structures ®,, D,
on an (n—1)-connected 2n-dimensional closed manifold M?®** are
equivalent modulo 6,, if #=0,3,4,5,6,7 (mod 8).® It is clear if
n=3,5,6,7 (mod 8), since M*" is almost parallelizable. If #=0,4
(mod 8), the obstruction to construct a stable equivalence of the
tangent bundles 7,=7(,), 7,=7(,) is given by the differences of the
Pontryagin classes, Pu(r,)—P,(r,) and P,(r,)— P,,(t) (rn=4k). But
these obstructions vanish from the topological invariance of rational
Pontryagin classes [8].

2. Surgeries

In this section we study that if we kill elements of the (#—1)-th
homology group of a given 2x-dimensional manifold by surgeries,
then how it affects the x-th homology group of the modified
manifold.

Let M™ be a 2#un-dimensional closed manifold and let ¢:
S*"'x D"'—M"" be an imbedding. We donote by A the homology
class of @(S"*x0). Let M"*"=X(M, @) be the modified manifold [7]
and let ¢’ : D"XS"—>M"" be the dual of ¢. We denote by A’ the
homology class of ¢’(0xS”). Let M,=M—Int (S"*x D*™). This is
also equal to M’'—Int ¢’(D”XxS").

Lemma 2.1. If the order of M\ is infinite, then N must be
zero or a torsion element.
@) If ) is zero, the homomorphisms

s/

HM 25 HM, 25 HM

are respectively isomorphisms, where, i, i denote inclusion maps.
(2) If N is a torsion element, the homomorphisms

FH.M %> FH,M, %> FH,M

THM s TH,M,/(p(+xS™) —%> TH,M'|(\)

1) Mr. H. Sato informed me that he proved all the case.
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are respectively isomorphisms, where F( ) and T( ) denote the free
part and the torsion part of the group respectively.

Proof. By excision, there are isomorphisms

H/M, M) ~ H/S™ x D™, §™x 5 ~ {Z for i=n+1, 2n
A ’ ~ 10 otherwise

H(M", My = H/D"x S", §*x sn ~ (£ 10T 7=m2n
. 7 ~ R ” n M—IX ” ~
A, M) DTS {0 otherwise.
So, considering the homology exact sequences of (M, M;) and
(M’, M,), we have the following commutative diagram
Z x
e ,

. £ )
0 — MM, > H,M M g S H, M, —>H, M ——0
| .
2
H.M
|

|

0

such that the horizontal and vertical sequences are exact (cf. [5,
Lemma 5.6]).

Here N : Z—H,M’ denotes the homomorphism which caries 1 into
N, and N : H,M'—Z denotes the homomorphism which caries each
element of H,M’ into the intersection number with A’. We note that
&(1) is the homology class of @(xxS™ and &) is the homology
class i3'(\) where iy : H, . M——>H,_ M is an isomorphism.

Since we assumed that the order of A is infinite, also the order
of ix'\ is infinite. So, Ker € is equal to zero. Therefore, i% : H,M,—
H,M' is an isomorphism. On the otherhand, since any intersection
number with A\ is zero, M’ must be zero or a torsion element by
Poincaré duality. (1) If V=0, &(1) must be zero, so that iy :H,M,—
H,M is an isomorphism. (2) Let A/ be a torsion element. At the

/

i
short,exact sequence Z —— H,M, ——*eHnM ——0, &) is a torsion
element. So, &(Z)=Ker iy is a subgroup of TH,M,. It is easy to
see that i«(TH,M,)=TH,M. Therefore we have an exact sequence
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00— Z)— TH,,MOZ—*> TH,M——0. Since there is an isomor-
phism ¢4 : TH,M,—TH,M’, we have the half of the desired relation
of (2). On the other hand, it is easy to see that
HM=i.(FHM)+i«(TH,M,) = ix(FH,M,)+ TH,M .

Since iy: FH,M,—i(FH,M,) maps isomorphically, we may adopt
ix (FH,M,) as a free part of H,M. We denote this by FH,M.
We also adopt iL(FH,M, as a free part of H,M’ and denote this
by FH,M’. Thus we have the desired isomorphisms of the rest of
(2). This completes the proof.

Lemma 2.2. If \ is a torsion element, then the order of N is
infinite, and
rank H,M’ = rank H,M+2 .

Proof. Let the order of X be P. Since iyx: H, M, —H,_ M is
an isomorphism and &(1)=i3x'(\), we have the following short exact
sequence from the above diagram.

0 — HM, — HM —L (P)=Keré —> 0,
where (P) is the subgroup of Z generated by P.
Since this sequence splits, there is an isomorphism

HM = HM,+(P).
We note that A\’ is not a torsion element and so &(Z)=~\/(Z)=Z at

the above diagram.
Thus we have,

rank H,M’ = rank H,M,+1
rank H,M = rank (H,M,/&§(Z)) = rank H,M,—1

This completes the proof.

Proposition 2.3. Let M* be an (n—2)-connected 2n-dimensional
closed m-manifold and suppose that H, M has no torsion subgroup.
Then we can kill H, M so that the surgeries do not affect H,M,
that is, the produced (n—1)-connected 2n-dimensional r-manifold has
the same n-th homology group as M™.
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Proof. Let H, M=Z+---+Z with generators A, -, A,. Let
@, : S" X D" —M*" be an imbedding such that ¢,(S"* X 0) represents
A, and let M"*=X(M, »,). Since H, M'=H, M/(\,), H,_ .M’ has
no torsion. Therefore, by the universal coefficient theorem H,M’
=~H"M=Hom (H,M’', Z)+Ext (H,_.,M’, Z), where the torsion part
vanishes.

This means that A{=0. Thus we have the isomorphisms

>/
H,M P H,M, L, H,M’ from Lemma 2.1. Repeating this, we

have the proposition.

3. Splitting Theorems

Using the results of sections 1 and 2, we can decompose (#—2)-
connected 2z-dimensional z-manifolds.

Theorem 3.1. Let M™ be a (n—2)-connected 2n-dimensional
closed m-manifold (n=3) such that H,_.M has no torsion. Then there
exists the following decomposition ;

M™ = S"XS"4--- #S"X S"#M?,
where S” is the ordinal n-sphere and M3 is a (n—2)-connected 2n-
dimensional closed m-manifold such that
HM ~ {H,-M z:f z =n—1,n+1
0 if i=mn.

(We assume that the Arf invariant is zero if n=4k+3.)

Proof. Let H, M=Z+.--+7Z with generators «,, «,, ---,x,. Let

@; 1 S X D" —->M*" §=1,2,---,» be imbeddings such that each
@(S” % 0) represents «;, and let M,=M— [_J Int @;(S™* x D™), M*"
be the (z—1)-connected 2x-dimensional n-mell—nlifold obtained by those
spherical medifications X(p,), -:*, X(@,). From Proposition 2.3, we

have the isomorphisms

HM << H.M, 2> HM .

where i, ¢/ are inclusion map.
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On the other hand, by Lemma 1.1 there exists such basis {¥,, -,
Np» By, 0y for H,M’ with intersection numbers N;+\ ;= p;+p;=0,
wi*w;=90,;; that every imbedded #-sphere which represents these
homology classes has trivial normal bundle. Let A=i3'(\),
pi=ix(u;) for i,7=1,2,---, p. Then {\, -, N}, pl, =, pi} is a
basis for H,M, with intersection numbers Aj-Aj=pf-uj=0, N -uj
=9,;. Since M, is also (#—2)-connected, by Hurewicz’s Theorem
any element of H,M, is spherical. So we can represent A}, u} by
imbeded spheres S}, S”;. Using Whitney’s method we may assume
that S7 and S meet transversely at only one point and any other
pair of spheres does not intersect. We note that S7, S’} also
represent A;, u; respectively and that whether the normal bundles
of S? and S} are trivial or not depends only on the homology
classes A;, u; respectively [5, Lemma 8.3]. So the normal bundles
of S} and S} in M, are trivial. Therefore S}, S} in M** make a
basis for H,M with trivial normal bundles.

The tubular neighbourhood of S;VS] in M?*" makes a plumbing
manifold S?X D"VvS’tx D" with the boundary S**-' for each 7, and
Stx D*"vStx D" is diffeomorphic to S*"xXS*"—IntD**. Let N=M
— _LiJlInt (StxD"VvStxD") and attach p copies of D*” to N. Then
we‘ have a closed manifold M3" which is almost parallelizable. Thus
we can decompose M as M*=S8"XS"3---#S"x S"4M?2",

M?%* is simply connected by van Kampen Theorem and has such
homology groups as asserted using the Mayer-Vietoris sequence. We
note that M?%” is a =-manifold since the Index of M?%* is zero.

This completes the proof.

Remark. In theorem 3.1, if M*" is (#—1)-connected then M3%"
is a homotopy sphere. This induces the form asserted in section 1.

Theorem 3.2. M?" is decomposed as the form M3%¥ =S40 W=+,
where S is a homotopy 2m-sphere and W™ is a handlebody

D+ {LrJ D' x D%, r=rank H,_ M.

i i=

Proof. If we kill the generators of H,_,M,, then by proposition
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2.3 we have a homotopy sphere S™. So, from the manifold
M?%4(—8™) we obtain the standard sphere S*” by the surgery. Thus
we may assume that the surgery deforms M3} to the standard sphere
S?.  This means that M?%* can be obtained from S** by the converse
construction, that is, by surgery on a disjoint set of imbeddings

@;: S"XD"=8"{=1,2, ---,7. Thus M¥ is clearly the boundary of

a handlebody W=D+ | {U D7 x D%, This completes the

{®i} i=1
proof.

4. Linking Elements
Let W™*'=D*+ U {U D' x D7} be a handlebody with attach-

{(¥i} i=1

ing maps @;: S"XD"->S" {=1,2,---,7, and let M=o W***'. When
we restrict the imbeddings ¢; to 9D?"'x0=S?x0, we have an #-
link @,(STX0)U@,(Ssx0)U--Up,(Sx0) in S”=0D**. Let STUS}
U--US; be an #-link in S and let X;=$"—{USj}. Then there
is an isomorphism nn(Xi)znn(]_\éiS’}‘l)zZerZﬁ—--j—l Z, (n>4) and the
n-sphere S;C X; defines an element ¢ of x,(\VSj™") which is called
the linking element of S7 [3. p. 243]. A‘: ij=ll,2, -+-, 7 determine
the isotopy class of the #n-link STUS3U --- US™
In this section we study a sufficiency condition so that all the
linking elements for the z-link ¢,(S7x0)U@,(S3x0)U --- U, (S*x0)
may be zero.

Lemma 4.1.

v

Z+-+Z if i=n—-1,n+1
HM™ =~ jZ if 1=0,2n
(0 otherwise

and the gemerators are given as follows ;

@;(x; xS (x;,€0D7, i =1,2,--+,7) generates H,_M*™
() 'W(D7 x ) (y:€0D%, i =1,2,---,7) generates H, M™.

Proof. Let S,=S*— UInt @;(Stx D7) =M — U Int 4 (D7 x S20).
1=1 =1
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From the homology exact sequences of (M**, S, and (S*%, S,), we
have isomorphisms

o s
Z=H,S"S) =~ H,(S) = H,.M

J*

——

H, M = H,.M,S,)=2Z.
This implies the lemma.

Proposition 4.2. If n>4 and Sq¢* . H"*(M : Z,)—>H""'(M ; Z,) is
trivial, then the linking elements for the n-link ¢,(StXx0) U @,(S3x0)
U U@, (Srx0) are all zero.

Proof. Let Y=S"— Ulnt@(Six D7) and let S;*=DryD",

We note that M= W™= {S*"— UInt o,(Stx DD} U {U D+ x St}
, i=1 , 9} =1
YU {UD7?xy;} is a deformation retract of M*UInt {D7" x D2},
(@) =1 =1

where @}=@;|S7Xy; and y;,€D?*cS?'. Then we have the follow-
ing commutative diagram.

Sq*
H”—I(M; Zz) - —_——— - = > H"‘H(M; Zz)
¥ | = S % |
H”_l(Y{E’-){U-D?HXyi} s Z2) d Hnﬂ(Y(aH {U DXy} 5 Z,)
i t i i I
F#|= F*| =~
Sq?

H™ (ST V.-V Si {U {UD?"}; Z) —> H"™(St'v---VvSit (U {UD}; Z)
@iy i @} i

i

The first part of the diagram is clear and the vertical maps
induced by the inclusion map are isomorphisms.

The second part is given as follows. Let X=SZ"—_L:J<]),-(S’ZXO)

and let S?' i=1,2,.--,7 be » copies of (#n—1)-spheres. Define a
continuous map f:St'VS;'V.-VSr'—X so that each f(S7™) is
homotopic in X to ¢;(x; X S?™") which has linking number +1 with
@;(Stx0) in S**. Then, using Alexander duality, the map f induces
the isomorphisms of their homology groups up to dimension 2n—2,
so the isomorphisms of their homotopy groups up to dimension
2n—3 (n>3). Since Y is a deformation retract of X we may assume
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that f is a map into Y. Thus we have an isomorphism fy:

(VS )7, (Y). Choose a map o;: S'—>\/S** such that fow; is
i=1

i=1

homotopic to ;. We may assume ¢@;=fow;. Define a continuous

map F: \,/157_110) {UID?“}—’Y“Q AUDrixy} as  FlVSiT=f,
= ; i= ;) i=1 i

F|UD;*' =identity. Then, by Lemma 4.1, it is easy to see that F'*

carries the generators of the one onto the generators of the other.
Therefore F* is an isomorphism and we have the second diagram.

Thus, if S¢*: H*'(M: Z,)->H""(M ; Z,) is trivial, o; must be
homotopic zero for each i. So, ¢} is homotopic zero in XcCS*
— U @;(57%0). Since ¢; is homotopic to ;[ S; X0 in $*— U ¢ ;(S?x0),
thi:‘implies that A*=0 for all ;. This completes the p]rb:)f.

Remark. If ¢f:S?Xy,—-S"—@,(S"%x0) is homotopic zero for all
¢, the converse of Proposition 4.2 is also valid.

5. Structure Theorems

Let M** be a (n—2)-connected 2xn-dimensional closed z-manifold
and assume that H,_,M is free with rank » and H,M=0. Then,
from Theorem 3.2, M*" is decomposed as M*"=S*"sg W+, W+

is a handlebody D”‘“(g{} {iL;lD';“XD?} with attaching maps o;: S}
X D*—>S* §=1,2,---,7. We study more precise structure of M.

Let ¢ be the linking element of ¢;(S7x0) for the n-link ¢,(S?
X0 U@y(SaX0) U+ Up,(Srx0). N i=1,2,.,7 are all zero if r=1
or, by Proposition 4.2, if S¢*: H"'(M ; Z,)—-H""(M ; Z,) is trivial.
But A i=1,2,.-,7 are not always all zero. Now, we assume that
A=A*=--=A7=0 and A=+0 for i>gq.

Since M'=0, ¢, |S"x 0 is homotopic to zero in X, =S"— 9;190 ;(S3%x0),
which is 2-connected if #n>4. So, by Haefliger [2], We] know that
»,(S7x0) is isotopic in X, to a #-sphere which bounds an imbedded
(n+1)-disk D™, and also that D™ is contained in the interior of
an imbedded (n+1)-disk C"*'. Since there exists an isotopy f, of
the identity of S*” such that f,o(@,|S%Xx0) equals the restriction of
the imbedding of D"*' to the boundary and other ¢;|S}x0j>1 are
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fixed [9], we may assume that ¢,(S?x0) is the boundary of D"
C" does not intersect other #-spheres and the normal bundle is a
product. So, there exists an imbedded 2#z-disk D?** which contains
D™ in its interior and other #z-spheres in its complement. Then
extend D** by an isotopy of S*” onto the hemisphere of S**. Thus
we may assume that @, maps S?X D% into the interior of the upper
hemisphere and ¢; 7>1 maps S}X D7 into the interior of the lower
hemisphers. This implies that W' is decomposed to a sum of
handlebodies, W***'= W24 W’?"+' where W=D+ D% x D?

@
and W7ti=p#+ {"U){ LiD’;‘“ x D73}, Clearly W2* is diffeomorphic to
i}y i>1

the total space of a D"-bundle over the (z+1)-sphere. Repeating
this for A 7=2, ---,¢q, we have

Theorem 5.1. Let M* be an (n—2)-connected 2n-dimensional
closed m-manifold (n>4) such that H, M is free of rank r and
H,M=0. Let M”=S"4%0W>*" and let the linking elements N
i=1,2,+-,7 defined by the attaching maps ¢; i=1,2, ---, v are zero
for 1<i<q.

Then M® is decomposed as

M = SZ"#BIZH:BZ:H:'“ #Bq#a W+t

where 5™ is a homotopy 2n-sphere, B; is the total space of an (n—1)-
sphere bundle over the (n+1)-sphere and W' is a handlebody

D™+ U {U D% X D3} with non-zero linking elements.
(@5 i>a) 7>a

Corollary 5.2. If r=1 or if Sq¢°: H" (M ; Z,)-~H""'(M ; Z,) is
trivial® then W™ vanish, that is, q=r. And the characteristic
elements of B; i=1,2,---,v are in the image of the natural homo-
morphism iy : 7,50, ,—r,S0,.

Proof. We consider only on the characteristic elements. Let
w; be the characteristic element of B;. Using the Mayer-Vietoris
sequence, Sq¢* H"'(B;: Z,)—>H""(B;; Z,) is also trivial for ;=1,2, ---, 7.
This shows that in the cell decomposition of B; the attaching map

2) More precise structure of M?” in this case has been given by Tamura [13].



76 Hiroyasu [shimoto

of the (z+1)-cell to the (z—1)-sphere must be homotopic zero. So,
B; admits a cross section. This implies that y; is in the image of ..
Combining Theorem 3.1 and Theorem 5.1, we have

Theorem 5.3. Let M*™ be an (n—2)-connected 2n-dimensional
closed m-manifold (n>4) such that H, .M is free of rank r. Let
the linking elements N i=1,2,.--,r defined as above are zero for
i=1,2,-,q. Then M is decomposed as M"=S"4S"x S"...
4#S"X S4B, 4 B, 4 - # B, #0 W', where S is a homotopy 2n-
sphere, B; is the lotal space of an (n—1)-sphere bundle over the (n+1)-
sphere, and W™ is a handlebody D2”+1¢..U~>q) {‘L>JqD§”+1><D’}} with
non-zero linking elements. (We also assun;e] ,z‘]hat jthe Arf invariant
is zero if n=4k+3.)

Corollary 5.4. If r=1 or if Sq¢°: H* (M ; Z,)->H""(M; Z,) is
trivial then W™ wvanish, that is, q=r. And the characteristic
elements of B; i=1,2,---,v ave in the image of the natural homo-

morphism iy : 7,S50,_,—r,S0,.

6. Notes on Parallelizable Manifolds

It is also interesting how many parallelizable manifolds are
and what style they have. By [11], an m-dimensional closed -
manifold M™ is parallelizable if and only if
(1) m is even and the Euler characteristic of M is zero, or
(2) mis odd, m=+1,3,7, and the semi-characteristic of M is zero

mod. 2, or
(3) m=1,3,7.
From this we have the following results:

Proposition 6.1. Let M*" be an (n—1)-connected 2n dimensional
closed parallelizable manifold (n>=3). Then n must be odd and M
has the form as M™=S"xS"4#85% under the assumption that the
Arf invariant is zero if n=4k+3.

Proposition 6.2. Let M*" be an (n—2)-connected 2n dimensional
closed parallelizable manifold (n>=4) such that H,_ M has no torsion.
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Let r=rank H,_ M and 2p=rank H,M. Then p=r+(—1)"" and M™
is a comnected sum of (r—1) or (r+1) copies of S"XS" according
as n=even or odd and such manifolds M3" as obtained in Theorem 5. 1.
We also assume that the Arf invariant is zero if n=4k+3.

On the other hand, as an example for the odd dimensional case
we have the following

Proposition 6.3. In the set of diffeomorphism classes of simply
connected 5-dimensional closed =-manifolds, exactly the half consists
of parallelizable manifolds and the other half comsists of non-parval-
lelizable manifolds.

Proof. Smale [10] has classified simply connected closed
5-manifolds with vanishing 2nd Stiefel-Whitney classes up to diffeo-
morphism. This is exactly the classification of simply connected
5-dimensional closed z-manifolds. From his results, we can easily
obtain the proposition.
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