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Numerical Investigation of Subharmonic
Solutions to Buffing's Equation
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1. Introduction

The present paper is concerned with subharmonic solutions to

Buffing's equation

(1.1) - + a + K
2q(l + /3q2) = P cos jr.

dr2 dr

As far as the author is aware, the analytical or experimental

investigation of subharmonic solutions to Buffing's equation (for

analytical investigation, e.g. see [6], [10], [11], [12] and, for experi-
mental investigation, e.g. see [5]) has been limited till recently to

the equation in which the nonlinear term is small, that is, \p\ <1.

Recently, for the strongly nonlinear equation, that is, the equation
in which the nonlinear term is not necessarily small, subharmonic
solutions have been investigated analytically by P. A. T. Christopher

[2, 3, 4] by the use of the method developed by Cesari [1], and
numerically by M. E. Levenson [7, 8] by the use of a digital com-

puter and by C. A. Ludeke and J. E. Cornett [9] by the use of an
analog computer. Christopher established analytically the existence

of a subharmonic solution of order one-third in some region of
parameters, but the region of parameters obtained by him does not

seem to be large enough for practical use. Numerical investigations
by Levenson, Ludeke and Cornett are all based on step-by-step

numerical integration of ordinary differential equations and they do
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not provide the mathematical guarantee for the existence of a sub-
harmonic solution.

In his papers [13, 16], for nonlinear periodic differential systems,
the author established a mathematical theory of Galerkin's procedure
and gave a practical method of getting an error bound to a periodic
approximate solution obtained by Galerkin's procedure. In his
method, in the course of calculation of an error bound, the existence
of an exact periodic solution can be assured automatically and

moreover the stability of a periodic solution can be decided easily.
In the present paper, making use of the above method, we have
computed approximations to subharmonic solutions of order one-third
for various values of parameters and calculated error bounds to the

approximations. Naturally the existence of the corresponding sub-
harmonic solutions has been assured and, in addition, the stability
of these subharmonic solutions has been decided. In the present
paper, harmonic solutions related with subharmonic solutions has
been also computed.

By the transformation

_ _ r 7 _
9 — — q — x , — cr , - c , CD ,

P K K K

equation (1. 1) can be reduced to the equation

(1.2) ^ + <T— + *(l + a;2) = coscot ,
dt2 dt

which, replacing cot by t, one can rewrite as follows :

(1.3) dt2 co dt n n
where

(1. 4) fl = co2 .

To a subharmonic solution of order one-third to (1. 1), corresponds
a solution to (1. 3) of the form

(1. 5) x(t) = Cl + c2n sin t + c2n+l cos /
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Hence replacing t by 3t in (1.3) and (1.5), one can reduce the

problem to the one to find a solution of the form

(1. 6) x(t) = Cj+2 (czn sin nt + c2n+1 cos nt)»=i

to the equation

(1.7) ^* + 3?rf*+ 9. *(! + £**) = I_cos3f .#" co dt n ' ri
In the present paper, we assume that

(1.8) £>0.

For equation (1. 7) with <r = 0 (that is, the equation with damping

absent), from the symmetricity of the equation, we have sought solu-
tions of the form

(1. 9) x(t) = f] an cos (2n-l)t .
«=1

For equation (1.7) with o-=t=0 (that is, the equation with damping

present), we have sought solutions of the general form (1. 6) for
small cr>0.

The computations in the present paper have been carried out

by the use of TOSBAC 3400 at Research Institute for Mathematical

Sciences, Kyoto University. The author wishes to acknowledge the

assistance of Mrs. S. Asako, who has written the programs for
TOSBAC 3400.

2. Galerkin's Procedure

2. 1 Galerkin's procedure. Consider a real periodic differential
system

(2. 1) <f = X(X, f) ,
at

where x and X(x, t) are vectors of the same dimension and X(x, t)

is periodic in t of period 2n. To get an approximation to a 2n-

periodic solution to (2. 1), we consider a trigonometric polynomial

(2. 2) xm(t) = c, +2 (c2n sin nt 4- c2n+1 cos nt)
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with unknown coefficients c19 c2, c3, ••• ,c2m9 c2m+l, and we determine
these unknown coefficients by the equation

dt 27rJo m

1 m / f2* • ^
n K=i I Jo

f2* 1~f~ cos /^r• i JL\_xm(s),s^cosns*clS} .
Jo J

Equation (2. 3) is evidently equivalent to the equation

),t]dt = Q9

-t /» 9-rf

(2.4)
-1 r2t

j- X\xm(t), t] sin nt-dt + nc2a+1 = 0 ,
7f Jo

-I f2rf

«^ (c)A ̂  ^W) , *] cos »/ • dt - nc2n = 0
^ Jo

(« = 1, 2, — ,m),

where c=col (c1? c2, c3, ••• , c2m, c2m+1). A trigonometric polynomial
with coefficients satisfying (2. 4) will be called a Galerkin approxi-
mation of order m to a 27r-periodic solution to (2. 1) and the equation
(2. 4) will be called a determining equation for Galerkin approxima-
tions of order m. A method of getting an approximation to a

27r-periodic solution by computing a Galerkin approximation is called
a Galerkin 's procedure.

Galerkin's procedure can be justified mathematically by the
following theorem.

Theorem 1. Suppose that X(x, t) and its Jacobian matrix ^(jc, t)
with respect to x are continuously differentiate with respect to x
and t in the region D X L, where D is a closed bounded region of the

x-space and L is the real line. If differential system (2. 1) possesses

an isolated 2n-periodic solution x = x(f) lying inside D, then for
sufficiently large m0, there is a Galerkin approximation x = xm(t] to
any order m^m0 such that

uniformly as
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For the proof of the theorem, see
By an isolated 27r-periodic solution, is meant a 27r-periodic

solution such that the multipliers of solutions of the relative first
variation equation are all different from unity.

2. 2 Determining equation for Buffing's equation with damping
present. Clearly equaton (1. 7) is of the form

(2.5) x = X(x,*,t) ( - = d / d t ) ,

where X(x, y, t) is periodic in t of period 2n. Equation (2. 5) is
clearly equivalent to the first order system

(26)( }

For (2. 6), a Galerkin approximation of order m is of the form

m

m(f) = £i+S (C2n sin nt + c2n+1 cos nt) ,

m(t) = 2 (-nc2n+l sin nt + nc2n cos «f) .
(2.7)

Hence, for (2. 6), the determining equation for Galerkin approxima-
tions of order m can be reduced to the equation [16]

(2. 8)

), ym(t),

1 f2*

2B(c) £-f ^[^(O, ^(0, *] sin ntdt + n2c2n = 0 ,
727 Jo

(t), ym(t}, ^ cos ntdt + tfc^ = 0

where c = col fe, c2, cs, • • • , c2l f f, c2m+1). Equation (2.8) will be called
a determining equation for Galerkin approximations for the second
order equation (2. 5).

2. 3 Determining equation for Buffing's equation and damping
absent. As is seen from (1. 7), Duffing's equation with damping
absent is of the form

(2.9) X = X0foO = H
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and

(2.10)

Corresponding to (1. 9), we consider a trigonometric polynomial
of the form

(2. 11) *„/(*) = 2 «. cos (2w- IX •
72=:!

Equality (2. 11) implies that

*„/(-*) = **XO ,
(2 12)

*) = -xm>(t).

Then from (2. 10) readily follows that

,2 1 3 ) j HI- =

Now comparing (2.11) with (2. 7) we see that

m = 2m'-1,

(2.14) J c2B = 0 (»=l,2,-,iw),
0 (»=0.2.4,-,

Then by (2. 10) and (2. 13), we readily see that the determining
equation (2. 8) can be reduced to the equation

1 c2*
(2. 15) Fn(a)±± X0 [xm>(t) , t~] cos (2» - 1)# • dt + (2n - l)2aB = 0

" Jo

where a = col (^, a2, • • • , (2m/). Equation (2.15) will be called a rf^-

termining equation for Galerkin approximations of the form (2. 11)

for the second order equation (2. 9).

2, 4 Numerical solution of determining equations by Newton's
method. In order to get Galerkin approximations to 27r-periodic

solutions to equation (1.7), it is necessary to solve numerically de-

termining equations of the form (2. 8) or (2. 15). In the present
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paper, we have solved determining equations (2.8) and (2.15)
numerically by Newton's method.

In order to practise Newton's iterative process on a computer,
as is seen from (2. 8) and (2.15), it is necessary to evaluate Fourier

coefficients of known functions on a computer. For this purpose,

we have used the following formula [16] :

where

(2.17) tt =

and

(2.18)

In the present paper, for (2. 7) and (2. 8), we have chosen m and N

so that

(2.19) m = 15 , N = 25 - 32 ,

and, for (2.11) and (2.15), we have chosen mf and AT so that

(2. 20) m7 = 15 , AT - 26 - 64 .

When we use the formula (2.16) for evaluation of Fourier

coefficients appearing in Newton's iterative process, it is necessary

to evaluate trigonometric polynomials of the form (2. 7) or (2. 11)
for t = tg (i = l, 2, ••• ,2N). We have evaluated these trigonometric
polynomials by the use of following recurrence formulas.

Recurrence formula 1 [16]. Let
HI

(p(t) = Ci + 2 (c2n sin nt + c2n+1 cos nf)

and

cos t — c _u

2m + l, 2m, 2m —1, • • - , 3, 2, 1;
L T7 =7* =.7* — T7 — fi
\^2tn\5 U2m 1 4 °2m 1-3 °2»z I 2 u

then

<j)(f) = c1
JrC2 sin ^ — c3 cos ^ .
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Recurrence formula 2. Let

and

an = an
Jr2an+1cos2t-an+2

(n = w', m'-l, • • • , 2 ,

\am'+2 = am>+1 = 0

then

4>(t) = (al — a2} cos t .

Recurrence formula 2 can be proved analogously to formula 1.

2. 5 Starting approximations for Newton's iterative process.

In order to solve determining equations by Newton's iterative

process, it is necessary to find the starting approximate solutions to

determining equations.

1° Buffing's equation with damping absent. We consider

equation (1. 7) with o- = 0. In this case, Galerkin approximations

under question is of the form (2. 11) and the determining equation

is of the form (2. 15). To find a starting approximate solution for

Newton's iterative process, corresponding to (2. 11), we consider a

Galerkin approximation of the form

(2. 21) x(t) = a, cos t + a2 cos 3t .

By (2. 15), we then have the determining equation as follows.

97
« 1 -

(2.22)

= 0,

1 - fl) a2 + — 8(a* + 6a*a2 + 302
3) -1 = 0.

4

From the first equation of (2. 22), we have

97
0! = 0 or (9-DJ} + ̂ -S(al

2 + a1a2 + 2a2
2) = 0.

Combining these equations with the second equation of (2. 22), we

have the following two cases.
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Case I.

(2.23)
' fl = l + ̂ £az

2--L-.
4 a2

Case II.

27,
" = - • 4 - - - -

(2'24) 51«M-27«,•+*«•«-«'+-* 8«T1 =012 1 2 1 £ 2 -T

In Case II, from the first equation of (2.24), we readily see
that real solutions of (2.22) can exist only for

(2.25) ft>9.

Now the derivative of the left member of the second equation of
(2.24) with respect to a2 is always positive, therefore the second
equation of (2. 24) can have only one real solution a2 for any given
value of #!- Such being the case, for £=1/8, 1/2, 1 and a^= —5(1)5,
we have computed a2 satisfying the second equation of (2.24) by
Newton's method and then we have computed the corresponding
values of ft using the first equation of (2.24). Making use of the

results obtained, we have drawn the graphs of (ft, a^ and (ft, <z2)
and, from these graphs, we have found the approximate solutions
of (2.22) for

(2. 26) ft = 3.052, 3.12, 3.22, 42.

Finally, starting from these approximate solutions, we have com-
puted the solutions of (2. 22) by Newton's method for values of ft
specified in (2.26).

In Case I, drawing the graph of (ft, a2) by the use of the second
equation of (2.23), we have found the approximate values of a2

satisfying the second equation of (2.23) for values of ft specified
in (2.26). Next, starting from these approximate values of a2J by
Newton's method, we have computed the values of a2 satisfying
the second equation of (2.23) for values of ft specified in (2.26).
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However, in Case I, we have computed only the values of az lying
near those in Case II.

Figures 1.1, 1.2 and 1.3 show the graphs of (£1, a^ and (n, a2)
in Case II by solid lines and the graphs of (O, a2) in Case I lying
near those in Case II by broken lines for £ = 1/8, 1/2 and 1
respectively. Tables 1.1, 1.2 and 1.3 show the solutions of (2.22)
obtained in the above way for £=1/8, 1/2 and 1 respectively.

Let (a19 a2) be any one of the values listed in Tables 1.1, 1.2
and 1.3 such that a^Q. Then, for the determining equation (2. 15),
we can take

for the starting approximate solutions from which Newton's iterative
process should be started. Practically, starting from these values,
by Newton's iterative process, we have got the solutions to (2. 15)
shown in the first two columns of Tables 2.1.1, 2.1.2, ••• , 2.3.4.
Clearly these give Fourier coefficients of Galerkin approximations
of the form (2. 11) to subharmonic solutions of order one-third.

From the values (a19 az) listed in Tables 1.1, 1.2 and 1.3 such
that ^ = 0, we get in the same way solutions of (2. 15) which however
slightly differ in the last digits from the solutions shown in the
last columns of Tables 2.1.1, 2.1.2, ••• , 2.3.4. These solutions to
(2. 15) clearly give Galerkin approximations to 27r-periodic solution
to equation (1. 3). However, as is seen from Tables 2.1.1, 2.1.2, ••• ,
2.3.4, these 27r--periodic solutions to (1.3) are supposed to be again
of the form (1. 9). Hence Galerkin approximations to these solutions
can be computed in the same way as Galerkin approximations to sub-
harmonic solutions (that is, 27r-periodic solutions to (1. 7)) replacing

9/H and cos 3^ in (1.7) by 1/fl and cos t respectively. The values
obtained in this way are shown in the last columns of Tables 2.1.1,
2.1.2, • • - , 2.3.4. Clearly these give Fourier coefficients of Galerkin
approximations of the form (2. 11) to 27r/3-periodic solutions to
(1. 7), that is, 27r-periodic solutions to (1. 3) which are nothing else
harmonic solutions to the given Duffing's equation.
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2° Buffing's equation with damping present. For equation

(1. 7) with small \<r\ >0, by 2.2, Galerkin approximations are of the

form (2. 7) and the determining equation is of the form (2. 8).

Now Galerkin approximations to 27r-periodic solutions to

equation (1.7) or (1.3) with small |o-|>0 may be supposed to be

close to those to (1.7) or (1.3) with a-=Q, that is, the Galerkin

approximations obtained in 1°. Hence, for equation (1.7), one can

start Newton's iterative process for the determining equation (2. 8)

from the value

f c2n = 0 (» = 1,2,3, — , w ) ,

(2-27> 1 ( 0 (» = 0 ,2 f 4 f . . . , f f i - l ) ,
I c — j

1 flc»+iV2 (n = 1, 3, 5, - • •, m),

where m=15 and ap (/> = !, 2, • • - , 8) are the Fourier coefficients of

Galerkin approximations listed in the first two columns of Tables

2.1.1, 2.1.2, •••,2.3.4. Galerkin approximations obtained in this way
for <r = 2-w = 0.0009765625 are shown in Tables 3.1.1, 3.1.2, ••-,3.2.2.

Clearly these are Galerking approximations to subharmonic solutions

to Duffing's equation with small damping present.

For equation (1.3), one can start Newton's iterative process

for the determining equation (2.8) analogously using the Fourier

coefficients of Galerkin approximations listed in the last columns of

Tables 2.1.1, 2.1.2, •••,2.3.4. Galerkin approximations obtained in

this way for a- = 2~* = 0.0625 are shown in Table 4. Clearly these

are Galerkin approximations to harmonic solutions to Duffing's

equation with small damping present.

3. Error Estimation of Galerkin Approximations and the
Stability of Corresponding Periodic Solutions

3.1 Basic theorem. Let the symbol | | - - - | | denote the Euclidean

norm of vectors or the corresponding norm of matrices. Then the

theorem on which our method of error estimation is based reads

as follows.

Theorem 2. In differential system (2.1), suppose that X(x, t] is
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continuously differentiate with respect to x in the region DxL, where
D is a given region of the x-space and L is the real line.

Assume that (2. 1) possesses a periodic approximate solution
x=x(t) lying inside D such that the multipliers of solutions of the

linear homogeneous system

(3.1) % = V [ x ( t ) , f } y
at

are all different from unity, where *P(JC, f) is the Jacobian matrix of
X(x, f) with respect to x.

Let <!>(£) be a fundamental matrix of (3. 1) satisfying the initial
condition <&(Q) = E (E the unit matrix] and H(ty s) = (Hki(t, s)) be a
piecewise continuous matrix such that

= f *(0[£-4«]-^-^) for
( 0(0[^-<l>(27r)]-10(27r)0-1(5) for

Let M be a positive number such that

(3. 3) \27t- max P 2 HI, (t, s}dsY^
L 0<^t<^2-rtJQ k,l J

and r be a non-negative number such that

(3-4)
dt

If there exist positive constants S and k<\ such that

(i) AA{X|||JC-JC(/)||^S for some t}<^D,
( ii ^ I I'VpYv /^ — XI/r"\*(f\ t~\ 11 *\ J^ / /l^ fnv nil11 / | j JC ̂ > ,̂ *•/ J- \_*^'\'f /y ^ _ J M -—^ fv I J.VJL J Ur {AfVlr

(x, t) satisfying \\x—x(f)\\^S ,
(iii)

(3.5)

then the given differential system (2. 1) possesses one and only one
periodic solution x=x(f) in Ds and this is an isolated periodic solution.
Moreover, for x=x(f), it holds that

(3.6) ||Jc(f)-*(/)||2£Mr/(l-*).

For the proof of the theorem, see [13].
When a Galerkin approximation xm(t) has been obtained, as will
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be shown later, for x(t)=xm(t) one can easily find the numbers M

and r satisfying (3. 3) and (3. 4) respectively. Then, as will be
illustrated with an example, one can easily check the existence of
the constants S and k satisfying the condition (3. 5). If there exist
such constants S and k, then by the above theorem one can know
the existence of an exact periodic solution of (2. 1) and, in addition,

by (3. 6) one can find an error bound to the Galerkin approximation

xm(t).
As is seen from (3. 2) and (3. 3), in order to find the number

M satisfying (3. 3), one has to compute a fundamental matrix <&(t)

of (3.1) satisfying the initial condition <E>(0) = £. If x(f) is close to

the exact solution x(t), then the eigenvalues of <3>(27r) is close to

the multipliers of solutions of the first variation equation of (2. 1)

with respect to the exact periodic solution. Hence one may decide

the stability of the exact periodic solution by inspecting the absolute

values of eigenvalues of the matrix O(27r). In Tables 2.1.1, 2.1.2, • • • ,
2.3.4, 3.1.1, • • • , 3.2.2 and 4, eigenvalues of <3>(27r) are shown under

the sign \f- (*" = !, 2).

3.2 The number r. For equation (1.7) with cr^O, Galerkin
approximations are of the form (2. 7). Therefore, as is seen from
(2. 6), the number r is a number such that

(3. 7) \xm(t)

Let xm(f) be a Galerkin approximation obtained and let

(3.8) xm(t)-X[_xm(t)9xm(t)9f]

= Q +2 (C2fi sin nt + C2n+1 cos nf) .»=i

Then inequality (3. 7) is valid if

(3.9) iCj+gccL+CLj1/^
11=1

with large ml. In our computations, we have chosen ml so that

ml - 25

and, for computation of C19 C2, • • - , C2llfJ+1, we have used the formula
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(2.16) with N=32. By inequality (3.9), for r, we have taken a
a number slightly greater than the quantity

For equation (1.7) with <r = Q, Galerkin approximations are of
the form (2. 11). Hence corresponding to a Galerkin approximation
xm(f) obtained, we have the following expansion instead of (3. 8) :

(3. 10) xm(t) - XQ [_xm(t}y f] = f] An cos (2n -l)t.«=i

Then inequality (3. 7) is valid if
Wj

(3.11) 2 1 4,10
M = l

with large ml. In our computations, we have chosen ml so that

m, = 25 ,

and, for computation of AlyA2, • • • , ̂ 425, we have used the formula
(2.16) with N=64. By inequality (3.11), for r, we have taken a
number slightly greater than the quantity

214,1.«=i

The above method applies also to equation (1. 3) without any
change.

In Tables 2.1.1, 2.1.2, • • • , 2.3.4, 3.1.1, • • • , 3.2.2 and 4, are shown
the numbers r found by the above method.

3. 3 The number M. To find the number M corresponding to
a Galerkin approximation Xm(t), we first have to compute a funda-
mental matrix <3>GO of (3.1) with x(f) = xm(f) satisfying the initial
condition <&(Q) = E. In the present paper, by the method developed

in [14] and [15], we have computed the desired fundamental matrix
in the form

(3.12)
2

where Tn(t) (n = l,2, • • • , 30) are Chebyshev polynomials such that
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TB(cos 0) = cos nd .

By means of (3. 2), we then compute

H(p7r/128, 0W/128)

/j> = 0,2,4, - ,256;\.

U = 0,1, 2, »., 256 )

Making use of H(pn/l28, #7r/128) obtained, we compute the integrals

HKpTt/128, s)ds (p = 0,2,4, -,256)fJo

by Simpson's rule with mesh size ?r/128. Then, by (3. 3), a number

[ f2* -11/2

2?r • max I 2 HUpTT/128, s}ds
P JO k,l J

(£ = 0,2, 4,-,256)

will give the desired number M.

The numbers M calculated in the above way are shown in

Tables 2.1.1, 2.1.2, • • • , 2.3.4, 3.1.1, • • • , 3.2.2 and 4.

3. 4 The numbers S and k. We shall illustrate with an example

how the existence of the numbers S and k satisfying the condition

(3. 5) of Theorem 2 can be checked for Galerkin approximations to

periodic solutions to the equation of the form (1. 7) or (1. 3).

Example. Equation (1.7) with o- = 2~l\ £ = 1, co = 3.1.

By Table 3.2.1, we have two Galerkin approximations, of which

the following one will be brought into consideration:

(3.13) x(f) = Xls(t) = 0.00374 84022 sin t +0.31593 24676 cos t

+ 0.00007 53137 sin 3f -0.11741 26343 cos 3f

-0.00000 95962 sin 5* -0.00021 62865 cos 5£

+ 0.00000 06531 sin It +0.00006 37792 cos It

+ 0.00000 00195 sin 9t -0.00000 45873 cos 9t

-0.00000 00014 sin lit-0.00000 00458 cos lit

+ 0.00000 00050 cos 13^

-0.00000 00002 cos 15/.

Equation (1. 7) is evidently equivalent to the first order system
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(3.14)

= v

CO CO CO

The Jacobian matrix ^(x, y, t) of the right member of (3.14) with
respect to x and y is

0 1 "
Q Q.T

- —- (1 + 3£#2) —
_ co2 co _

therefore we have

(3.15)

where y(t) = 5c(f). From (3.15), for

(3.16)

we then have

(3.17)
CO

therefore we see that for system (3.14), the condition (3. 5) is

satisfied by the numbers S and k. They satisfy

^* r^^r^ i O - ~~~ I rz/^\ I ~l ̂  ™

(3.18)

where r and M are numbers specified in Theorem 2 for Galerkin

approximation (3.13). By Table 3.2.1, we see that

(3. 19) r = 2.9 x lO"9, M = 32.1 .

From (3. 13), we readily see that

1*0?) | ̂ [0.00374 840222 + 0.31593 246762]1'2

+ [0.00007 -531372 -t- 0.11741 263432]1/2

+ [0.02 ' +0.00000 000502]1'2

+ C0.02 +0.00000 000022]1'2

= 0.43365 22820.
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Hence substituting £=1, co = 3.1 and (3.19) into (3.18), we see that
inequality (3. 18) is valid if

^- xSx(S-r 0.86730 45640) < -^- ,
9.61 ~ 32.1

(3. 20)
32.1 x 2.9 xlQ-'

The second inequality of (3.20) means

,o 91v 9.309 xlO'*(6.ZI) - - - - - 5*6 .
1 — k

Now we expect k < 1. Therefore taking into account inequality
(3. 21), we assume that

(3.22) S^lxlO-7 .

Then the first inequality of (3. 20) is valid if

27 x 0.86730 46640 *
9.61 32.1

that is,

S< ML k

~27x 0.86730 46640x32.1
= 0.01278 44-x*.

Hence we suppose that

(3.23) S ̂ 0.012786.

Then combining (3.23) with (3.21), we have

Q 30Q v 10"8

(3.24) -M* x 1U

Now from
9.309 x 10-

1-k
we have

9.309xlO-8^0.01278^(1 -k),

that is,

9.309 x
0.01278

- = 7.284037-x 10-" ^fe(l-fc).
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Since we expect small k, we suppose that

(3.25) & = 8xlO-6 .

For this value of k,

1 — k

0.012786 = 10.224-- -

x lO'8 ,

Hence taking into account the assumption (3. 22), from (3. 24) and

(3. 25), we see that inequality (3. 20) is valid for

(3. 26) k = 8 x 10-6 and 9.30908 x 1Q-8 ̂  S ̂  1 x 1Q--\-7

in other words, the condition (3. 5) of Theorem 2 is satisfied by the
numbers 8 and k specified in (3. 26).

By Theorem 2, we thus see that equation (1.7) with o-=2~10,

£=1, co = 3.1 possesses a unique periodic solution x(t} in the region

(3.27) [>-*| (0|2 + \x-x(t) |2]1/2^§0 = 1 x 10-7

and moreover

(3.28) [ |x( t ) -x ( t } | 2 + |i(0-1(012]1/2 ^E= 9.31 x 10~8.

Remark. All Galerkin approximations listed in Tables 2.1.1,
2.1.2, ••• ,2.3.4, 3.1.1, ••• ,3.2.2 and 4 satisfy the condition of

Theorem 2. Therefore corresponding to each Galerkin approximation

listed in these tables, an exact periodic solution exists. The error

bounds E to Galerkin approximations obtained by the application
of Theorem 2 are shown in Tables 2.1.1, 2.1.2, ••• ,2.3.4, 3.1.1, • • • ,

3.2.2 and 4. In Tables 3.1.1, • • - , 3.2.2 and 4, the numbers S0 which,

as in (3.27), fix the region of the existence of exact periodic

solutions, are also shown.

4. Conclusions

By Tables 2.1.1, 2.1.2, — , 2.3.4, we see that for £-1/8,1/2,

1 and co = 3.05, 3.1, 3.2, 4, Buffing's equation with damping absent

possesses a harmonic solution with the neutral stability and two kinds
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of subharmonic solutions, of which one has the neutral stability and
the other is unstable. For Buffing's equation with damping absent,
subharmonic solutions with the neutral stability will be called
subharmonic solutions of the first kind and unstable subharmonic
solutions will be called subharmonic solutions of the second kind.
By Tables 3.1.1, 3.1.2, —,3.2.2 and 4, we further see that for
£=1/8, 1 and co = 3.1, 4, Duffing' }s equation with small positive damping
present possesses a stable harmonic solution and two kinds of sub-
harmonic solutions, of which one close to subharmonic solutions of the

first kind of the equation with damping absent is stable and the other
close to subharmonic solutions of the second kind is unstable.

From Tables 2.1.1, 2.1.2, ••• ,2.3.4, 3.1.1,— ,3.2.2 and 4, we
further observe some properties of periodic solutions to Buffing's
equation. They will be stated in the following sections.

4. 1 Symxnetricity of exact periodic solutions.
1° Periodic solutions to Buffing's equation with damping

absent. In Tables 2.1.1, 2.1.2, ••-,2.3.4, every Galerkin approxi-
mation to a subharmonic solution, that is, a 27r-periodic solution to
(1. 7) with cr = 0 and one to a harmonic solution, that is, a 27r-periodic
solution to (1.3) with o- = 0 are both of the form

(4. 1) x(t) = 2 *„ cos (2»-l)f .»=i

Let x(f) be a corresponding exact periodic solution, then by Theorem
2 we have

(4. 2) [ | &(f) - x(t) 2 + \ *'(f) - *'(f)

where ' denotes the differentiation with respect to the argument.
Now from (4. 1) we have

(4. 3) x(-t) = -X(t + 7t) = x(t) ,

therefore from (4. 2) we have
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and

11/2

However from the symmetricity of equations (1.7) and (1.3), x( — f)

and — x(t + n} are also periodic solutions to (1.7) or (1.3) corre-

spondingly. Then, since a periodic solution to (1. 7) or (1. 3) satis-

fying inequality (4. 2) is unique by Theorem 2, we see that

x( — i) = — x(t + 7r) — x(f),

which means that the Fourier series of x(f) is of the form

(4. 4) x(t] = 2 dn cos (2n -1) t.
n=i

2° Periodic solutions to Buffing's equation with damping
present. In Tables 3.1.1, 3.1.2, 3.2.1 and 3.2.2, every Galerkin ap-
proximation x(t} to a subharmonic solution, that is, a 27r-periodic
solution to (1.7) with 0-4=0 satisfies the inequality

Let x(t) be a corresponding exact periodic solution, then by Theorem
2 we have

(4.6) Cl*(0-*(0 2+

Then from (4. 6) and (4. 5) we readily get

(4. 7) [ | x(t + TT} + X(f) | 2 + X'(t + n) 2 1 / 2

However, as is seen from Tables 3.1.1, 3.1.2, 3.2.1, and 3.2.2,

£+\/52xlO-10<E+8xlO-10<S0,

which by (4. 7) implies

(4. 8) [ 1 x(t + n) + x(t) ! 2 + ! ^(/ + TT) + x'(t) 1 2]1/2 < S0 .
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Now from the symmetricity of equation (1.7), — £(t -\-TI-) is also a

periodic solution of (1. 7). Then, since a periodic solution of (1. 7)

satisfying the inequality

is unique by Theorem 2, we see that

which means that the Fourier series of x(t] is of the form

(4. 9) x(t} = f] \c2H sin (2n ~l}t + c2n+1 cos (2n - l)

For all harmonic solutions x(f) corresponding to Galerkin ap-

proximations listed in Table 4, it can be proved in the way similar

to 1° that ot(f) can be expanded in Fourier series of the form (4.9).

4. 2 Remarkable character of periodic solutions to Buffing's

equation with, damping absent. Tables 2.1.1, 21.2, •••,2.3.4 show

that in the Fourier series of the subharmonic solutions, the first

two coefficients a1 and a2 dominate remaining ones strongly and, in

the Fourier series of the harmonic solutions, the first coefficient

a2 dominates remaining ones strongly. Comparing Tables 2.1.1,

2.1.2, •••,2.3.4 with Tables 1.1, 1.2, 1.3, we further see that the

above dominant Fourier coefficients of the subharmonic solutions

and the harmonic solutions are all very close to the values of a1

and a2 listed in Tables 1.1, 1.2, 1.3, that is, the Fourier coefficients

of Galerkin approximations of the form

(4. 10) x(f) = a, cos t + a2 cos 3t .

This implies that even for non- small £ >0, one can know the qualitative

character of periodic solutions to Buffing's equation with damping

absent by investigating ike character of the Galerkin approximations

of the form (4. 10). Then we may suppose that Figures 1.1, 1.2 and

1.3 are valid also for periodic solutions to Buffing's equation with

damping absent,
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4. 3 A remark to periodic solutions to Buffing's equation with
damping present. In 4. 1, we have observed that periodic solutions
to Duffing's equation with small damping present are of the form

x(f) = S *« sin (2n - l)t 4-f] cn cos (2n - 1) / .«=i «=i

Comparing Tables 3.1.1, 3.1.2, 3.2.1, 3.2.2 and 4 with Tables 2.1.2,
2.1.4, 2.3.2, 2.3.4, we observe that

2 cwcos (2n— l)f = 2 #wcos (2» — I)/ ,
»=1 n=i

00

where 2 «ra cos (2n — l}t is a corresponding periodic solution to
«=i

Duffing's equation with damping absent. In Tables 3.1.1 and 3.1.2,
we further observe that for 8=1/8,

is not a small quantity of the order <r = 2~w = 0.00097 65625.
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Fig. 1.1 (£ = 1/8).

is a

Fig. 1.2 (6 = 1/2).

-o.i

15 fj
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Table 1.1 (£=1/8)

0)

3.05

3.1

3.2

4.0

Q 0i

9.3025 0.63741 8236
0.0

-0.51585 2082

9.61 0.89420 1639
0.0

-0.77575 5977

10.24 1.25675 9007
0.0

-1.14426 3122

16.0 2.88938 9313
0.0

-2.81281 9167

a2

-0.12059 7225
-0.12046 5389
-0.12171 4132

-0.11557 8278
-0.11616 1085
-0.11942 2055

-0.10488 5156
-0.10823 7974
-0.11640 0863

-0.01832 4240
-0.06666 8519
-0.12545 0320

Table 1.2 (£=1/2).

Q

3.05

3.1

3.2

4.0

9.3025 0.31345 1389
0.0

-0.19244 6982

9.61 0.45446 1607
0.0

-0.33651 0725

10.24 0.64311 9357
0.0

-0.53100 9109

16.0 1.46165 9437
0.0

-1.38515 4020

-0.12113 7420
-0.12052 4726
-0.12103 7994

-0.11695 5127
-0.11621 2376
-0.11793 1971

-0.10831 4549
-0.10827 6627
-0.11289 2860

-0.04550 7215
-0.06667 4077
-0.09826 4008

Table 1.3 (£=1)

0}

3.05

3.1

3.2

4.0

Q a,

9.3025 0.19879 5839
0.0

-0.07853 7428

9.61 0.31608 8307
0.0

-0.19879 4931

10.24 0.45813 5606
0.0

-0.34653 8367

16.0 1.042682507
0.0

-0.96626 3409

a2

-0.12123 5672
-0.12060 4116
-0.12075 3860

-0.11741 1722
-0.11628 0975
-0.11732 0538

-0.10945 9489
-0.10832 8293
-0.11164 0431

-0.05360 9552
-0.06668 1491
-0.09015 7062



Subharmonic Solutions to Buffing's Equation 103

Table 2.1.1
Periodic solutions to (1.7) with a-0 (£ = 1/8, a> = 3.05)

n

1
2
3
4
5
6
7
8
9

15

r

M

E

*i

M.-l

Stability

Subharmoni

an

0.63738 94700
-0.12059 77217
-0.00015 03858

0.00001 74607
-0.00000 06320
-0.00000 00038

0.00000 00002
0.0

d.o

8.63X10-9

101.5

8.760X10-7

0.99321 02880
±0.11633 28121z

0.99999 99996

neutral

z solutions

an

-0.51581 55306
-0.12171 46120
-0.00015 14040
-0.00001 45577
-0.00000 07096
-0.00000 00033
-0.00000 00002

0.0

0.0

1.31X10-8

123.7

1.6207X10-6

1.09964 4524,
0.90938 47852

unstable

Harmonic solution

dn

0.0
-0.12046 53891

0.0
0.0

-0.00000 06604
0.0

0.0

5X10-10

9.9

s.oxio-9

-0.47244 71969
±0.88135 89769z

1.00000 0000

neutral

Table 2.1.2
Periodic solutions to (1.7) with a=0 (5 = 1/8, o> = 3.1)

n

1
2
3
4
5
6
7
8
9

15

r

M

E

I;

M , l

Stability

Subharmonic solutions

an

0.89416 37367
-0.11558 04311
-0.00029 52928

0.00002 15640
-0.00000 04842
-0.00000 00063

0.00000 00002
0.0

d.o

9.6X10-9

76.1

7.306X10-7

0.98267 41279
±0.18534 17320?

0.99999 99997

neutral

an

-0.77570 72093
-0.11942 42151
-0.00030 39846
-0.00002 06942
-0.00000 07033
-0.00000 00064
-0.00000 00002

0.0

d.o

1.86X10-8

86.0

1.5998X10-6

1.17720 8198,
0.84946 74103

unstable

Harmonic solution

an

0.0
-0.11616 10854

0.0
0.0

-0.00000 05730
0.0

d.o

5xlO-10

10.2

5.2X10-9

-0.44269 32662
±0.89667 31133/

1.00000 0000

neutral
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Table 2.1.3
Periodic solutions to (1.7) with a=Q (e = l/8, o> = 3.2)

n

1
2
3
4
5
6
7
8
9

15

r

M

E

*i

U i l
Stability

Subharmoni

an

1.25671 76442
-0.10489 29084
-0.00052 42595

0.00002 26175
-0.00000 02233
-0.00000 00080

0.00000 00001
0.0

d.o

1.68X10-8

61.8

1.0384X10-6

0.96021 45254
±0.27926 34323i

0.99999 99997

neutral

c solutions

an

-1.14419 82013
-0.11640 92077
-0.00057 89532
-0.00002 82413
-0.00000 07476
-0.00000 00117
-0.00000 00003

0.0

d.o

1.71X10-8

66.2

1.1321X10-6

1.29745 2642,
0.77074 10404

unstable

Harmonic solution

an

0.0
-0.10823 79741

0.0
0.0

-0.00000 04347
0.0

d.o

2xlO-10

10.8

2.2X10-9

-0.38467 39051
±0.92305 25373z

1.00000 0000

neutral

Table 2.1.4
Periodic solutions to (1.7) with a = 0 (e = l/8, o> = 4)

n

1
2
3
4
5
6
7
8
9

Subharmonic solutions

an

2.88939 64903
-0.01834 34265
-0.00034 06838
-0.00000 20357

0.00000 00117
0.00000 00002
0.0

an

-2.81264 00834
-0.12557 78220
-0.00232 01890
-0.00007 13067
-0.00000 19406
-0.00000 00528
-0.00000 00014

0.0

Harmonic solution

an

0.0
-0.06666

0.0
0.0

-0.00000
0.0

85187

00648

7
8
9

15

r

M

E

J,

MJ

Stability

0.0

d.o

1.15X10-8

70.9

8.155X10-7

0.88108 83555
±0.47295 16979?

0.99999 99993

neutral

-0.00000 00014
0.0

0.0

2.37X10-8

71.3

1.6902 MO-6

1.62112 2770,
0.61685 64262

unstable

d.o

5xlO-10

16.4

8.3X10-9

-0.00065 44034
±0.99999 97858?

0.99999 99999

neutral
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Table 2.2.1
Periodic solutions to (1.7) with a = 0 0 = 1/2, <y = 3.05)

n

1
2
3
4
5
6
7
8
9

15

r

M

E

*i

U.-I
Stability

Subharmoni(

an

0.31340 53558
-0.12113 75427
-0.00011 05583

0.00003 47781
-0.00000 26472
-0.00000 00131

0.00000 00015
-0.00000 00001

0.0

d.o

2.19X10-8

60.6

1.3275X10-6

0.98851 25646
±0.15113 87076i

0.99999 99997

neutral

z solutions

an

-0.19237 42156
-0.12103 80304
-0.00011 03701
-0.00002 13758
-0.00000 27122
-0.00000 00086
-0.00000 00010
-0.00000 00001

0.0

d.o

2.05X10-8

97.0

1.9889xlO-6

1.09880 6886,
0.91007 80240

unstable

Harmonic solution

an

0.0
-0.12052 47278

0.0
0.0

-0.00000 26459
0.0
0.0

-0.00000 00001
0.0

d.o

1.2X10-9

9.9

1.19X10-8

-0.47982 71512
±0.87736 30406i

1.00000 0000

neutral

Table 2.2.2
Periodic solutions to (1.7) with a = 0 (e = l/2, a = 3.1)

n

1
2
3
4
5
6
7
8
9

15

r

M

E

*i

M , l

Stability

Subharmonic solutions

an J an

0.45439 19264
-0.11695 64970
-0.00026 33429

0.00004 53681
-0.00000 22006
-0.00000 00253

0.00000 00017
0.0

d.o

2.34X10-8

40.3

9.431X10-7

0.96636 03021
±0.25719 20796*

0.99999 99997

neutral

-0.33641 48660
-0.11793 31876
-0.00026 41626
-0.00003 46282
-0.00000 25224
-0.00000 00203
-0.00000 00015
-0.00000 00001

0.0

d.o

2.08X10-8

52.7

1.0963X10-6

1.2162 9642,
0.82216 80007

unstable

Harmonic solution

an

0.0
-0.11621 23773

0.0
0.0

-0.00000 22951
0.0

d.o

1.4X10-9

10.1

1. 42X10-8

-0.44956 48933
±0.89324 76738s

1.00000 0000

neutral
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Table 2.2.3
Periodic solutions to (1.7) with o = Q (e = l/2, o> = 3.

n

1
2
3
4
5
6
7
8
9

15

r

M

£

^

In-

stability

Subharmonic solutions

an

0.64303 26531
-0.10832 12797
-0.00051 46997

0.00005 10049
-0.00000 13945
-0.00000 00368

0.00000 00014
0.0

0.0

1.21X10-8

31.5

3.812X10-7

0.91968 76243
±0.39265 08284i

0.99999 99997

neutral

an

-0.53088 90496
-0.11289 93867
-0.00053 17972
-0.00004 80110
-0.00000 23212
-0.00000 00375
-0.00000 00019
-0.00000 00001

0.0

0.0

1.59X10-8

36.4

5.788X10-7

1.40503 2563,
0.71172 72764

unstable

Harmonic solution

an

0.0
-0.10827 66276

0.0
0.0

-0.00000 17408
0.0

0.0

i.oxio-9

10.7

1.08X10-8

-0.39062 79056
±0.92054 86621i

0.99999 99999

neutral

Table 2.2.4
Periodic solutions to (1.7) with cr = 0 (e = l/2, (y =

n

1
2
3
4
5
6
7
8
9

15

r

M

E

*i

M , l

Stability

Subharmonic solutions

an

1.46165 38180
-0.04555 49212
-0.00084 49916

0.00000 59508
0.00000 02492

-0.00000 00018
-0.00000 00001

0.0

0.0

7.0X10-9

35.6

2.493X10-7

0.76357 40830
±0.64572 02327*'

an

-1.38496 30370
-0.09836 10693
-0.00180 57494
-0.00007 68957
-0.00000 26025
-0.00000 00865
-0.00000 00030
-0.00000 00001

0.0

d.o
1.49X10-8

35.9

5. 350 X 10- 7

1.96414 8870,
0.50912 63771

0.99999 99995

neutral unstable

Harmonic solution

an

0.0
-0.06667 40766

0.0
0.0

-0.00000 02591
0.0

0.0

2xlO-10

16.3

3.3X10-9

-0.00261 64669
±0.99999 65770*

0.99999 99999

neutral
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Table 2.3.1
Periodic solutions to (1.7) with o = Q (ff = l, cy = 3.05)

! Subharmonic solutions

n

1
2

4
5

7

15

r

M

E

*t

1^1

Stability

an j «

0.19874 95570
-0.12123 55889
-0.00005 65814

0.00004 42107
-0.00000 53693
-0.00000 00176

0.00000 00039
-0.00000 00002

0.0

d.o

2.46X10-8

63.9

1.5723X10-6

0.98984 12174
±0.14217 72262i

0.99999 99997

neutral

-0.07843 84541
-0.12075 36311
-0.00005 70524
-0.00001 73127
-0.00000 53370
-0.00000 00078
-0.00000 00015
-0.00000 00003

0.0

d.o

2.47X10-8

158.8

3.9256X10'6

1.05869 0072,
0.94456 34995

unstable

Harmonic solution

an

0.0
-0.12060 41229

0.0
0.0

-0.00000 53029
0.0
0.0

-0.00000 00002
0.0

d.o

1.8X10-9

9.8

1.77X10-8

-0.48959 37021
±0.87195 06906i

1.00000 0000

neutral

Table 2.3.2
Periodic solutions to (1.7) with a = 0 (e = l, cy = 3.

n

1
2
3
4
5
6
7
8
9

15

r

M

E

.1,

M

Stability

Subharmonic solutions

Q>n

0.31600 21647
-0.11741 22723
-0.00021 64496

0.00006 37913
-0.00000 45871
-0.00000 00459

0.00000 00050
-0.00000 00002

0.0

d.o

2.60X10-8

32.0

8.321X10-7

0.95776 42812
±0.28755 44838i

0.99999 99998

neutral

an

-0.19866 15617
-0.11732 07872
-0.00021 57463
-0.00004 03006
-0.00000 48456
-0.00000 00309
-0.00000 00033
-0.00000 00002

0.0

d.o

1.35X10-8

49.3

6.656X1Q-7

1.20610 4705,
0.82911 54117

unstable

Harmonic solution

an

0.0
-0.11628 09810

0.0
0.0

-0.00000 45989
0.0
0.0

-0.00000 00002
0.0

d.o

3X10-10

10.1

3.1X10-9

-0.45866 69814
±0.88860 82377i

1.00000 0000

neutral



108 Minoru Urabe

Table 2.3.3
Periodic solutions to (1.7) with a = 0 (e = l, w = 3.

n

1
2
3
4
5
6
7
8
9

15

r

M

Subharmonic solutions

an

0.45801 73216
-0.10946 46843
-0.00048 31870

0.00007 49046
-0.00000 31416
-0.00000 00747

0.00000 00045
-0.00000 00001

0.0

d.o

2.48X10-8

23.2

£ 5.754X10-7

*

l ^ i l

Stability

0.88939 86110
±0.45713 24868i

0.99999 99998

neutral

an

Harmonic solution

an

-0.34637 31608 1 0.0
-0.11164 50565 ' -0.10832 82962
-0.00048 78993 0.0
-0.00006 06922 0.0
-0.00000 42355 -0.00000 34869
-0.00000 00644 0.0
-0.00000 00045 0.0
-0.00000 00002 -0.00000 00001

0.0 0.0

d.o d.o

9.9X10-9 1.1X10-9

28.8

2.852X10-7

10.7

1. 18X10-8

1.44677 1135, • -0.39852 58925
0.69119 43257 ±0.91715 70819i

0.99999 99999

unstable neutral

Table 2.3.4
Periodic solutions to (1.7) with 0 = 0 (e = l, o> = 4)

ii

1
2
3
4
5
6
7
8
9

15

r

M

E

It

Subharmonic solutions

an

1.04265 32218
-0.05366 54105
-0.00099 23715

0.00001 80707
0.00000 04148

-0.00000 00123
-0.00000 00002

0.0

d.o

1.55X10-8

25.3

3.922X10-7

0.66814 27831,
±0.74403 30775/

\lt\ 0.99999 99995

Stability neutral

an

-0.96604 99115
-0.09024 34248
-0.00164 48577
-0.00008 58323
-0.00000 33351
-0.00000 01232
-0.00000 00049
-0.00000 00002

0.0

d.o

1.48X10-8

25.7

3. 804 X 10 -7

2.21194 1080,
0.45209 16072

unstable

Harmonic solution

an

0.0
-0.06668 14915

0.0
0.0

-0.00000 05184
0.0

d.o

5X10-10

16.3

8.2X10-9

-0.00522 98781
±0.99998 63240i'

0.99999 99999

neutral
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Table 3.1.1
Periodic solutions to (1.7) with G=2~w (£ = 1/8, o> = 3.1)

1° *15 (*) = 0.03028 80058 sin t +0.89331 82959 cos t
+ 0.00030 91923 sin 3* -0.11559 53736 cos 3*
-0.00002 37202 sin 5* -0.00029 44095 cos 5*
+ 0.00000 05627 sin It + 0.00002 15577 cos It
+ 0.00000 00139 sin 9* -0.00000 04849 cos 9*
-0.00000 00004 sin llf-0.00000 00063 cos lit

+ 0.00000 00002 cos 13*,
r = 1.9xlO-9, M=76.6, £=1.456xlQ-7, 50 = 1.47xlO-7,
;lf ;(2=0.97988 03088±0.18415 80459i,
M i l , M2 =0.99703 54082,
Stability: stable.

2° *15 ft)=0.03063 35257 sin* -0.77548 34440 cos t
+ 0.00024 57725 sin 3* -0.11941 61668 cos 3*
+ 0.00001 99608 sin 5* -0.00030 33481 cos 5*
+ 0.00000 09372 sin It -0.00002 06791 cos It
+ 0.00000 00123 sin 9* -0.00000 07027 cos 9*
+ 0.00000 00005 sin llf-0.00000 00064 cos 11*

-0.00000 00002 cos 13*,
r = 2.0xlO-9 , M=86.5, £ = 1.731xl0-7, 50 = 1
^ = 1.17326 4292, A2 = 0.84727 67891,
Stability: unstable.

Table 3.1.2
Periodic solutions to (1.7) with o=2~1Q (£ = 1/8, cy =

1° jc15(0= +0.00000 00001
+ 0.06210 04049 sin * +2.88864 67924 cos *
-0.00000 00001 sin 2*
+ 0.00362 47077 sin 3* -0.01846 37771 cos 3*
+ 0.00005 19900 sin 5* -0.00034 55740 cos 5*
-0.00000 00777 sin 7* -0.00000 21181 cos 7*
-0.00000 00082 sin 9* +0.00000 00113 cos 9*
-0.00000 00001 sin 11*+ 0.00000 00002 cos 11*,

r=4.1XlO-9, M=71.0, £=2.912xlO-7, 50 = 3xlO-
^i, ^2 = 0.87932 24423 + 0.47138 16650?,
Mi I = M 2 1 =0.99770 16747,
Stability: stable.

2° *15(0= +0.00000 00002
+ 0.06299 89812 sin * -2.81201 85119 cos *

-0.00000 00001 cos 2*
+ 0.00349 53718 sin 3* -0.12546 59671 cos 3*
+ 0.00016 47728 sin 5* -0.00231 31766 cos 5*
+ 0.00000 63287 sin 7* -0.00007 09561 cos 7*
+ 0.00000 02221 sin 9* -0.00000 19254 cas 9*
+ 0.00000 00074 sin 11*-0.00000 00522 cos 11*
+ 0.00000 00002 sin 13*-0.00000 00014 cos 13*,

r = 4.5xlO-9, M=71.4, £=3.214xlO-?, £0 =
^! = 1.61657 6060, ^2 = 0.61575 11731,
Stability: unstable.
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Table 3.2.1
Periodic solutions to (1.7) with o = 2~w (e = l ,&> = 3.1)

1° *15 (0=0.00374 84022 sin t +0.31593 24676 cos t
+ 0.00007 53137 sin 3* -0.11741 26343 cos 3t
-0.00000 95962 sin 5t -0.00021 62865 cos 5t
+ 0.00000 06531 sin It +0.00006 37792 cos It
+ 0.00000 00195 sin 9t -0.00000 45873 cos 9t
-0.00000 00014 sin llf-0.00000 00458 cos lit

+ 0.00000 00050 cos 13f
-0.00000 00002cos 15f,

r=2.9xlO-9 , M=32.1, £=9.31X10-8, 50 = lxlO-7,
llt X2 = 0.95498 22496±0.28651 09291i,
|^|=U2 |=0.99703 54104,
Stability: stable.

2° *15(f) = 0.00385 11023 sin f -0.19869 89516 cos t
+ 0.00005 49550 sin 3t -0.11732 12521 cos 3f
+ 0.00000 38874 sin 5t -0.00021 57613 cos 5t
+ 0.00000 08258 sin It -0.00004 03077 cos It
+ 0.00000 00114 sin 9f -0.00000 48456 cos 9t
+ 0.00000 00008 sin llf-0.00000 00309 cos lit
+ 0.00000 00001 sin 13^-0.00000 00033 cos 13f

-0.00000 00002 cos 15 ,̂
r-2.2xlO-9, M=49.3, £=1.085xlO-7, 50 = l . lXlO-7 ,
^! = 1.20252 8159, ^2 = 0.82665 80649,
Stability: unstable.

Table 3.2.2
Periodic solutions to (1.7) with cr = 2~10 (e = l, <y = 4)

1° *i5(0 =0.00765 38598 sin / +1.04261 49858 cos t
+ 0.00048 30974 sin 3t -0.05367 09094 cos 3*
-0.00000 71715 sin 5* -0.00099 24868 cos 5£
-0.00000 05051 sin It +0.00001 80779 cos It
+ 0.00000 00098 sin 9f + 0.00000 04150 cos 9£
+ 0.00000 00005 sin llf-0.00000 00123 cos lit

-0.00000 00002 cos 13f,
r=1.6xlO-9, M=25.3, .E-4.05X10-8, 50 = 4.2xlO-8,
;15 ^2 = 0.66669 89022±0.74224 06603i,
| ̂ 1 = 1 ^21 =0.99770 16708,
Stability: stable.

2° *15(0= +0.00000 00001
+ 0.00796 97109 sin t -0.96602 78183 cost
+ 0.00043 69056 sin 3* -0.09023 89741 cos 3*
+ 0.00003 25368 sin 5* -0.00164 44793 cos 5*
+ 0.00000 17935 sin It -0.00008 58069 cos It
+ 0.00000 00868 sin 9£ -0.00000 33336 cos 9f
-t-0.00000 00042 sin 11^-0.00000 01231 cos lit
+ 0.00000 00002 sin 13^-0.00000 00049 cos 13f

-0.00000 00002 cos 15f,
r=3.9xlO-9, M=25.7, E=1.003X10-7, 50=1.08xlO-7

^ = 2.20663 9824, ;2=0.45109 70035,
Stability: unstable.
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Table 4
Periodic solutions to (1.3) with a = 2~4.

*15(0 = 0.00261 30219 sin t -0.11610 22676 cos t
+ 0.00000 00425 sin 3t -0.00000 05709 cos 3f,

r=2xlO-10, M=10.2, £=2.1X10-9, £0 = 2.1X10-9,
^ X2 =-0.41468 98606±0.84205 13087*,
1^1 = 1^1=0.93862 56373,
Stability: stable

2° £ = 1/8, o = 4.0.
*15 (0=0.00111 08642 sin t -0.06665 00033 cos t

+ 0.00000 00036 sin 3/ -0.00000 00646 cos 3t,
r = lxlO-10, M=16.4, £=1.7XlO-9, 50 = 1.9xlO-9,
;1? iz = 0.00010 72410±0.95209 79207*,
|^| = | ̂ 21 =0.95209 79267,
Stability: stable.

3° f 1 s- \ O 1t = X, 0)==O.L,

*15CO=0.00261 84132sin^ -0.11622 19199 cos if
+ 0.00000 03415 sin 3t -0.00000 45826 cos 3*

-0.00000 00002 cos 5f,

^, ;2=:_0.42969 03383 + 0.83449 64351*,

Stability: stable.

*i5(0 =0.00111 12964 sin t -0.06666 29616 cos t
+ 0.00000 00286 sin 3t -0.00000 05174 cos 3t,

r=lxl0-10, M=16.3, E=1.7xlO-9, 50-
^, X2 =-0.00424 99789±0.95208 84411*,
|^| = i;21 =0.95209 79267,
Stability: stable.
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